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ABsTRACT. Armenta and Jodoin introduced moduli spaces of quiver representations as a
tool for the theoretical investigation of neural networks, and Armenta, Briistle, Hassoun,
and Reineke established many geometric properties of those moduli spaces in a generality
which goes beyond the standard setting of neural networks. In this paper, we will first
review the algebro-geometric background. We have tried to be elementary in order to make
the techniques accessible to a broader audience. As orginally suggested by Armenta and
Jodoin, we derive a (generalization of a) result of Meng et al.. In addition, we prove some
interesting results about the equations for the moduli spaces and their real points.

INTRODUCTION

A(n) (artificial) neural network is a structure which is inspired by brains. It features
“neurons” and “synapses” which form a directed graph or quiver. It is subdivided into an
input layer, an output layer, and hidden layers in between. One fixes an activation function
for each hidden neuron (or vertex) and a weight for each synapse (or arrow). These data
determine the network function, i.e., the rule according to which information is passed from
the input layer to the output layer. The collection of weights determines a so-called thin
representation of the network quiver. It was observed in [2] that the network function is
invariant under certain rescalings and, therefore, can be factorized over a certain algebraic
variety that is known in respresentation theory and algebraic geometry as the moduli space
of (thin) representations of the (doubly) framed network quiver The idea of [2]] is to
investigate this moduli space in order to get insights into the workings of the network. For
this reason, moduli spaces of - not necessarily thin - representations were investigated in
[L]. That paper applied quite advanced techniques of representation theory and algebraic
geometry.

In this note, we will focus only on the case of thin representations which seems to be,
at the moment, the most relevant one for applications. We have provided an extensive
introduction to the algebraic framework of group actions and quiver representations. We
have tried to keep the discussion elementary, though this has not always been possible.
Theorem is a special case of a fundamental result about moduli spaces of framed
quiver representations. We have provided an easy proof in the situation at hand. The
generators of the invariant ring which appear in the statement of the theorem determine
the moduli space within a certain ambient space C®, s being the number of generators. In
fact, the equations cutting out the moduli space from that ambient space are obtained from
relations among the generators. We recall an algorithm based on Grobner bases for finding
a set of relations which implies all other relations and is in a certain sense minimal with
this property. Then, we provide an elementary way for determining a set of relations which
implies all other relations, but which might be bigger than the one you find algorithmically.

2020 Mathematics Subject Classification. 16G20, 14D22, 14P05, 68T07.
IThe framings are determined by the input and the output layer where no rescalings are taking place.
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The next important result is the slightly technical Proposition[2.4.2] Its proof nicely reflects
the inductive structure of a network quiver. Stable, semistable, and polystable collections
of weights are crucial notions for investigating the moduli spaces. They come from the
general theory. Stable and semistable collections have already been investigated in [1] and
[3]] (see Theorem[3.1.1)). We rephrase the result in Theorem [3.1.2]and show that collections
consisting entirely of non-zero weights are stable (Corollary [3.1.3). The existence of
stable collections and Proposition [2.4.2]lead to an algebraic proof and a generalization of
a result in [16] (see Theorem . This is a first indication that the moduli space does
indeed contain interesting information about the corresponding neural network. Another
interesting finding is the characterization of polystable collections of weights in terms of
their support (Proposition [3.2.T)).

In the discussion, so far, it has been implicitly assumed that we are working over the
complex numbers. This means that we are admitting complex weights, as well. However,
this seems to be irrelevant for applications. To this end, we prove in Section [3.3] that the
moduli space over the real numbers just consists of the real points of the complex moduli
space (Theorem [3.3.4). This puts that object into a clear mathematical context, namely
the realm of real algebraic geometry and should help in further investigations. The main
ingredients of the proof of Theorem 3.3.4] are Propositions[2.4.2]and [3.2.1]

We again emphasize that the proofs use only elementary techniques and are of a more
combinatorial flavor.

Acknowledgment. Jorge Esquivel Araya was funded by the Math+ project EF 1-16 Quiver
representations in big data and machine learning

1. BACKGROUND FROM ALGEBRAIC GEOMETRY

In this section, we will collect some necessary concepts and results from algebraic
geometry. These concern, in particular, group actions and quotients. We have tried to
keep it as elementary as possible, so that a reader with a general mathematical background
which includes polynomial rings in several variables will get a first impression. Eventually,
it might be necessary to get immersed more deeply into the subject. For the basic set-up of
algebraic geometry, Chapter I of [[11] or [[17] or Chapter AG of [6]] will be sufficient. The
latter book also contains information on group actions and quotients. The books [8]] and
[[19] provide gentle introductions to geometric invariant theory, that is, the theory of group
actions in algebraic geometry, their invariants, and quotients.

1.1. Regular functions. Let n > 1 and C” the set of n-tuples of complex numbers. So,
an element of C" has the shape (ay,...,a,) with a; € C,i = 1,...,n. The functions that
we admit on C" in algebraic geometry are called regular functions and are given by the
polynomials in the variables xy, ..., x,,. Here, a polynomial f(x1,...,x,) € C[x], ..., X] is
identified with the function

f:c"—C
(al’ -«-,an) — f(a19 L] an)'
A polynomial f € Clxy,...,x,] is said to be a monomial, if there exists a tuple yu =
(u1s s ) € N*"_such that
f:)_cﬁ::xllll ..... )an.

thtps ://mathplus.de/research-2/emerging-fields/efl-extracting-dynamical-laws-
from-complex-data/efl-16/
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The number d := u; + - - - + u, is the degree of the monomial. The monomials
v pe N
form a vector space basis for C[x, ...,x,]|. Ford € N, let
Clx1,s .. Xnla

be the linear subspace of C[xy, ..., x,] that is spanned by the monomials of degree d. An
element of C[xy, ..., x,]4 is called a homogeneous polynomial of degree d. Note that the
zero polynomial is homogeneous of any degree. Since the monomials of degree d form a
basis of the polynomial ring, we have the direct sum decomposition

Clx1, ey Xp] = @ Clxt, s Xnla-
d=0

Remark 1.1.1. There is a coordinate free description. Let V be a complex vector space of
dimension 7 and V" := Homc¢ (V, C) its dual vector space. If we choose a basis ey, ..., e,
for V, then the dual basis e!, ..., e" for VV is defined by the condition

e'(e;) =8;j, i.j=1,..n.
Clearly,
(1.1.1.1) Clxt, .0 Xn]1 — VY
xi—e, i=1,..n,

is an isomorphism of complex vector spaces. Now, for any d € N, one may associate
with VY its d-fold symmetric power Sym“ (V") (see [15], Chapter X VI, §8). For example,
Sym®(V¥) = C and Sym' (V") = VV. The isomorphism (T.T.1.1) induces an isomorphism

Clx1, ..y xn]a — Sym?(VY), d>2.
Finally, the direct sum
Sym*(VY) := EB Sym¢ (V")
d=0

can be easily endowed with the structure of a C-algebra (loc. cit.). It is called the symmetric
algebra of VY. The isomorphism (I.I.1.1) yields an isomorphism

Clx1, ..., x,] — Sym* (V")
of C-algebras.

1.2. Tori. Letn > 1 and set

Tn c— (C*)Xn
We refer to T" as the n-dimensional torus. Now, T™ may be viewed as the open subset
D(x;----- Xp) = {(al,...,an)eC"|a1 ----- an;tO}.
So, the polynomial (function defined by) xj - - - - - x, becomes invertible on 7". But, then,
we also have the functions
a1 x Xiq " Xip] oo Xn
X, === , i=1,..,n
xl xl ..... xn
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to be the algebra of regular functions on 7". An element f € C[x, ...,xn,xl_l, ...,x;l] I
a monomial, if there exists a tuple M= (H15 s n) € Z", such that
f:)_cﬁ::_xll'll ..... _xgn_

The monomials

K, pez”,
form a vector space basis for C[x, ...,xn,xl_l, ...,x;l].
More generally, for m > 1, a map
F. " — C"

(@i, ....an) ¥ (fiar, ..., an), ..., fn(a, ...,an))

is a morphism, if f; is a regular function on 7", i = 1,...,m. Similarly, we define a
morphism

G:T"— T
Now, the multiplication
2 T'XT" —T"
((at,.ccran), (b1, ..., by)) ¥ (ay - by, ...,an - by)

endows 7" with the structure of an abelian group. Using the identification 7" x T" = T*",
we see that the multiplication is a morphism between tori. Likewise, the inversion

2T —T"
(ay,...,ay) —> (al_l, ...,a;l)

is a morphism of tori. Since the group law and the inversion are morphisms, we say that
T" is an algebraic group. (We refer to [6], Chapter I, §1, for the general definition of an
algebraic group and to [6], Chapter III, §1, for specific results on algebraic tori.)

For m,n > 1, amap a: T" — T™ is a homomorphism of tori, if it is both a group
homomorphism and a morphism between tori.

