
Chapter 22
Control of Epidemics on Hospital Networks

Vitaly Belik, Philipp Hövel and Rafael Mikolajczyk

Abstract The spread of hospital-related infections such as antibiotic-resistant
pathogens forms a major challenge in public healthcare systems world-wide. One of
the driving mechanisms of the pathogen spread are referrals or transfers of patients
(hosts) between hospitals or readmissions after their stay in the community, consti-
tuting a dynamical network of hospitals. We analyze referral patterns of 1 million
patients from one Federal State in Germany over the period of three years. We extract
the underlying statistics of relocation patterns and build an agent-based computa-
tional model of pathogen spread. We simulate an outbreak of an SIS-type infection
(susceptible-infected-susceptible) and evaluate characteristic time scales and preva-
lence levels. For such recurrent diseases, we finally investigate the effect of control
measures based on screening and isolation of incoming patients.

22.1 Introduction

The emergence and transmission of antibiotic-resistant pathogens is an issue of a
major challenge for public health on a world-wide scale [1]. Due to the availability
of data and computational resources, a number of investigations have been devoted
to study the pathogen spread in hospital networks in different countries [2, 3]. It
turned out that countries differ in their hospital network structure [2]. Therefore,
it is important to analyze healthcare systems in different countries to understand
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universal features and heterogeneities. Studies that analyze the German healthcare
system from the network perspective are very rare [4]. We aim to fill this gap and
present an analysis of German data and for the first time model the spread of a
pathogen on this network of hospitals in Germany. Specifically, we elaborate on
the impact of screening procedures of patients admitted to hospital to reduce the
prevalence level of a disease. Additionally we incorporate the possibility of patients
carrying the pathogen after their release to the community, which was not considered
in the previous studies [2, 3]. Our study should be considered as a proof of concept
for approaches combining complex network theory and computational methods in
epidemiology.

The rest of this chapter is organized as follows: In Sect. 22.2, we introduce the
dataset and provide details of the model. We also present an analysis of the dataset in
terms of its network and temporal properties. Section 22.3 contains the main numer-
ical results and discuss the influence of screening procedures of patients upon admit-
tance to a hospital. We finally summarize our findings in Sect. 22.4.

22.2 Dataset and Model

In the presented study, we consider anonymized data on patient referrals, that is,
relocations between hospitals or release to/readmission from the community. The
dataset contains 1654 hospitals, which are considered as nodes in the network,
9.18 · 105 patients with around 2 million hospital stays over the course of 3 years
of data.

The data was obtained from a healthcare provider in a large federal state in Ger-
many. It contains the following information about the referral: day of first admission
t0, number of stays s, duration of each stay τ , and inter-stay time θ . See Fig. 22.1. The
color corresponds to different hospitals. Patients can be directly transferred between
hospitals or spend some time in the community.

On an average week day there are around 3400 relocation events as shown in
Fig. 22.2 (top). These relocations form the set of links in our network. Note that
the sequence of links is crucial to ensure the causality of a spreading process. In

Fig. 22.1 Schematic of the available referral data for an exemplary patient with the day of first
admission t0, number of stays s, duration of stay τ , and inter-stay time θ . The color indicates
different hospitals
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Fig. 22.2 Properties of the
time-aggregated, undirected,
and non-weighted hospital
network with major 176
nodes depicted in Fig. 22.3.
Top Histogram of the
number of all relocations per
day. Middle Direct relocation
between pairs of hospitals.
Bottom In- and out-degree
histograms

other word, the network under investigation constitutes a temporal network [5, 6].
If we consider only direct relocations between pairs of hospitals without relocations
between hospitals and homes (community), we observe around 40 relocations on an
average week day. See Fig. 22.2 (middle). The in- and out-degree distributions of the
aggregated network of hospitals are presented in Fig. 22.2 (bottom). The in-degree
is broader distributed than the out-degree. Note that there is one outlier referring to
a node with in-degree 120 (not shown).
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Fig. 22.3 Modular structure of the patient transfer network. 176 nodes (hospitals) can be subdivided
into 5 modules indicated by the color of the node. The position is chosen according to a spring-
embedded layout and thus, corresponds to the topological position in the network and not to the
geographical location. Node sizes corresponds to hospital sizes (number of beds) as estimated from
the data

