Lecture 7
<table>
<thead>
<tr>
<th>5</th>
<th>Scientific misconduct</th>
</tr>
</thead>
</table>
| | • Research ethics as virtue ethics:
| | → "Scientist" as a social role
| | → Expectations
| | → What is the "ideal scientist"?
| | → Virtues of "good science". Scientific integrity.
| | • FFP definition: Fabrication of data, Falsification of results, Plagiarising of research.
| | • Reasons for fraud: Institutional pressure, conflicts of interest, pride, etc. |

<table>
<thead>
<tr>
<th>6</th>
<th>Publishing Issues</th>
</tr>
</thead>
</table>
| | • Doing science vs. writing science
| | • Publication of research
| | • Ethics of publishing
| | • Writing science: trivial? Ethics of science communication.
| | • Publishing practices:
| | ○ Peer reviewing,
| | ○ Impact factors,
| | ○ Citation practices. |

<table>
<thead>
<tr>
<th>7</th>
<th>Mentorship, Collaborations and sources of conflict</th>
</tr>
</thead>
</table>
| | • Chemistry as teamwork
| | • Group hierarchies and harmony
| | • Mentorship, PI-student relationship
| | • Collaborative Research, Interdisciplinary research |

<table>
<thead>
<tr>
<th>8</th>
<th>Academic freedom, Intellectual property</th>
</tr>
</thead>
</table>
| | • Chemistry and politics (funding, impact on academic freedom, basic vs. applied research)
| | • Academia and industry
| | • Conflicts of Interest
| | • Intellectual Property |

<table>
<thead>
<tr>
<th>9</th>
<th>Animal experiments</th>
</tr>
</thead>
</table>
| | • Animal rights?
| | → Utilitarian vs. deontological positions
| | → Means-ends relations
| | • "3R" regulations
| | • Legal issues |
Class 7 - Collaborations, Conflicts, Mentorship

Chemistry is - on several levels - teamwork, and as such embedded into a wide network of actors and stakeholders. This and the next class will focus on issues that arise in the context of collaborations and co-operations across these levels. We will see in this class what kind of conflicts can arise when chemists work with fellow chemists (including PI-student interaction), with other (natural) scientists, or with completely different scientists (social sciences, humanities).

Goal of this class

After this class you will be:

- a better mentor/superior, or a student/inferior with the ability to solve conflicts with convincing discourse skills and good arguments.
- a better collaborator with high scientific integrity, credibility and positive influence.
- an open-minded interdisciplinary bridge builder that can see beyond the narrow margin of your own professional expertise and competence.
Chemists share

- facilities
- devices
- services
- competences
- ideas
- visions

at
- symposia
- colloquia
- conferences
- bilateral communication
different fields of collaboration
- Social Sciences
- Philosophy
- Psychology

Examples:
- Technology assessment
- Consequences of global climate change
Link to Politics:

Examples from:
- Environmental Research
- Big Data
- Politically relevant regions

Examples: Russia, Columbia
Additional Aspect covered: Science Diplomacy

Science in Diplomacy:
Scientific results used for political decision-making.

Diplomacy for Science:
Support of Diplomacy in support of science.

Science for Diplomacy:
Science supports Diplomacy by constant interactions between scientists, even under difficult conditions.

Example: Interactions between FU Berlin and St. Petersburg University since 1968
Relation of Research to Funding

Start in funding
Minimum use of tax payer money

- Goals in technology
- Political goals
- Sustainability goals
Funding by industry

- Development of new products
- Product development
- Novel production technologies

Central Goal: Profit + Relation to scientific virtues
Motivation for Collaborations

- Structural reasons
- Financial reasons
- Political Support
- Procedural and epistemic reasons
- Share of knowledge (know-how, competences)
- Community of Purpose
Funding agencies

Changes in funding formats

Germany DFG
BMBF
Collaboration and Teamwork

Required
- Trust
- Collegiality
- Accountability
- Responsibility

Conflict
Often due to misunderstanding in communication
- Role of initiators and coordinators
- Role of contracts
- Culture of collaborations

Examples
Mentorship

- Importance of Mentorship
- Role of Mentor
- Education in Mentorship
- Interests of Mentors and Mentees

- What is a good Mentor?
- What to do in case of conflicts?
Distinction
multi-disciplinarity
traceability
inter-disciplinarity
Not shown in lecture (from Jan Mehlich)
<table>
<thead>
<tr>
<th>8</th>
<th>Academic freedom, Intellectual property</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Chemistry and politics (funding, impact on academic freedom, basic vs. applied research)</td>
</tr>
<tr>
<td></td>
<td>• Academia and industry</td>
</tr>
<tr>
<td></td>
<td>• Conflicts of Interest</td>
</tr>
<tr>
<td></td>
<td>• Intellectual Property</td>
</tr>
</tbody>
</table>

Next lecture