A homomorphism

x:T"—T!'=C*

of tori is said to be a character of T™". It is easy to see that a character is defined by a
monomial, so that there is a unique tuple u(y) € Z" with

X = yH0O

Conversely, any monomial defines a character of 7. Let X (7™) be the set of characters
of T". Using the multiplication on C*, we equip X (7T") with the structure of an abelian
group. Now,

(1.2.0.1) X(T") — 7"
X — p(x)

is an isomorphism of groups. We call M := X(T") the character lattice of T".
A homomorphism

:T' =C* —>T1"
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is aone parameter subgroup or cocharacter of T". Let A(T™) be the set of all cocharacters of
T". For each cocharacter 1: C* — T", there is a unique tuple u(2) = (ui, ..., un) € 2",
such that

VeeC*: A(z) = (2", ....zH).
The group structure on 7" induces on A(T") the structure of an abelian group, and
AT — 2"
A— p()

is an isomorphism of groups. We call N := A(T") the cocharacter lattice of T".
Note that

Gy AT xX(TH) — Z

(Ax) = ulx o)

is a perfect pairing, i.e.,
A(T") — X(T™)" = Homz(X(T"), Z)
Ar—(4,")

is an isomorphism of groups. Also,
(1.2.0.2) ev: A(T™) %C* —T"

1@z A(2)

is an isomorphism.
Now, let m,n > 1 and

a:T"—T"
a homomorphism of tori. Then,
X(a): X(T™) — X(T")
X xoa
is a homomorphism of groups. Conversely, for a group homomorphism
@: X(T™) — X(T"),
there is the dual homomorphism
oV AT = X(TYY — A(T™) = X(T™)Y
(B: X(T") — Z) — Bog,
and one checks that
0¥ @idex: A(T™) §><[:* — A(T™) ® c*
1@z ¢ (D) ®z

is a homomorphism of tori, keeping in mind our previous identifications. The two assig-
ments are inverse to each other, so that

Homyori (T", T™) = Homyz (X (T™), X(T™)).

(As mentioned before, [6], Chapter III, §1, contains this and more results on algebraic tori.)
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1.3. Group actions. For n > 1, we have the general linear group GL, (C). By Leibniz’s
rule, the determinant
det: Mat, (C) — C
is a polynomial function, i.e., a regular function. Furthermore, GL,,(C) is the open subset
D(det) := {m € Mat, (C) | det(m) # 0}.

So, we view Clx;;,i,j =1,...,n, det_l] as the algebra of regular functions on GL,,(C). As
for tori, one sees that the group law and inversion are morphismsﬂ For this reason, we say
that GL,,(C) is an algebraic group.
For m,n > 1, amap
o:T" — GL,,(C)
is a homomorphism of algebraic groups or a representation of T" on C™, if it is both a
group homomorphism and a morphism, i.e., writing

.....

the function f;; isregularon 7",i,j = 1, ..., n.

Remark 1.3.1. Often, it is more convenient to work without coordinates. For a finite
dimensional complex vector space V, let GL(V) be the group of linear automorphims of
V. We use the usual identiﬁcatiorﬂ of GL(C™) with the group GL,,(C) of invertible
(m x m)-matrices, m > 1. The choice of a basis B for V may be viewed as an isomorphism
¢p: C™ — V, m := dim¢ (V). The latter induces the isomorphism

vp: GL(V) — GL,,(C)
L+— (pél oLoypg.
Given m,n > 1 and an m-dimensional complex vector space V, a representation of T"
on V is a map
o:T" — GL(V)
for which there exists a basis B, such that /g o o is a representation of 7" on C". In that
case, ¥ ¢ o o will be a representation of 7" on C™, for every basis C of V.

For a representation
o: T" — GL(V),
we get the action
a:T"xV—YV
(8:v) — 0(8)(v).

This is also a morphism of algebraic varieties.

A basic fact is that o is diagonalizable. For this, let

@,:={geT"|3>1:g =e=(1,..,1)}

be the subgroup of elements of finite order. For g € @, the image o(g) is an element
of finite order in GL(V). The theory of the Jordan normal form ([15]], XIV, §2) shows
that an element of finite order in GL(V) is diagonalizable, so that there exists a basis
B for V, such that ¥ g(0(g)) is a diagonal matrix. Moreover, any set of diagonalizable
elements of GL(V), such that any two elements of the set commute with each other, may be

3For the group law, it is a bit more difficult to figure out what this should mean, for the inversion, one uses
Cramer’s rule ([15], Chapter XIII, Proposition 4.16).
4Since we are working with row vectors, the identification is GL,,, (C) — GL(C™),m +— (v > v-m').
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simultaneously diagonalized (compare [[15], Chapter XIV, Exercise 13 (d)). In particular,
we find a basis B for V, such that g (0(g)) is a diagonal matrix, for every g € @,,. Observe
that

e The subgroup D,, ¢ GL,,(C) is a closed subsetE]
e The subset @, c T" is denseE]

For reasons of continuity, ¢ 5(0(T™)) C Dy,.

Remark 1.3.2. We may identify D,, with the m-dimensional torus 7. So, at the end, we
have arrived at a homomorphism 7" — T™ of tori.

For a character y : T" — C* of T", its eigenspace is given as

Vyi={veV|VgeT": a(gv) =0()(v)=x(g) v}

As usual, eigenvectors for different characters are C-linearly independent ([[15], Chapter
X1V, Theorem 3.3). So, the above observation tells us that there are s > 1 and distinct
characters y1i, ..., xs of T", such that

oV, #0,i=1,..,s,

e V=V, & --0V,.

Given m,n > 1, an m-dimensional complex vector space V, a representation o: 7" —

GL(V), and the corresponding action a: 7" X V — V, we are interested in forming the
quotient as an algebraic variety. This is a non-trivial problem. Look at

0: C* — GL,,(C)
z+— z-E,,.
It corresponds to the action
(1.3.2.1) a:C*xC" —C"
(z,v) — z - v.

For every line £ C C™ through the origin, ¢ \ {0} is an orbit. In addition, {0} is an orbit.
Let © be the set of orbits endowed with the quotient topology and n: C" — Q the
(continuous) quotient map. Then, for a line ¢ through the origin, 77! ({¢ \ {0}}) = ¢\ {0}
is not a closed subset, so that {£ \ {0}} is not a closed subset of Q. This means that not all
points of Q are closed, so that we cannot endow the topological space Q with the structure
of an algebraic variety.

So, in order to figure out what a suitable quotient could be, we try to determine its
ring of regular functions. For this, let C[V] be the ring of regular functions on V that we
considered in Section and define the actio

a*: T" x C[V] — C[V]
(&)= (g% f: v flatg™v))

as well as the invariant ring

(13.2.2) CIVI™ :={feC[V]|VgeT": gxf=f}

5You may think of the usual euclidean topology or the Zariski topology. The subgroup D,, is defined by the
vanishing of the off diagonal elements, i.e., by the vanishing of certain functions which are continuous in both the
euclidean and the Zariski topology.

6Again, this is true in both topologies.

TThis kind of problems can also be considered for non-commutative groups, such as GL,, (C). In this case,
we need to multiply by g~! in order to get a left action. Our convention has been chosen to match this more
general situation.
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It is the ring consisting of those regular functions on V that are constant on all 7"-orbits.
This should be the ring of regular functions on the quotient.

Example 1.3.3. For the action in (I.3.2.T), the only C*-invariant functions which are
constant on all C*-orbits are the constant functions. In fact, by continuity, a C*-invariant
function is not only constant on an orbit, but also on the closure of that orbit. So, we are
dealing with functions which are constant on all lines through the origin. This suggests
that, in this example, the quotient we are looking for is just a point.

Remark 1.3.4. The ring C[V] of regular functions on V is, of course, infinite dimensional
as complex vector space. Yet, the action a* of T" on C[V] is locally finite, i.e., for
any f € C[V], there exist a finite dimensional linear subspace f € W c C[V] which is
T"-invariant, that is,

Vg eT'VheW: gxheW,

and a representation oy : T" — GL(W), such that
Vg eT'VheW: gxh=ow(g)(h).
For this, we refer to [6], Chapter I, 1.9, Proposition. For a character y: T" — C*, we let
WX :={heC[W]|VgeT": gxh=x(g) -h}
be the corresponding eigenspace. Our previous result, therefore, implies
C[v] = @ WX,
xex(Tm)

Letting 0: 7" — C*, g +— 1, be the trivial character, we find

cv™ =wo.