The data might also contain information about referrals to hospital outside the
federal state under consideration, but does not include full referral records beyond
the state borders. We identified the hospitals located in the state under consideration as
those hospitals with a maximum number of patients larger than a threshold which was
set to 30. This resulted in 176 frequently visited hospitals as depicted in Fig. 22.3. In
this reduced network we computed 4 modules using the Louvain algorithm described
in Ref. [7]. This method sorts all nodes into different modules by maximizing the
so-called modularity Q, which is defined as
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Q = 1
2m

N∑

i, j=1

(
ai j − ki k j

2m

)
δ
(
ci , c j

)
, (22.1)

where m denotes the total number of links, {ai j } is the adjacency matrix, and ki
and ci refer to the degree and module of node i , respectively. To obtain Fig. 22.3, we
applied this algorithm to the time-aggregated, undirected, and non-weighted network.
Information on the modular structure of networks can be used to identify critical links
for an effective prevention of epidemics. This is important, for instance, to contain
an outbreak locally and prevent spreading across different modules [8].

Due to reasons of privacy we do not have information on geographical coordinates
of hospital or access to other types of metadata. However, we are able to estimate
hospital sizes from the data. For this purpose we take the maximum number of
patients sojourning in the individual hospital as an estimate of its size, i.e. number of
beds. To verify our estimates, we compare these with the data from statistical bureau
by ranking both numbers.1 The accuracy of this procedure is shown in Fig. 22.4. We
find that the ratio of the ranked hospital size, which are estimated from the data, and
the real hospital sizes remains constant around 0.5 for the first 150 nodes. Assuming
a uniform distribution of the customers of the health insurance company, which
provided us with data, this ratio nicely reflects its market share as it is close to the
real value of around 40 %. The agreement can be further improved, if we take into
account an occupancy rate of hospitals below 100 %.

Quantifying categories of links in our network, we also computed the numbers of
relocations between community and hospitals (2.974 · 106 or 99 % of all relocations)
and direct transfers between different hospitals (3.3 · 104 or 1 % of all relocations).
Therefore, it is to be expected that the role of the community is very important, as the
majority of patients are not directly transferred between hospitals, but first stay for
some time in the community, potentially carrying the pathogen. In the simulations
presented below, we assume no disease spreading in the community for simplicity,

Fig. 22.4 Evaluation of the
robustness of hospital size
estimations from the data.
NSB are the number of beds
in hospitals as given from the
statistical bureau. Ndata are
the sizes of hospitals as
estimated from the data,
i.e. the maximal number of
patients on any day

1See Landesamt für Statistik Niedersachsen: http://www.statistik.niedersachsen.de.
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because we lack information about the moving patterns except for the times of hospi-
tal (re)admission and release. Since we do not have any information about the internal
ward structure of the hospitals either, we assume that within a hospital patients are
well mixed, and the law of mass action holds.

Fig. 22.5 Statistics of the
dataset: histograms of (top)
number of stays, distribution
of (middle) duration of stays,
(bottom) distribution of
inter-stay times
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Fig. 22.6 Total number of
agents in the system in
dependence on time

Figure 22.5 depicts basic statistics of the individual referrals in the considered
dataset. See also schematics shown in Fig. 22.1. The number of stays and stay times
(top and middle panels in Fig. 22.5) are broadly distributed with long tails. The
majority of the patients (around 50 %) were admitted just one time to a hospital. The
inter-stay time distribution peaks around 110 days (bottom panel in Fig. 22.5).

In order to simulate the whole population of size N , we generate the corresponding
number of agents from the data on only 40 % of the patients using the following
procedure: (i) we chose N times a patient ID from the dataset with its referral record
and assign a random day of its first appearance in the interval [0, T ]with T = 3 a, (ii)
we periodically repeat these records for the intervals [(n − 1)T, nT ]with n = 1, 2, 3
leading to a total observation time of 12 a; (iii) taking into account mortality rates
for the agent, an agent is removed assuming a death rate of 0.007/a and at the same
time, a new agent with the same referral profile is added. Following this procedure,
we reach a constant population level after an initial transient as shown in Fig. 22.6.

In order to model an endemic prevalence level of resistant pathogens, we consider
an SIS (susceptible-infected-susceptible) epidemic model. Given the number I of
infected and S of susceptible individuals in one hospital, the dynamics follow a
chemical kinetic equations for infectious dynamics:

S + I
α→ 2I (22.2a)

I
β→ S (22.2b)

where α and β denote the infection and recovery rate per individual. Thus we consider
the frequency-dependent model, where the chance of infection is proportional to the
product of the number of susceptible and infected individuals in a single population
and inversely proportional to its size. Equation (22.2) describes an undetected, free-
running spread of pathogens in the absence of control measures.

