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Abstract. Armenta and Jodoin introduced moduli spaces of quiver representations as a
tool for the theoretical investigation of neural networks, and Armenta, Brüstle, Hassoun,
and Reineke established many geometric properties of those moduli spaces in a generality
which goes beyond the standard setting of neural networks. In this paper, we will first
review the algebro-geometric background. We have tried to be elementary in order to make
the techniques accessible to a broader audience. As orginally suggested by Armenta and
Jodoin, we derive a (generalization of a) result of Meng et al.. In addition, we prove some
interesting results about the equations for the moduli spaces and their real points.

Introduction

A(n) (artificial) neural network is a structure which is inspired by brains. It features
“neurons” and “synapses” which form a directed graph or quiver. It is subdivided into an
input layer, an output layer, and hidden layers in between. One fixes an activation function
for each hidden neuron (or vertex) and a weight for each synapse (or arrow). These data
determine the network function, i.e., the rule according to which information is passed from
the input layer to the output layer. The collection of weights determines a so-called thin
representation of the network quiver. It was observed in [2] that the network function is
invariant under certain rescalings and, therefore, can be factorized over a certain algebraic
variety that is known in respresentation theory and algebraic geometry as the moduli space
of (thin) representations of the (doubly) framed network quiver.1 The idea of [2] is to
investigate this moduli space in order to get insights into the workings of the network. For
this reason, moduli spaces of - not necessarily thin - representations were investigated in
[1]. That paper applied quite advanced techniques of representation theory and algebraic
geometry.

In this note, we will focus only on the case of thin representations which seems to be,
at the moment, the most relevant one for applications. We have provided an extensive
introduction to the algebraic framework of group actions and quiver representations. We
have tried to keep the discussion elementary, though this has not always been possible.
Theorem 2.3.2 is a special case of a fundamental result about moduli spaces of framed
quiver representations. We have provided an easy proof in the situation at hand. The
generators of the invariant ring which appear in the statement of the theorem determine
the moduli space within a certain ambient space ℂ𝑠 , 𝑠 being the number of generators. In
fact, the equations cutting out the moduli space from that ambient space are obtained from
relations among the generators. We recall an algorithm based on Gröbner bases for finding
a set of relations which implies all other relations and is in a certain sense minimal with
this property. Then, we provide an elementary way for determining a set of relations which
implies all other relations, but which might be bigger than the one you find algorithmically.

2020 Mathematics Subject Classification. 16G20, 14D22, 14P05, 68T07.
1The framings are determined by the input and the output layer where no rescalings are taking place.
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The next important result is the slightly technical Proposition 2.4.2. Its proof nicely reflects
the inductive structure of a network quiver. Stable, semistable, and polystable collections
of weights are crucial notions for investigating the moduli spaces. They come from the
general theory. Stable and semistable collections have already been investigated in [1] and
[3] (see Theorem 3.1.1). We rephrase the result in Theorem 3.1.2 and show that collections
consisting entirely of non-zero weights are stable (Corollary 3.1.3). The existence of
stable collections and Proposition 2.4.2 lead to an algebraic proof and a generalization of
a result in [16] (see Theorem 3.1.7). This is a first indication that the moduli space does
indeed contain interesting information about the corresponding neural network. Another
interesting finding is the characterization of polystable collections of weights in terms of
their support (Proposition 3.2.1).

In the discussion, so far, it has been implicitly assumed that we are working over the
complex numbers. This means that we are admitting complex weights, as well. However,
this seems to be irrelevant for applications. To this end, we prove in Section 3.3 that the
moduli space over the real numbers just consists of the real points of the complex moduli
space (Theorem 3.3.4). This puts that object into a clear mathematical context, namely
the realm of real algebraic geometry and should help in further investigations. The main
ingredients of the proof of Theorem 3.3.4 are Propositions 2.4.2 and 3.2.1.

We again emphasize that the proofs use only elementary techniques and are of a more
combinatorial flavor.

Acknowledgment. Jorge Esquivel Araya was funded by the Math+ project EF 1-16 Quiver
representations in big data and machine learning.2

1. Background from algebraic geometry

In this section, we will collect some necessary concepts and results from algebraic
geometry. These concern, in particular, group actions and quotients. We have tried to
keep it as elementary as possible, so that a reader with a general mathematical background
which includes polynomial rings in several variables will get a first impression. Eventually,
it might be necessary to get immersed more deeply into the subject. For the basic set-up of
algebraic geometry, Chapter I of [11] or [17] or Chapter AG of [6] will be sufficient. The
latter book also contains information on group actions and quotients. The books [8] and
[19] provide gentle introductions to geometric invariant theory, that is, the theory of group
actions in algebraic geometry, their invariants, and quotients.