It is a fundamental result of Hilbert’s ([12], Theorem I, [8]], Chapter 3, Section 1, [19],
Theorem 3.4) that C[V]”" is finitely generated, i.e., there are finitely many 7”-invariant
polynomials fi, ..., fs, such that every invariant polynomial f € C[V]T" can be written as
a polynomial in fi, ..., fs. We define the morphism

. V—C*

V> (fl (V)5 ees fY(V))

which is 7"-invariant, i.e., constant on all 7"-orbits in V. Its image is the quotient we are
looking for. It is called the categorical quotient and is denoted by V / QT"ﬁ

Now, we return to the observation we made in Remark [I.3.2] We assume V = C™ and
that the image of o lies in the subgroup D,, c GL,(V) of diagonal matrices. Then, each
monomial in C[xy, ...,x,,] is an eigenvector for the action of 7" on C[xy, ..., x;;]. This
implies that, for each character, the eigenspace WX has a basis of monomials. In particular,
we may choose the generators fi, ..., fy to be monomials. We see that 7: C" — C*
restricts to a homomorphism n° = 7p, : T™ = D,, — T* of tori.

Remark 1.3.5. a) At this stage, we recognize one of the problems in forming quotients.
This process is not compatible with open embeddings. We look again at the representation
o: C* — GL,,(C)
2+ z-Ep.
8The set fi, ..., fs of generators for the invariant ring is not uniquely determined. However, a different choice

of generators leads to a quotient which is “canonically isomorphic” to the given one. See [19], Chapter 2, §4, for
more details.
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We have explained that the categorical quotient is just a point, C"™ / ,C* = {0}, in this case.
On the other hand, we may form the quotient of 7", and the result is an (m — 1)-dimensional
torus. Recall that N := A(T™) = Z™. Then, ¢ := A(0): A(C*) — A(T™) corresponds
to

zZ— 7™
k —s (k, ..., k).

So, the quotient N := N/Im(¢) is clearly a a free abelian group, and our quotient torus is
given as
NeC*.
z
b) It is known that the quotient morphism 7: V — V // , 7" induces a bijection between

the set of closed 7"-orbits in V and the set of points of the categorical quotient V // , 7" ([8]],
Chapter 4, Section 1, Lemma 1, [19], Corollary 3.5.2).

Example 1.3.6. We look at the representation
0: C* — GL,(C)

¢ 0 z7 ')
For any point a = (a1,az) € (C*)*?, the orbit is a hyperbola and closed inside C2. The
orbit of (1,0) is the x;-axis minus the origin and is not closed. Likewise, the orbit of (0, 1)
is the non-closed set (x;-axis) \ {0}. Finally, the orbit of the origin is the closed set {(0, 0)}.

It is easy to see that the invariant ring C[xy, xz]C* is generated by the monomial x; - x;. So,
the categorical quotient is isomorphic to C, and the quotient morphism is given by

1:C*—C
(a1,a2) — ay - as.
If we look at the action
o' 1 C* — GL,(C)

. ( 2?2 0 )
¢ 0 z72)
we get the same orbits, the same invariant ring, the same categorical quotient, and the same
quotient morphism. However, the homomorphisms A(p) and A(o") are different. The
cokernel of the first homomorphism is a free abelian group, and the one of second has
torsion. This reflects the fact that o’ has a non-trivial finite kernel, namely the subgroup
{£1}. We will come back to this example in Example[2.4.3] b), and Example[3.3.1] b).

1.4. Semistability and stability. Inorder to analyze the properties of a categorical quotient
and the corresponding quotient map, we will briefly discuss two common notions which
go back to Hilbert [13]].

Let m,n > 1, V an m-dimensional complex vector space, and o: T" — GL(V) a

representation of 7" on V. For a point v € V, the following conditions are equivalent (see
[8], Chapter 4, Section 3, Lemma 2):

e ( is not contained in the closureﬂ T" - v of the orbit of v.

9The orbit, denoted by T" - v, is the image of the morphism 7" — V, g > a(g,Vv) = 0(g)(v). For this
reason, it is constructible, by Chevalley’s theorem ([6], Chapter AG, 10.2 Corollary, [[17]], Chapter I, §8, Corollary
2). This implies that the closures in the strong and the Zariski topology do agree ([17], Chapter I, §10, Corollary
1).
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e There exist d > 1 and an invariant function f € C[V]T" which is homogeneous of
degree d and satisfies f(v) # 0.

Remark 1.4.1. a) This is the way to phrase semistability for arbitrary reductive linear
algebraic groups. In view of previous observations, the second condition is equivalent to
the existence of a non-constant invariant monomial f with f(v) # 0.

b) Let V7' be the set of semistable points in V. This set is open. In fact, for a point
v € Vi, there is a non-constant homogeneous function f € C[V] " with f(v) # 0. The
open subset D(f) := {w € V| f(w) # 0} is clearly contained in V. So, V is an open
set. It is also invariant under the 7" -action.

¢) Let 7: V. — V¥ be the quotient morphism. Then, V' is the complement of
a~1(7(0)). This also shows that Vg is a T"-invariant open subset of V.

A point v € V is stable, if the orbit 7" - v is closed and the stabilizer of v is finite.

Remark 1.4.2. Since we assume that n > 1, a stable point is different from the origin, and
the second assumption implies that a stable point is semistable.

Theorem 1.4.3. i) The set

Vo= {veV|visstable }

is open and T"-invariant.

ii) For every T"-invariant open subset U C V, the image n(U) of U under the quotient
mapn: V. — V[ ,T" is an open subset of V || , T", and any fiber of the restricted morphism
my: U — n(U)

consists of exactly one orbit,

Proof. For i), see [19]], Lemma 3.12, and, for ii), [19], Theorem 3.14, (ii), and Proposition
3.10, (a). O

So, the concept of stability provides us with the subset V¥, such that we can endow the
set of T"-orbits in this open subset with a natural structure of a quasi-affine variety. This
means that, on this open subset, the quotient can be taken in the best possible way. We will
denote it by V,/T". In addition, for any 7"-invariant open subset U C V},, the quotient
U/T" exists as an open subset of Vi, /T", by Part ii) of the above theorem. However, as we
know from Example V3, can be empty.

Remark 1.4.4. A pointv € V \ {0} is polystable, if the orbit T" - v is a closed subset of V.
The set VES of polystable points is, in general, not open nor does it carry a natural structure
of an algebraic variety.

Example 1.4.5. In Example [I.3.6] we have
Ve =Vy ={(an.a) € C?lar-a, #0} =C?\ ((x1-axis) U (xp-axis)).
Let m > 1. Identifying 7" with the subgroup D,, ¢ GL,,(C) of diagonal matrices, we
arrive at the action
B:T"xC" — C"
(&1, s &m), (@1, oy am)) ¥ (81 A1, ooy E - Am)-

For n > 1 and a homomorphism o: 7" — T™, the action a: T" X C" — C™ is induced
by o and 3, that is,

YgeT'VveC™": a(g,v)=p(e(g),v).
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Lemma 1.4.6. 1) If, in the above situation, V5 # @, then T™ C V3.
ii) Likewise, if Vz, *+ @, thenT™ C VE,.

Proof. Any set which is non-empty and open in the Zariski topology is dense (both in the
euclidean and in the Zariski topology; see [[L1], Chapter I, Example 1.1.3, [17], Page 26 and
§10, Theorem 1). Furthermore, the intersection of two dense open subsets is non-empty.
So, under the respective assumption, we find

NV % .

Pick a point v in this intersection. Then, 7" - v = T™. It remains to show that V‘Zf and V;
are T""-invariant. From our observation about the compatibility of the actions @ and 8 and
the commutativity of the group 7, we infer

YwveC™WgeT™: T"-(g-v)=g-(T"-v).
Since the map
Bg: C" — C™
vi— B(g.v)

isanisomorphism, g € 7™, the assertions now follow immediately from the characterization
of semistable and stable points by properties of their 7" -orbits. O

2. MODULI SPACES OF NEURAL NETWORKS

In this part, we will first review the formalism of quivers and framed quivers and discuss
the relevant group actions and quotient spaces. In the language of [2]] and [[L], the latter are
moduli spaces for thin representations. We will describe the class of quivers that we allow
for neural networks and give an elementary proof of a basic result about generators for
invariant rings from [10] and [1] in the special situation relevant for neural networks. We
will also recall how to determine relations among those generators. These give equations
for the moduli spaces. Finally, we will make an easy but quite interesting observation
regarding the action on and the quotient of the dense torus in the parameter space of thin
framed quiver representations.

2.1. Quivers. A quiver is a quadruple Q = (V, E, s, t), consisting of finite sets V and E
and maps s,¢: E — V. We will call the elements of V vertices and the elements of E
arrows or oriented edges. For an arrow e € E, the vertex s(e) is the source and the vertex
t(e) the target of e. So, we will think of e as an arrow pointing from s(e) toz(e). Letn > 1.
Then, a path of length n is a tuple p = (e, ..., e,) of arrows, such that t(e;) = s(e;41),
i=1,.,n- 1[61 We call s’(p) := s(e;) the source of p and t’'(p) := t(e,) the target of
p. An oriented cycle is a path p with s’ (p) = ¢/ (p) and a loop an oriented cycle of length
one. Fora quiver Q = (V, E, s, 1), we let “~” be the equivalence relation on V generated by
s(e) ~ t(e), e € E. The equivalence classes of “~” are called the connected components
of O, and we say that Q is connected, if there is only one connected component.