We use a stochastic agent-based computational epidemic model on a network of
hospitals and implement the events according to the empirical data using a priority
queue data structure [9] to keep track of single individuals, their infection status and
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Fig. 22.7 Histogram of the
time-averaged endemic
prevalence values in
hospitals with a non-zero
number of infected agents.
Infectious rate α = 0.1/day
and recovery rate β =
2.7 · 10−3/day = 1/year

time events (arrival at and release from a hospital, recovery). For the time between two
subsequent events, the local node dynamics follow the SIS-model described by the
kinetics (22.2). The infectious rate α is chosen to ensure the average prevalence within
hospitals around 5 %. We consider a recovery rate β = 1/a = 2.7 · 10−3/d, which
corresponds to typical carriage times of a bacterial pathogen. We configure the system
in the following way: we populate the hospitals according to the procedure described
above using the empirical transfer profiles of the dataset. As initial condition, we
implement 0.99 % of the patients in all hospitals as infected. We find that the dynamics
of our network model reach an endemic state after 1000 days (Fig. 22.4).

Figure 22.7 depicts the histogram of the time-averaged endemic node prevalence.
The median is 0.02 and the mean value is 0.07. One can see that the prevalence
distribution is inhomogeneous and skewed towards low values, indicating a small
prevalence for many nodes.

22.3 Results of Simulations and Control by Screening

Extending the model described in the previous section, we additionally implement
the following control measure. We randomly screen a fraction ν of patients incoming
in every hospital. Assuming a test sensitivity of 100 %, patients that are detected as
infected are immediately isolated and cured from the disease.

Figure 22.8 presents the time series of the prevalence after the control is applied
at t = 3000 d for different screening fractions ν. Note that ν = 0 corresponds to
the uncontrolled case. As intuitively expected, screening leads to a reduction of the
prevalence level. We observe that the screening rate has to be considerably high
in order to achieve significant results. For a 10-fold reduction within 300 days, for
instance, a screening of 90 % of incoming patients is required.

Figure 22.9 shows the time required to reduce the prevalence to 50 %, which
is known as half reduction time, in dependence on the screening fraction ν. This
half reduction time is marked in Fig. 22.8 by vertical lines. We find that the half
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Fig. 22.8 Averaged prevalence for different fraction of incoming patients screened: ν = 0, i.e. no
screening, (blue), ν = 0.1 (green), ν = 0.2 (red), ν = 0.5 (cyan), ν = 0.9 (magenta). The average
is computed over all hospitals for each time step. The dashed horizontal line indicates the 50 %
reduction level and the vertical lines mark the half reduction times. System parameters of the SIS
model (22.2) as in Fig. 22.7

Fig. 22.9 Time until 50 %
prevalence reduction from
the start of the screening.
System parameters of the
SIS model (22.2): infectious
rate α = 0.1/day and
recovery rate β = 1 year−1

reduction time decreases strongly with screening rates up to ν = 30–40 %. For higher
values of ν the half reduction time equilibrates around 100 days and does not change
significantly. Thus, if the goal is to reduce prevalence to 50 %, moderate screening
fractions ν = 30–40 % are sufficient.

22.4 Conclusion

We have shown how complex network theory and computational methods of agent-
based stochastic reaction-diffusion processes can help to control nosocomial infec-
tious diseases, such as antibiotic-resistant pathogens, e.g. Methicillin-resistant
Staphylococcus Aureus (MRSA) or ClostridiumDifficile. We have analyzed patients
referral patterns in one federal state in Germany over the period of 3 years. We have
extracted the corresponding hospital network of patient relocations and built a com-
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putational agent-based stochastic model of disease dynamics including the full his-
tory of hospital stays on the single patient level. We have assessed the efficiency of
screening a fraction of incoming patients as a potential control measure. This means
that in the case of a positive screening test, the patient is isolated and cured before
admission to the hospital. For typical values of parameters, we have found that the
endemic prevalence can be halved within 100 days for screening fraction around
30–40 %.

Our study represents a proof of concept and opens roads for the future analysis of
the potential impact of different epidemic control measures in a network of hospitals.
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