1.1. Regular functions. Let 𝑛 ≥ 1 and ℂ𝑛 the set of 𝑛-tuples of complex numbers. So,
an element of ℂ𝑛 has the shape (𝑎1, ..., 𝑎𝑛) with 𝑎𝑖 ∈ ℂ, 𝑖 = 1, ..., 𝑛. The functions that
we admit on ℂ𝑛 in algebraic geometry are called regular functions and are given by the
polynomials in the variables 𝑥1, ..., 𝑥𝑛. Here, a polynomial 𝑓 (𝑥1, ..., 𝑥𝑛) ∈ ℂ[𝑥1, ..., 𝑥𝑛] is
identified with the function

𝑓 : ℂ𝑛 −→ ℂ

(𝑎1, ..., 𝑎𝑛) ↦−→ 𝑓 (𝑎1, ..., 𝑎𝑛).
A polynomial 𝑓 ∈ ℂ[𝑥1, ..., 𝑥𝑛] is said to be a monomial, if there exists a tuple 𝜇 =

(𝜇1, ..., 𝜇𝑛) ∈ ℕ×𝑛, such that
𝑓 = 𝑥

𝜇 := 𝑥
𝜇1
1 · · · · · 𝑥𝜇𝑛𝑛 .

2https://mathplus.de/research-2/emerging-fields/ef1-extracting-dynamical-laws-
from-complex-data/ef1-16/

https://mathplus.de/research-2/emerging-fields/ ef1-extracting-dynamical-laws-from-complex-data/ef1-16/
https://mathplus.de/research-2/emerging-fields/ ef1-extracting-dynamical-laws-from-complex-data/ef1-16/
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The number 𝑑 := 𝜇1 + · · · + 𝜇𝑛 is the degree of the monomial. The monomials

𝑥
𝜇
, 𝜇 ∈ ℕ×𝑛,

form a vector space basis for ℂ[𝑥1, ..., 𝑥𝑛]. For 𝑑 ∈ ℕ, let

ℂ[𝑥1, ..., 𝑥𝑛]𝑑
be the linear subspace of ℂ[𝑥1, ..., 𝑥𝑛] that is spanned by the monomials of degree 𝑑. An
element of ℂ[𝑥1, ..., 𝑥𝑛]𝑑 is called a homogeneous polynomial of degree 𝑑. Note that the
zero polynomial is homogeneous of any degree. Since the monomials of degree 𝑑 form a
basis of the polynomial ring, we have the direct sum decomposition

ℂ[𝑥1, ..., 𝑥𝑛] =
∞⊕
𝑑=0

ℂ[𝑥1, ..., 𝑥𝑛]𝑑 .

Remark 1.1.1. There is a coordinate free description. Let 𝑉 be a complex vector space of
dimension 𝑛 and 𝑉∨ := Homℂ (𝑉,ℂ) its dual vector space. If we choose a basis 𝑒1, ..., 𝑒𝑛
for 𝑉 , then the dual basis 𝑒1, ..., 𝑒𝑛 for 𝑉∨ is defined by the condition

𝑒𝑖 (𝑒 𝑗 ) = 𝛿𝑖 𝑗 , 𝑖, 𝑗 = 1, ..., 𝑛.

Clearly,

ℂ[𝑥1, ..., 𝑥𝑛]1 −→ 𝑉∨(1.1.1.1)

𝑥𝑖 ↦−→ 𝑒𝑖 , 𝑖 = 1, ..., 𝑛,

is an isomorphism of complex vector spaces. Now, for any 𝑑 ∈ ℕ, one may associate
with 𝑉∨ its 𝑑-fold symmetric power Sym𝑑 (𝑉∨) (see [15], Chapter XVI, §8). For example,
Sym0 (𝑉∨) = ℂ and Sym1 (𝑉∨) = 𝑉∨. The isomorphism (1.1.1.1) induces an isomorphism

ℂ[𝑥1, ..., 𝑥𝑛]𝑑 −→ Sym𝑑 (𝑉∨), 𝑑 ≥ 2.

Finally, the direct sum

Sym★(𝑉∨) :=
∞⊕
𝑑=0

Sym𝑑 (𝑉∨)

can be easily endowed with the structure of a ℂ-algebra (loc. cit.). It is called the symmetric
algebra of 𝑉∨. The isomorphism (1.1.1.1) yields an isomorphism

ℂ[𝑥1, ..., 𝑥𝑛] −→ Sym★(𝑉∨)
of ℂ-algebras.

1.2. Tori. Let 𝑛 ≥ 1 and set
𝑇𝑛 := (ℂ★)×𝑛.

We refer to 𝑇𝑛 as the 𝑛-dimensional torus. Now, 𝑇𝑛 may be viewed as the open subset

𝐷 (𝑥1 · · · · · 𝑥𝑛) :=
{
(𝑎1, ..., 𝑎𝑛) ∈ ℂ𝑛 | 𝑎1 · · · · · 𝑎𝑛 ≠ 0

}
.