Remark?2.1.1. The quiver Q is connected if and only if, for any two distinct verticesa, b € V,
there exist n > 1, a tuple (ey, ..., e,) of arrows, and vertices v := a, vy, ..., Vy, Vsl = b
with { s(e;),2(e;) } = {vi,vis1 },i = 1,...,n.

IOSo, a path of length one is just an arrow.
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A framed quiver is a quadruple Q = (V,,, Vy,, E, s, t) in which V,, and V}, are disjoint sets
and s,t: E — V :=V, UV}, are maps. So, (V, E,s,t) is a quiver as before. The vertices
v €V, are said to be unmarked and the vertices v € Vj, hidden. In pictures, we will draw
unmarked vertices as circles and hidden vertices as dots. The hidden subquiver of Q is
O = (Vi, En, S|E,» 1E,) With Ej, := {e € E|s(e) € Vi At(e) € Vi ).

Let L > 3. A quiver with L layers is a tuple Q = (V,...,Vr, E,s,t) in which Vi, ...,V
are pairwise disjoint non-empty sets and s,¢: E — V| U - - UV, such that

e forevery elemente € E, thereare 1 <i < j < L with s(e) € V; and t(e) € V;,
e the associated quiver (V, E, s, t) is connected.

We call I := Vj the input layer and O := Vi, the output layer. Setting V,, := I U O,
Vi := Vo U - U V,_1, the associated framed quiver is (V,,, Vy,, s, t).

Remark 2.1.2. Obviously, there do not exist any oriented cycles in the associated quiver of
a quiver with L layers.

Convention 2.1.3. To ease notation, for a quiver Q = (Vy, ..., Vp, E, s, t) with L layers, we
will denote the associated framed quiver as well as the associated quiver also by Q.

Note that, given a quiver Q = (V,...,Vy, E, s, t) with L layers, we may redefine the
sets V1, ..., Vi, such that all sources of Q lie in V| and all sinks in V. This will, however,
change the associated framed quiver. Next, given a quiver Q = (V,..., VL, E, s, t) with L
layers, we may remove all vertices from V; and all arrows which start at a vertex in V;. The
resulting quiver may be viewed as a disjoint union of quivers with at most L — 1 layers.

We say that a quiver Q = (V1,..., VL, E, s,t) with L layers satisfies Condition (M), if all
sources of Q lie in V| and all sinks in V7. Now, we recursively define Condition (N) for
quivers with L layers:

e For a quiver with three layers, it is Condition (M).

e For a quiver with L + 1 layers, it means that the connected components of the quiver
obtained by removing all vertices in V| and all arrows with source in V; are layered
quivers which satisfy Condition (N).

Remark 2.1.4. a) Given a quiver Q = (V1,...,Vr, E,s,t) with L layers which satisfies
Condition (M), it is possible to rearrange V5, ..., Vy,_1 in such a way that Q satisfies Condition
N).

b) Condition (N) allows for arrows skipping a layer as in the following example:

7

¢) Proposition [3.2.1] shows that Condition (M) is kind of a minimal requirement for
having reasonable moduli spaces.

2.2. Moduli spaces attached to framed quivers. Let Q = (V,,Vy, E, s,t) be a framed
quiver. We introduce the vector space
RQ = @ (&

ecE

TQ = >< C*.

vev

and the torus
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An element of Rp will be written in the form (r.,e € E) and an element of Ty as
(4,,v € V). Using this notation, we define the group actio

ap: TQ X RQ — RQ
(v, v € V), (re,e €E)) > () - Te '/ls_(le),e €E).

Ty = >< C*.

The change of basis group is

vevy
Define
t(,,veVy) = (ky,veV) with «, := { /1‘1” g: i “;h , (A,veV)eT,.
> u
Then,
t:Tp — To

Ay, v € V) — 1(A,,v € Vp)
is a group homomorphism, and
a: Ty xRo — Ro
((Ay,v € Vi), (re,e € E)) — ag(t(Ay,v € Vi), (re e € E))
is the action we are interested in.

Remark 2.2.1. Set

DQ = >< C*.

Then, the action « is associated with a homofrffrphism

(2.2.1.1) o: T, — Do

of tori (compare Section . In fact, setting &, := 1,e € E, and € = (., ¢ € E), we get
(22.1.2) 0(Ly,v € Vi) = a((Av,v € Vi), €) = (Ar(e) - A,y € € E).

The categorical quotient (see Page )
./%Q = RQ // Th
is the moduli space of the framed quiver Q.

2.3. The invariant ring. In this section, we will explain how to compute the invariant ring
C[RQ]Th (cf. (I.3222)) in the case that Q = (Vy,..., VL, E, s,t) is a quiver in layers. We
already know from Page([§]that it may be generated by monomials. We introduce a generator
X, for every arrow e € E. In this way, we may identify C[Rp] with the polynomial ring
C[x., e € E]. Accordingly, a monomial will be written in the form x£ with y = (y,, e € E)
a collection of natural numbers. For a path p = (ey, ..., ¢,,), we define -

_ . |1, ifeeder,....e }
K, = (Hese € E)  with “e"{o, ifeg{er,..en)

>

as well as the monomial
M, = o

Exercise 2.3.1. Let p be a path in Q whose source lies in V| and whose target lies in V.
Prove that the monomial M, is invariant under the action of 75 on Rg.

1 ISee, e.g., [3]] for the general set-up which explains the conventions.
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Theorem 2.3.2. The monomials M, p a path in Q with s'(p) € Vi and t'(p) € Vp.
generate the invariant ring C[Rg]™.

Proof. This is a special case of a more general theorem ([10], Theorem 1.1, see also [,
Theorem 3.3). Assume that 4 = (u.,e € E) is a collection of natural numbers, not all

zero, such that x£ is an invariant monomial. We define § := {e € E |, # 0}. We will
show that there is a path in Q with source in V| and target in V; which passes only through
vertices in S. Then, the monomial M,, divides the monomial x*. The quotient x*/M,
is still an invariant monomial. Iterating the construction, we see that x£ is a product of
monomials of the form M, p a path in Q with source in V; and target in V7.

Let jo :=min{j € {1,..,L}|3e € S : s(e) € V; }. Assume that jo > 1 and pick an
arrow eg € S with s(eg) € V. For a complex number ¢ € C*, consider

t, ifv=s(ey)

(Ay,v e V) €T, with A4, :={ 1 v # s(ep)

This element acts on the monomial x£ by #7#+0). Since s(,,) > 1, the monomial x
cannot be invariant, a contradiction.
Next, we consider
ji:=max{j e {1, ...,L}|EI path p in S with s"(p) € Vy and ¢’ (p) € V; }.

We already know that j; > 2, and we would like to show j; = L. So, suppose j; < L. Pick
a path po in S with s’(po) € Vi and ¢’ (po) € V;,, and define, for a complex number ¢,

t, ifv =1(po)

(Ay,veVy) eT, with A, := { 1. ifv# ¢ (po)

This element acts on the monomial x¥ by #*'®>0). Since pt(p,) > 1, the monomial x
cannot be invariant. Again, we have arrived at a contradiction. O

Exercise 2.3.3. In (T.2.0.1)), we have established an isomorphism X (Do) — Z*E. This
means that, for every character y : Do — C*, there is a unique tuple y = (., e € E) of

integers, such that y = y£ with
xE: Dy — C*
(Xe,e € E) +—> nx”“.

ecE
The homomorphism o: T, — D¢ from (2.2.1.2) induces the homomorphism
X(0): X(Dg) — X(Tn)
X F— xyop.
Check that M), € ker(X (o)), for every path p in Q with s’(p) € Vi and ¢'(p) € Vi, and

mimic the proof of Theorem to show that, for every character y € ker(X (o)), there
are paths pi, ..., pr in Q with s’(p;) € Viand t'(p;) € Vi, j = 1,...,r, as well as integers

aq, ..., @, such that
,
@
x =] My,
Jj=1

-
X = ;- Mp,.
Jj=1

or, in additive notation,
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Example 2.3.4. In Figure 1 of [[16], the quiver

o \elrk y o
(e] (¢}
has been considered. According to Theorem [2.3.2] we need to look at the four paths

p1 = (e1,e3), p2 = (e1,e4), p3 := (e2,e3), and py := (e2,e4), yielding generators

My ,Mp,,Mp,, Mp, for the invariant ring. Note that there is the relation

Mp, -Mp, = Mp, - Mp,.

This shows that the quotient .#( (Q) is isomorphic to a quadric cone in C* (see also Examples
243 and 13).