So, the polynomial (function defined by) 𝑥1 · · · · · 𝑥𝑛 becomes invertible on 𝑇𝑛. But, then,
we also have the functions

𝑥−1
𝑖 :=

1
𝑥𝑖

=
𝑥1 · · · · 𝑥𝑖−1 · 𝑥𝑖+1 · · · · · 𝑥𝑛

𝑥1 · · · · · 𝑥𝑛
, 𝑖 = 1, ..., 𝑛.

For this reason, we consider

ℂ[𝑥1, ..., 𝑥𝑛, 𝑥
−1
1 , ..., 𝑥−1

𝑛 ]
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to be the algebra of regular functions on 𝑇𝑛. An element 𝑓 ∈ ℂ[𝑥1, ..., 𝑥𝑛, 𝑥
−1
1 , ..., 𝑥−1

𝑛 ] is
a monomial, if there exists a tuple 𝜇 = (𝜇1, ..., 𝜇𝑛) ∈ ℤ𝑛, such that

𝑓 = 𝑥
𝜇 := 𝑥

𝜇1
1 · · · · · 𝑥𝜇𝑛𝑛 .

The monomials
𝑥
𝜇
, 𝜇 ∈ ℤ𝑛,

form a vector space basis for ℂ[𝑥1, ..., 𝑥𝑛, 𝑥
−1
1 , ..., 𝑥−1

𝑛 ].
More generally, for 𝑚 ≥ 1, a map

𝐹 : 𝑇𝑛 −→ ℂ𝑚

(𝑎1, ..., 𝑎𝑛) ↦−→
(
𝑓1 (𝑎1, ..., 𝑎𝑛), ..., 𝑓𝑚 (𝑎1, ..., 𝑎𝑛)

)
is a morphism, if 𝑓𝑖 is a regular function on 𝑇𝑛, 𝑖 = 1, ..., 𝑚. Similarly, we define a
morphism

𝐺 : 𝑇𝑛 −→ 𝑇𝑚.

Now, the multiplication

· : 𝑇𝑛 × 𝑇𝑛 −→ 𝑇𝑛(
(𝑎1, ..., 𝑎𝑛), (𝑏1, ..., 𝑏𝑛)

)
↦−→ (𝑎1 · 𝑏1, ..., 𝑎𝑛 · 𝑏𝑛)

endows 𝑇𝑛 with the structure of an abelian group. Using the identification 𝑇𝑛 × 𝑇𝑛 = 𝑇2𝑛,
we see that the multiplication is a morphism between tori. Likewise, the inversion

· : 𝑇𝑛 −→ 𝑇𝑛

(𝑎1, ..., 𝑎𝑛) ↦−→ (𝑎−1
1 , ..., 𝑎−1

𝑛 )

is a morphism of tori. Since the group law and the inversion are morphisms, we say that
𝑇𝑛 is an algebraic group. (We refer to [6], Chapter I, §1, for the general definition of an
algebraic group and to [6], Chapter III, §1, for specific results on algebraic tori.)

For 𝑚, 𝑛 ≥ 1, a map 𝛼 : 𝑇𝑛 −→ 𝑇𝑚 is a homomorphism of tori, if it is both a group
homomorphism and a morphism between tori.

A homomorphism
𝜒 : 𝑇𝑛 −→ 𝑇1 = ℂ★

of tori is said to be a character of 𝑇𝑛. It is easy to see that a character is defined by a
monomial, so that there is a unique tuple 𝜇(𝜒) ∈ ℤ𝑛 with

𝜒 = 𝑥
𝜇 (𝜒)

.

Conversely, any monomial defines a character of 𝑇𝑛. Let 𝑋 (𝑇𝑛) be the set of characters
of 𝑇𝑛. Using the multiplication on ℂ★, we equip 𝑋 (𝑇𝑛) with the structure of an abelian
group. Now,

𝑋 (𝑇𝑛) −→ ℤ𝑛(1.2.0.1)
𝜒 ↦−→ 𝜇(𝜒)

is an isomorphism of groups. We call 𝑀 := 𝑋 (𝑇𝑛) the character lattice of 𝑇𝑛.
A homomorphism

𝜆 : 𝑇1 = ℂ★ −→ 𝑇𝑛
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is a one parameter subgroup or cocharacter of𝑇𝑛. Let 𝛬(𝑇𝑛) be the set of all cocharacters of
𝑇𝑛. For each cocharacter 𝜆 : ℂ★ −→ 𝑇𝑛, there is a unique tuple 𝜇(𝜆) = (𝜇1, ..., 𝜇𝑛) ∈ ℤ𝑛,
such that