There are general algorithms for determining relations among the generators from The-
orem [2.3.2]in concrete examples based on Grobner basis techniques (see [23]]). Suppose
we are given Koo € N*", We then look at the homomorphism

h: Clty,....ts] — Clx1, ..., xu]

ti—xti, i=1,..,s.
It corresponds to the morphism
F:C"—C*
(X1, oo Xn) — (B, xS,

The kernel I of A is a toric ideal in the sense of [23]], Page 31. It describes the image of
F. Algorithm 4.5 in [23]] describes an easy way to compute a reduced Grobner basis of 1.
Using the remarks at the bottom of Page 32, we get the following procedure:

e Fix an order “<” on the set of monomials in x1, ..., X,, 1, ..., t5, such that #; < x;,
i=1,.,8,j=1,...,n
o Compute the reduced Grobner basis ¢ with respect to “<” of the ideal

<ti—)_cﬁi Q= 1,...,s>.

e The elements of 4 N C|1y, ..., 5] will form the reduced Grobner basis for I with
respect to “<”.

Example 2.3.5. Consider the quiver

€] €3

l — 3 ——5
ey [

€3 €s

2—734—756

The moduli space is the spectrum of the corresponding invariant ring. By Theorem [2.3.2}
the invariant ring is

C [x122, x1X5, X2X4, X3X6, X3X8, X4X5, X6X7,X7X8 | € C[x1, ..., X3].
We choose the lexicographic ordering 1 < --- < fg < x| < - - - < xg, and we form the ideal

(11— X1X2, 12 — X1X5, 13 — XoX4, 14 — X3Xg, 5 — X3X3, 16 — X4X5, 17 — X6X7, 13 — X7Xg ).
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The above procedure yieldﬂ
I = (t1tg — tat3, tatg — tst7 ).
So, the moduli space is the complete intersection of two quadric cones in C°.

We can partially generalize these observations. For this, we will first produce some obvious
equations for the moduli space. We set

(2.3.5.1) % :={p|papathin Q with s’(p) € V; and ' (p) € V. }.

Forapath p = (ey,...,e;) € % and anindex € € {2, ..., L — 1}, such that p passes through
a vertex in the layer Vp, we let k € {1,...,# — 1 } be the index with #(e) € V and define

I3
¢ep = (61, ...,ek), p = (ek+1a cees et)’

so that, using the symbol “e” for the usual concatenation of paths, we have

p="‘pecp.

Next, let p1,pp € 9 and € € {2,...,L — 1}. We say that p; and p, meet in the (hidden)
layer Vg, if there is a vertex vy € Vp, such that both p; and p, pass through vo. We then
define

prUp2i="‘pieps.
Note that
Mp, - My, = piyp: 'Mpzl;lpr

For apath p € 2, welett, € {t1,...,t; } be the variable with h(¢,) = M,,. By the above
observation, we have
Ipy " Ipy —Ip g p2 ’ tp2'fp1 € ker(h).

If pp1 = ¢pp or ¢ p1 = ‘ P2, then this relation will be just zero. There are further redun-
dancies. In fact, if p; and p;, share a path p’, then the above construction will produce
the same result, for every € € {2,...,L — 1}, such that p’ contains a vertex of V. So, for
p1,p2 € P and € € {2,...,L — 1}, we say that p; and p, properly meet in the (hidden)
layer Vp, if there is a vertex vy € V¢, such tha

"(ep1) =1 (¢p2), ep1 #ep2, and 1 (ge1p1) # 1 (e412).

There is one further redundancy which we will mention in Remark[2.3.7] a). Based on our
discussion, we set

& .= {tpltpz—tpI %pzlpz\?lpl |p1,p2 € P, €e€{2,....,L-1}: pi1, ps properly meet in Vp }
The equations in & cut out an algebraic subset X c C*, and we clearly have
Mo C X.

We would like to show that we actually do have equality. More precisely, the following
holds true.

Theorem 2.3.6. The ideal I = ker(h) is generated by the elements of &.

20¢ course, one readily checks that these two relations do hold.
I3The last condition says that p; and p, split at the layer V, i.e., continue to different vertices in the quiver.
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Proof. Let us make some preliminary observations. The polynomial ring C[x1, ..., x,] is
an integral domain, i.e., for polynomials F, G € C[xy, ..., x,], the identity F -G = 0 implies
that F = 0 or G = 0. For this reason, [ is a prime ideal, i.e., for f,g € I, the relation
f-gelimplies felorgel.

Furthermore, by [23]], Lemma 4.3, a toric ideal is generated by elements of the form
"monomial minus monomial", i.e., elements of the form

(2.3.6.1) tpy ooty — g e tays

for appropriate natural numbers a, b and elements py, ..., pa, g1, .-..qp € 2. Since I is a
prime ideal, we may assume that the sets { p1, ..., p4 } and { g1, ..., ¢p } are disjoint. Finally,
note that we must have @ = b. In fact, a and b count (with multiplicities) the number of
variables associated with arrows e € E with s(e) € Viintp, -----t, andtg ----- gy
respectively.

We will show by induction on a that an element from / as in (2.3.6.1) is contained in
the ideal I that is generated by the elements of &. First, note that there is no element of the
form ¢, — 1, with p # ¢ in I. If we have an element as in (2.3.6.1) with a = b > 2 and
write g1 = (f1, ..., fu), then there must be an index i € { 1, ...,a }, such that p; starts with
fi. So, it makes sense to define

(23.6.2) jor=max{je{l,.,u}|Te{l.nat:pi=(fisc fis€jils ) }.

Since g1 ¢ { p1, ..., Pa }» We have jo < u. We may assume that p; realizes the maximum.
Then, p; does not contain the arrow fj,+1. However, there must be an index ig € {2, ...,a },
such that p;, contains fj,,1. Without loss of generality, we may assume iy = 2. Then, p;
and p, properly meet in the layer V,. Here, V, contains s( fj,+1). Then,

(tm “Ipy —Ip g p2 : tPZ%Pl) Ipy o Ip, € 1.

We subtract this element from the one in (2.3.6.1). The result is

Ipy g r2 : tl)zlfpl “Ips
Now,

P2 |?|p1 = (fl’ crees f‘j()+19 hj0+2’ ceey hv)

This shows that we may modify our orginal element by an element from 7, such that the
result has the form

tg, - (tW2 ..... tw, =tz "o [Zu)’
for appropriate paths wa, ..., W, 22, ..., 2o € 2P. This element still belongs to 1. Since
tg, ¢ I, we must have t,,, - - - - - Ly, =tz o - t;, € 1. If a = 2, this element must be zero,
by our initial observation. Otherwise, we conclude by induction that it must belong to 7.
This ends the proof. O

Remark2.3.7. a)Letp;,po € P and € € {2,...,L —1 } be such that p; and p; meet in the
layer V. Then, q; := p prz and g7 := p» Izlpl are paths properly meeting in the layer Vp,
such that /
pr=qilg and p>=qaliq:.
So, for every equation in &, also minus that equation belongs to &.
b) It is a natural question to determine the number #£/2. Given L > 3 and sets

Vi, ..., VL, the associated (multilayer) perceptronis Q = (Vy, ..., Vr, E, s, t) where, for each
te{l,...,L—1},eachv € V,, and each w € Vp,1, there is exactly one arrow pointing
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from v to w. Examples[2.3.4} 2.3.5] and [3.3.6]all display multilayer perceptra. For a three

layer perceptron, one computes
#8 #V #V.
_=( 1).#1/2.( 3)_

2 2 2

For perceptra with more layers, the counting becomes more difficult, because distinct paths
may meet in more than one layer, including the input layer and the output layer. For a four
layer perceptron Q = (V1,V,, V3, V4, E, s,t), one finds

#6  (#Vo\ (#V,y 5 #V1\ (#V3 2 (#V #V,
2—(2)(2)(#V1) #V3+(2)(2)#V2(#V4)+ 2 2 #V] #Vz.

In Example 3.3.6] we indeed get #&/2 = 20. In general, the right hand sides in the above
equations provide sharp upper bounds for quivers in layers contained in the corresponding
multilayer perceptron.

We conclude this section by an exercise which we will use in Section

Exercise2.3.8. LetQ = (Vy, ..., VL, s, t) be a quiver with L layers which satisfies Condition
(N).

a) Show that, for every vertex vo € V), = Vo Ll --- LU Vp_q, there exists a path p in Q
which starts at a vertex in Vy, passes through v, and ends at a vertex in V.

b) Let ¢ € E be an arrow. Show that there exists a path p = (ey,...,e;) in Q with
s"(p) eV, t/(p) eVy,and e € {ey,...,e; }.

2.4. The quotient of the torus Dg. Next, we will present an important observation which
will eventually enable us to understand the real points of the moduli spaces. Here, we will
work with a quiver Q = (V, ..., Vr, E, 5,t) in layers.

Remark 2.4.1. The invariant open subset D is clearly characterized by the inequality
Mo #0 with Mo = l_[xe.
ecE
The monomial A7Io need not be invariant under the action of 7. However, by Exercise
2.3.8] b), the open subset D o may also be described by the inequality
My#0, M,:= l_[ M,, 9 the set of paths from a vertex in V; to a vertex in V.
pe%P

The monomial M is invariant under the Tj-action, by Exercise Accordingly, the
ring of Tj-invariant regular functions is given by the localization

(C[Ro1™)m, = {%(f € C[Ro]™, k € N} :
0

First, let 7 > 1 and N = Z®" a finitely generated free abelian group. A subgroup A ¢ N
is saturated, if the quotient B := N/A is torsion free. In that case, B is also a finitely
generated free abelian group, and there exists a group homomorphism o : B — N with
s oo =1idg, s: N — B the projection. This yields an isomorphism N = A @ B.

Proposition 2.4.2. In the above situation, the homomorphism
A(0): A(Th) — A(Dg)

is injective, and the image is a saturated subgroup.
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Proof. Forv € Vj,, we define the one parameter subgroup
£,:C*— T,
2 (2%, weV).
Then, (&,,v € V) is a basis for the free abelian group A(7}). In a similar fashion, we define

the basis (7., e € E) for the free abelian group A(Dg).
Suppose we are givenn = 3, B, -1, € A(Dgp) and @, € Q with
ecE

n= > av-A(Q)(e).
vevy
We need to show that the coefficients «,, v € V},, are uniquely determined integers.
First, we look at an arrow eg € E, such that s(eg) is a source of Q. Then, A(©)(&/(¢y))
is the only element which can contribute to 7,,, so tha

Ut (ey) = Peo-
For the element
0 =0 Bey A (1) = Y Bl e
ecE
we have B, = 0, and also 8, = 0, for any other arrow e with s(e) € V; and t(e) = t(eo).
We set
V, = {v eV|TecE : :s(e) eV At(e) =v},

and pick, for every vertex v € Vs, an arrow e(v) € E with s(e(v)) € V; and 1(e(v)) = v.
So, if we replace n by

n= ) Bew - A(0)(8),

veVy

we may assume that ., = 0, for all e € E with s(e) € V.

We may now prove the assertion by induction on the number of hidden layers. If there is
only one hidden layer, the above consideration immediately does the trick. In general, we
also carry out the above construction. Let Q" = (V’, E’, s’,t’) be the quiver that is obtained
from Q by removing the layer V; and all arrows e € E with s(e) € V. We define Dy  and
T, as above. Then,

Dg=Dgo x X € and T, =Tj;x X C*.
(ee)E\:/ veV,
s(e)e 1

Therefore, the natural maps

A(Dg) — A(Dg) and A(T,;) — A(Ty)
are injective and their images are saturated subgroups of A(Dg) and A(T},), respectively.
Furthermore, there is the commutative diagram

A(T)) — A(Dg)

| !

A(Tp) — A(Do).

By the initial construction, we are reduced to the case that ;7 lies in A(D o) and is the image
of an element of A(7}). Let 0, ..., 0 be the connected components of the quiver Q. By

14Compare Equation €2.1.2).
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assumption, Q(i) satisfies Condition (N) and we define T,E” as well as g(i) : T }Ei) — DQm
as before, i = 1, ...,c. Then,

c

c
Do = X Dow and T, = X T\,
i=1

i=1
so that

A(Dg) = @A(DQ(”) and A(T;l,) = @A(T}Ei))
i=1 i=1

and the map A(7;) — A(D ) considered before is just

@A(Q“)).
i=1

Now, the quiver Q(i) has at least one layer less than Q, i = 1,...,c. So, the claim follows
from the inductive hypothesis for Q(i), i=1,..c. |

By the proposition, the quotient
A= A(Dg)/A(Ty) == A(Dg)/Im(A(0))
is torsion free, as well, and we get a splitting
(2.4.2.1) A(Dg) = A(Ty) ® A.
As we explained in (I.2.0.2), we have isomorphisms
A(Ty) %C* =T, and A(Dg) %C* = Dg.

Now, we may define the torus

T:=A®C*.
z

Then, we have a splitting

(2.4.22) Do =T, xT

of tori. So, if we take the quotient of D¢ by the action of T3, we will get T as the result.
One of the problems of forming quotients in algebraic geometry is that the process does
not necessarily commute with open embeddings. In Remark [3.1.4] we will explain that, in
the present example, T is a dense open part of the moduli space we are considering and the
projection Dg — T is a model for the quotient over Dg.

Example 2.4.3. a) Let us have another look at Example 2.3.4] The displayed equation
shows

Mp, = Mz;ll “Mp, - Mp,.
So, we can set
A= (Mp,, Mp,, Mp,).
b) The first action described in Example [I.3.6]is modeled on the level of one parameter
subgroups by the homomorphism
77— 7Z&Z
k — (k,-k),
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and the second one by

77— 77

kr— (2-k,-2-k).
The image of the first homomorphism spans a direct summand of Z @ Z, and the cokernel
is isomorphic to Z. It may be spanned by the class of, e.g., (1,0). The image of the second
homomorphism does not split off, and the cokernel is isomorphic to Z & (Z/27), and, so,

has torsion. The cokernel is generated, for example, by the classes of (1,0) and (1, -1).
The latter defines a 2-torsion element.

3. STABLE, POLYSTABLE, AND REAL POINTS

Stable tuples in Rp were determined in [1]] and [3] in a more general setting. We first
rephrase the stability criterion from those papers. Combining the result with Proposition
[2.42] we get an algebraic proof and a generalization of a result from the paper [16].
Afterwards, we will also characterize the polystable tuples in Rp. The final section applies
this characterization and Proposition[2.4.2]in order to describe the moduli space of a neural
network over the real numbers.

3.1. Stable points and a theorem of Meng et al. In geometric invariant theory, the
Hilbert—-Mumford criterion is an important tool for characterizing semistable and sta-
ble points by intrinsic properties (see [22], Theorem 1.5.1.2). It can be applied to
representations of network quivers. We need to introduce some more notation. Let
0=(y,...,VL,E,s,t) be a quiver in layers. We set

An=PC, Aw:=EPC ad 4a:=cC
ueVv vevy wevVy,
Atupler = (ro,e € E) € Rp and apath p = (ey, ..., ;) € & define the C-linear map
©p: Ain — Ao
(Au,u € V1) — (vy,v € V)
with

pom LT Fe- Agr(py, v =1(p)
vz 0, ifv#1t(p)

Altogether, we get, for a tuple r = (7., e € E) € R, the C-linear map
- = Z goip: Ain — Aout.
peP
Next, we consider E_ := {e € E|s(e) € Vi }and E, := {e € E|t(e) € VL }. Witha
similar construction as before, we associate C-linear maps
- A — Ay and @ A — Aoy
with E_ and E, respectively, and a tuple r = (., e € E) € Rp.
Finally, if we are given a tuple r = (r.,e € E) € Rp, we call a subset W C V,
admissible, if
VeeE: (s(e)eWAtle)eVyAr,#0) = t(e)eW.
For an admissible subset W C V}, and w € Vj,, we set
B = C, ifweWw
Wl {0}, ifweW
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and get the C-linear subspace

Theorem 3.1.1. i) A tuple r = (re,e € E) is semistable if and only if the associated
C-linear map ¢“ is non-zero.
ii) A tuple r = (r., e € E) is stable if and only if the following two properties hold true:

1. There is no admissible subset W # @ with By, C ker(¢%).
2. There is no admissible subset W # V;, with im(¢=) C By.

Proof. This is [1], Lemma 4.1. In the proof, a procedure called “deframing” was applied.
A direct proof without deframing is contained in [3]. O

In our setting, we may reformulate the criterion as follows.

Theorem 3.1.2. Let Q = (V4,...,VL, E, s,t) be a quiver in layers, satisfying Condition (N).
i) A tuple r = (re, e € E) is semistable if and only if there exists a path p = (ey, ..., e;)

inQwiths’(p) eV, t'(p) eV, andre, -+ - re, # 0.
ii) A tuple r = (r., e € E) is stable if and only if, for every hidden vertex vy € Vj, there
exists a path p = (ey, ...,e;) in Q with s'(p) e Vi, t'(p) e Vi, and re, - - - - re, # 0 which

passes through v.

Proof. i) This is immediate from Theorem [3.1.1] i).

ii) Assume that r = (r,, ¢ € E) is unstable. First, suppose that W C V}, is an admissible
subset with im(¢=) C Bw . Let vo € Vj, \ W be a vertex. For every path p = (ey, ..., e,,)
with s'(p) € Vi andt'(p) = vo, we musthave re, - - - - re, = 0. Second, let@ # W C Vj, be
an admissible subset with By C ker(¢7) . Pick a vertex vo € W. Itis obvious that, for every
path p = (ey, ...,e,) in Q with s’ (p) = vo and #'(p) € Vi, we must have r, - - - - e, = 0.

Conversely, let vo € V}, be a hidden vertex for which the stated conditions fails. Note
that this mean that one of the following properties holds true:

e For every path p = (ey, ..., e,) with s’(p) € Vi and ¢’ (p) = vo, we have rp, - -+ -

re, = 0.
e For every path p = (ey,...,e,) in Q with s’(p) = vg and ¢'(p) € V., we have
Fei v Fe, = 0.

If the first property is satisfied, then we let W C V), be the set of vertices w € V}, for which
there exists a path p = (ey, ...,e,) in Q with s'(p) € Vi, ¢'(p) =w,and re, - -+ -1, # 0.
This is an admissible subset with vo ¢ W and im(¢=) C By.

If the second condition holds, then we let W C V), be the set formed by v( and the vertices
w € V}, for which there exists a path p = (ey, ..., e,) in Q with s’(p) = vo, t'(p) = w,

and re, - -+ - re, # 0. Itis readily checked that W is a non-empty admissible subset with
Bw C ker(¢7). In both cases, we conclude by Theorem O

Corollary 3.1.3. Let Q = (V1,...,VL, E,s,t) be a quiver in layers, satisfying Condition
(N). Then, Dp C R*(Q).

Proof. A tupler = (r, e € E) satisfies, by definition, r, # 0, e € E. So, the result follows
directly from Theorem [3.1.2} ii), and Exercise 2.3.§] a). O

Remark 3.1.4. a) Theorem 4.2 in [1] also implies the existence of stable tuples. Together
with Lemma ii), we get Dg C RSQ from this.
b) Since Dg 1s a Tj,-invariant open subset of the subset Ré C Rg of stable points, its

image U M o is an open subset, and the induced map Dy — U is a categorical quotient
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for Do with respect to the induced Tj,-action and an orbit space. Since /¢ is irreducible,
U is also dense. Finally, by the universal property of categorical quotients, there is a unique
isomorphism n7: T — U, such that the diagram

Do —— T

Nk

commutes. The unlabeled arrows represent the canonical quotient maps.

c)If r = (re,e € E) € Ry is an unstable tuple, then there is a hidden vertex vg € Vp,
such thatre - ---- re, = 0, for every path p = (ej, ..., ¢;) in Q which connects a vertex in
V1 to a vertex in V, and passes through v(. In terms of networks, this means that the vertex
does not pass any information from the input to the output. So, it can be removed. We will
describe the precise construction in Section[3.2]

Example 3.1.5. We continue Example and Example(2.4.3] a). The torus (C*)?
A Qza C* acts on C* by

T=

IR

(C*)?xct — ¢t
((z1,22,23), (a1, a2, a3, a4)) — (21 - a1,22 - @2, 23 - 3,2, 22 23 - Ga).

The quotient Mo C C* is cut out by the equation a; - a4 — a; - az. Note that the orbit of
(1,1,1, 1) under the above group action lies in J%Q, and this embeds T as an open subset
into / o. Note that the equation of /# ¢ is invariant under the group action, and, therefore,
the multiplication on T extends to an action of T on M ¢ .

Proposition 3.1.6. Let Q = (Vy, ..., VL, E, s,t) be a quiver in layers, satisfying Condition
(N). Then, the dimension of the moduli space My is #E — #V},.

Proof. Let Ré C Ry be the non-empty open subset of stable tuples. The image % ‘Q of Ré
under the quotient map Ry — Ao is a non-empty open subset. Since Ry is irreducible,
so are Ao and MSQ and Mo and A ¢, have the same dimension. Furthermore, the fibers
of the map RSQ — M SQ are the orbits of stable tuples. For a stable tuple, the orbit has
the same dimension as the acting group 7j,. The group T, obviously has dimension #V},.
Moreover, the dimension of Rg is #E, and as before, dim(Ré) = dim(Rgp). By general
properties of the dimension ([6], 10.1 Theorem), we find

dim(MSQ) = dim(RSQ) —dim(Ty) = #E — #V},.
This concludes the proof. O

Next, we explain the notation of the paper [16]. For this, we let m := #E be the number
of arrows and enumerate the arrows, i.e., we write E = {e(1),...,e(m) }. Recall from
(2.3.5.T) that % is the set of paths in Q starting at a vertex in V; and ending at a vertex in
Vp. Forapath p € %, we define the column vector ¢, € F}" whose j-th entry is one, if ()
appears in the path p, and zero otherwise. Let s := #% and write 2 = { p(1),..., p(s) }.
The (m X s)-matrix

A = (Cp(1), - Cp(s)) € Mat(m, s;F2)

is called the structure matrix of the network quiver Q.

Theorem 3.1.7. The rank of the structure matrix A is #E — #V},.
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In [[16], this theorem is stated and proved for multilayer perceptra (see loc. cit., Theorem
3.4).

Proof. We recall the splitting from (2.4.2.2). It leads to the short exact sequence

0 — X(T) — X(Do) 2 x(T}) — 0.

According to Exercise the monomials M,,, p € %, generate the kernel of X (o). By
the above exact sequence, the latter is isomorphic to X (T). Note that X (T) is a free abelian
group of rank

dim(T) = dim(Dg) — dim(T},) = #E — #V},.
We can tensorize the above sequence over the integers with the field F, = {0, 1} and get,
in particular, the surjection

X
X(Dg) 8k X x(1y) 8.

The ’classes Mp, p € 9, generate the kernel of X (). On the other hand, the enumeration
of E gives the isomorphism X(Dg) = Z™ from (I.2.0.I). We can also tensorize this
isomorphism over the integers with the field [,. This leads to the map

X(Dg) — X(Dg) 8 F, — .

This map sends M), to cp,, p € 9. It is now clear that the rank of the structure matrix A
equals the dimension (over [») of the kernel of X (o) and, so, the dimension of X (T) % F>,

i.e., the rank of X(T). As we have seen above, that number equals #E — #V),. O

3.2. Polytstable points. WeletQ = (Vi,..., VL, E, s,t) be aquiver in layers which satisfies
Condition (N) and r = (r.,e € E) € Rg. Then, the support of r is the subquiver
Supp(r) = (V{, ..., VI:, E’,s’,t") of Q that is obtained by first removing all arrows ¢ € E
with r, = 0 and then all isolated vertices from the resulting quiver. Using this concept, we
obtain the following characterization of polystable tuples (compare Page [T0).

Proposition 3.2.1. In the above situation, the tuple r = (r.,e € E) is polystable if and
only if the connected components of Supp(r) satisfy Condition (M).

Proof. First, assume that r is polystable and suppose vo € V; Ll --- LI V] _| is a source. For
a complex number ¢ € C*, introduce

ot . c .|t ifv=vg
A(t) == (A,,veVy) €T, with A := { 1 ifv # v
Then, for r(t) := (r.(t),e € E) := A(t) - r, we have
_ ™ re, ifs(e) =vg "
re(r) = { re, ifs(e) #vy ’ recs

We set
r':=(r,,e € E):= lim A(t) - r.
t—o0

Then, r’ is contained in the closure of the orbit of . Since we assume that the latter is
closed, r’ is actually contained in the orbit of r. But, then, r, = 0, for every arrow e € E
with s(e) = vg, implies r, = 0, for every arrow e € E with s(e) = vg. So, v is an isolated
vertex of Supp(r), and this contradicts our construction. A similar argument works, if
vo€VyL---UV, | isasink.
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Now, let r € Rp be a tuple, such that the connected components of Q" := Supp(r)
satisfy Condition (M), and let r’ € Rp be a tuple which is contained in the closure of the
orbit of r. Then, Supp(r’) is a subquiver of Q’. We may view R as a closed subset of
Rg. It contains both r and r’ and is invariant under the action of 7j,. More precisely, the

group
TS = >< C* V,:=Vju---uv,_|,
VEV;L\VI;

acts trivially on Rp, and we may interpret the image of Rp in # ¢ as the quotient of Ry

by the action of
T; = >< c*.

’
vEVh

Altogether, we arrive at the commutative diagram

Ror — Rp
(3.2.1.1) l l
Mo — Mg

in which the horizontal arrows are closed embeddings. Since the connected components of
Q' satisfy Condition (M), we may rearrange the layers of Q” in such a way that its connected
components satisfy Condition (N) (see Remark E, a). However, the group 7} and its
action on R’ depend only on the set V; of hidden vertices. This means that Corollary
applies to Q" as well, so that r is stable with respect to the 7} -action on Rg’. Our
assumptions imply that r and r’ are both mapped to the same point in #o-. The stability
of r now implies that r’ lies in the 7} -orbit of r, and the latter equals the Tj-orbit of r. We
infer that the Tj,-orbit of 7 in Ry is closed. O

Remark 3.2.2. Letr = (r.,e € E) € Rp be any element. The above proof gives a
constructive procedure for determining an element r? = (r?, e € E), such that the orbit of
r? is the unique closed orbit that is contained in the closure of the orbit of r. In fact, let
vo € Vo U --- UV _; be a source or a sink of Supp(r) and introduce r! := (rl, e € E) by

0, ifs(e)=vp
1._ )
e = { re, ifs(e) #vo ¢cE,
if vg is a source, and by
0, ift(e)=v
1._ > 0
Te = { re, ift(e) # v ¢k,

if v is a sink. Then, replace r by r! and iterate the construction. At some stage, you
will arrive at a tuple P, such that its support is empty or its connected components satisfy
Condition (M). By the proposition, the orbit of r? is closedE] and the arguments in the
proof show that r” is contained in the closure of the orbit of ». We will encounter this
construction in Example[3.3.6 b).

I5The case of the empty quiver corresponds to #? = 0.
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3.3. Real points. In applications of neural networks, the set-up is real. To be more precise,
given a network quiver Q = (Vi, ..., VL, E, s,1), the weights attached to the arrows ¢ € E

are real. This means that
Ro(R) = (PR
eckE

should be the parameter space for the weights. We would then look at the groups
To(R) := X R*, T;(R):= X R*, and Do(R):= X R*
veV vevy, ecE

and the actions analogous to those considered in Section Recall that & is the set
of paths in Q that connect a vertex in V| to a vertex in Vp. Set s := #% and write
P ={p(1),..., p(s) }. Before, we considered the regular map

y:Rg — C°
(Xe,e € E) — (Mp (1), ooy Mp(s))-
Obviously, under this map, real points go to real points, so that we get an induced map
URr: RQ(R) — R®.
The relations among the monomials M, (1), ...., M, (5)] are of the form "monomial=mono-
mial" ([23]], Lemma 4.3). Those define the equations of Mo in C*. We let 4 o (R) be the
set of real solutions to those equations, i.e.,
Mo(R) = Mo NR®.
We can ask the following questions about the "quotient" map
qr: Ro(R) — Mo (R) :
o Is gr surjective?
e Are the points in the image of gr in bijection to the closed 7}, (R)-orbits in R (R)?

We will show that both questions have positive answers (Theorem [3.3.4), so that gg is
the reasonable quotient to look at in the real case. Let us first discuss two examples from
the more general area of quotient problems which illustrate that the answers to the above
questions are not obvious.

Example 3.3.1. a) We study the action
{x1} xR — R
(e,) — - A.
It is easy to see that the ring of polynomials that are invariant under this action is generated
by x2. This implies that the real quotient map is modeled by
R—R

X I—>X2.

The image of this map is Ryg = {y € R|y > 0}, and we see that the quotient map is not
surjective.
b) We come back to the second action considered in Example [I.3.6] The real quotient
map is modeled on
R* — R

(x,y) —> x - y.
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The orbits are {0}, the positive x-axis, the negative x-axis, the positive y-axis, the negative
y-axis, the positive branch of the hyperbola {x - y = 1}, and the negative branch of the
hyperbola {x - y = 1}, A € R*. The first five orbits are all mapped to zero. For 1 € R*,
both the positive and the negative branch are mapped to 4. So, the quotient does not
parameterize the closed orbits.

Remark 3.3.2. a) Itis a general fact that the intersection of a closed C-orbit with the set of
real points is the union of finitely many closed R-orbits (see [[7], 2.3. Proposition).

b) The set of closed R-orbits carries the structure of a Hausdorff space [21]. We have
an induced (proper) map of that space to the set of real points of the quotient. In Part a) of
the above example, this is the inclusion Ry9 — R. In the second example, the quotient is
the union of two copies of R, intersecting at zero, and the map is two-to-one over R* and
one-to-one over {0}.

For the studying the separation properties of the real quotient map, we follow the strategy
of the proof of Proposition[3.2.1] First note that, intrinsically, we have

DQ(R) = A(DQ) ?R and T, (R) = A(Tp) ?R

Likewise, _
TR)=A % R.

Clearly, Do (R), T4 (R), and T(R) are the sets of real points of Do, Tj,, and T, respectively.
Because of the splitting (2.4.2.T)), we have the commutative diagram

Do(R) — Doy
T(R) —— T.
By our previous discussion, we also have the commutative diagram

Dg(R) —— Ro(R)

I

T(R) — Mo (R).

Remark 3.3.3. The quotient map p: Dg — T induces the homomorphism

X(p): X(T) — X(Do)

XF=>Ppox
on the level of groups of characters (see Section [I.2). We may pick characters xi, ..., xs.,
such that
X(xj)=Mp,, j=1,..5s.
Then,

T (X1(1), o x5 (7).

The above diagram tells us that the restriction of the quotient map gr: Ro(R) —
Mo (R) to Do (R) is injective and has the image

J%Q(R) NnU.
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For the latter, recall Remark [3.1.4] b).

Theorem 3.3.4. Let Q = (Vi,..., VL, E, s,t) be a quiver in layers which satisfies Condition
(N). Then, the real quotient map qr: Ro(R) — Mo (R) is surjective and separates
closed T, (R)-orbits in Rp (R).

Proof. Let us first check the claim about the separation of closed orbits. Let 7’ = (ri, e €
E) € Ro(R), i = 1,2, be two real tuples whose 7}, (R)-orbits in Rp(R) are closed and
assume gr(r') = gr(r?). We point out that the argument in the first half of the proof of
Proposition [3.2.1] can be performed exactly in the same way over the real numbers. So,
the connected components of the supports Supp(r!) and Supp(r?) must satisfy Condition
(M). So, we infer that the Tj,-orbits of 7! and 2 are closed in R¢ without having to recur to
the general theory. Since ' and r> map to the same point in M o and are both polystable,
they must lie in the same Tj,-orbit. So, we must actually have Supp(r!) = Supp(r?). Let’s
denote this support quiver by Q’. Now, we can invoke Diagram (3.2.1.1). All the maps in
that diagram are defined over the real numbers, so that we get the induced diagram

Ro (R) —— Ro(R)

(3.3.4.1) qﬁl lqR

Mg (R) —— Mo(R)

Now, both ! and r? lie in Do/ (R) € Rg (R). As before, we see that the fact that the
connected components of Q” satisfy Condition (M) suffices to infer that the quotient map
qr: Ro/(R) — Mo (R) separates orbits in Do/ (R). So, r! and r? belong to the same
T; (R)-orbit which is the same as the corresponding 7}, (R)-orbit.

Finally, we turn to the surjectivity of gr. Let y € Mo(R) and r € Ry a polystable
tuple with y(r) = y. Then, the connected components of the quiver Q’ := Supp(r) satisfy
Condition (M). We use Diagram (3.3.4.T)). Note that y € Mo (R) N U’. By the previous
discussion, there exists a real tuple 1’ € Do (R) with g (r’) = y. This finishes the
proof. O

Remark 3.3.5. a) If r € Ry is a polystable tuple with ¢/(r) € Mo (R), then it is easy to
find an element in g € Ty, such that g - r € Rp(R). We will illustrate this in the following
example.

b) If r € Ry is tuple with ¢ (r) € Mo (R) which is not polystable, then it might not be
possible to find a real tuple in the Tj-orbit of 7. See Example [3.3.6] b), for this. In this
case, we need to apply the procedure in Remark [3.2.2]to replace r by a polystable tuple.

c) The interested reader may find a more sophisticated approach to real points on moduli
spaces of (unframed) quiver representations in [14].

Example 3.3.6. Let Q = (V1,V,, V3, V4, E, 5,t) be the following multilayer perceptron:

e es €9
o ! > e > o > o
e3 ey
CTar® T e’ ®
For convenience, we will write r; instead of r,, i = 1, ..., 12.

a)Letr = (r;,i = 1,...,12) be a tuple in which all entries are non-zero which defines a
real point in the moduli space. We rescale at the top left hidden vertex by r° ! and at the
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bottom left hidden vertex by r; !. We then get

, r3 r4
r= 1,1,r—,r—,r1~r5,r1~r6,rz-r7,rz-rs,rg,no,rn,rlz .
1 2

We assume that r; - rs - rg and r3 - r5 - rg are both real. So, r3/r; is also real. Rescaling at
the second layer yields

r’= (1,1,

This will then be a real tuple in the orbit of r.
b) Consider r = (r;,i = 1, ..., 12) with

r3 r4 rp-r7 rp-rg

L1,

T T P 771‘75’7977'1'r5'r10,r1'ré'rllvrl'r6'r12)'
ry r ry-rs ri-re

r2=r4=0, rf=r3=rs=re=r7= V—l, rg=1+V—1, andr9=r10=r11=r12=1.

The tuple r defines a real point in the moduli space. It is not polystable. Its support is

o 4 > e i > e i > o
€3 e7
/\652261025911
(¢} L ° o
€g €2

and does not satisfy Condition (M). We can only rescale with real numbers at the second
hidden layer in order to keep the weights at the arrows going to the output layer real, and
we cannot rescale at the bottom left hidden vertex in such a way that we make both V-1
and 1 + V-1 real. So, there is no real tuple in the orbit of r. We must replace r by the tuple

which assigns the weight zero to the arrows e; and eg while keeping the other weights.
This has support

e e (4

o ! > o > > o 0 > o
€3

/ 96\\ €10 el
[e] [ ] [¢]

€2

and is polystable.
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