∀𝑧 ∈ ℂ★ : 𝜆(𝑧) = (𝑧𝜇1 , ..., 𝑧𝜇𝑛 ).
The group structure on 𝑇𝑛 induces on 𝛬(𝑇𝑛) the structure of an abelian group, and

𝛬(𝑇𝑛) −→ ℤ𝑛

𝜆 ↦−→ 𝜇(𝜆)

is an isomorphism of groups. We call 𝑁 := 𝛬(𝑇𝑛) the cocharacter lattice of 𝑇𝑛.
Note that

⟨·, ·⟩ : 𝛬(𝑇𝑛) × 𝑋 (𝑇𝑛) −→ ℤ

(𝜆, 𝜒) ↦−→ 𝜇(𝜒 ◦ 𝜆)

is a perfect pairing, i.e.,

𝛬(𝑇𝑛) −→ 𝑋 (𝑇𝑛)∨ = Homℤ (𝑋 (𝑇𝑛),ℤ)
𝜆 ↦−→ ⟨𝜆, ·⟩

is an isomorphism of groups. Also,

ev : 𝛬(𝑇𝑛) ⊗
ℤ
ℂ★ −→ 𝑇𝑛(1.2.0.2)

𝜆 ⊗ 𝑧 ↦−→ 𝜆(𝑧)

is an isomorphism.
Now, let 𝑚, 𝑛 ≥ 1 and

𝛼 : 𝑇𝑛 −→ 𝑇𝑚

a homomorphism of tori. Then,

𝑋 (𝛼) : 𝑋 (𝑇𝑚) −→ 𝑋 (𝑇𝑛)
𝜒 ↦−→ 𝜒 ◦ 𝛼

is a homomorphism of groups. Conversely, for a group homomorphism

𝜑 : 𝑋 (𝑇𝑚) −→ 𝑋 (𝑇𝑛),

there is the dual homomorphism

𝜑∨ : 𝛬(𝑇𝑛) = 𝑋 (𝑇𝑛)∨ −→ 𝛬(𝑇𝑚) = 𝑋 (𝑇𝑛)∨(
𝛽 : 𝑋 (𝑇𝑛) −→ ℤ

)
↦−→ 𝛽 ◦ 𝜑,

and one checks that

𝜑∨ ⊗ idℂ★ : 𝛬(𝑇𝑛) ⊗
ℤ
ℂ★ −→ 𝛬(𝑇𝑚) ⊗

ℤ
ℂ★

𝜆 ⊗ 𝑧 ↦−→ 𝜑∨ (𝜆) ⊗ 𝑧

is a homomorphism of tori, keeping in mind our previous identifications. The two assig-
ments are inverse to each other, so that

Homtori (𝑇𝑛, 𝑇𝑚) � Homℤ

(
𝑋 (𝑇𝑚), 𝑋 (𝑇𝑛)

)
.

(As mentioned before, [6], Chapter III, §1, contains this and more results on algebraic tori.)
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1.3. Group actions. For 𝑛 ≥ 1, we have the general linear group GL𝑛 (ℂ). By Leibniz’s
rule, the determinant

det : Mat𝑛 (ℂ) −→ ℂ

is a polynomial function, i.e., a regular function. Furthermore, GL𝑛 (ℂ) is the open subset
𝐷 (det) :=

{
𝑚 ∈ Mat𝑛 (ℂ) | det(𝑚) ≠ 0

}
.

So, we view ℂ[𝑥𝑖 𝑗 , 𝑖, 𝑗 = 1, ..., 𝑛, det−1] as the algebra of regular functions on GL𝑛 (ℂ). As
for tori, one sees that the group law and inversion are morphisms.3 For this reason, we say
that GL𝑛 (ℂ) is an algebraic group.

For 𝑚, 𝑛 ≥ 1, a map
𝜚 : 𝑇𝑛 −→ GL𝑚 (ℂ)

is a homomorphism of algebraic groups or a representation of 𝑇𝑛 on ℂ𝑚, if it is both a
group homomorphism and a morphism, i.e., writing

𝜚 : 𝑔 ↦−→
(
𝑓𝑖 𝑗 (𝑔)

)
𝑖, 𝑗=1,...,𝑚,

the function 𝑓𝑖 𝑗 is regular on 𝑇𝑛, 𝑖, 𝑗 = 1, ..., 𝑛.

Remark 1.3.1. Often, it is more convenient to work without coordinates. For a finite
dimensional complex vector space 𝑉 , let GL(𝑉) be the group of linear automorphims of
𝑉 . We use the usual identification4 of GL(ℂ𝑚) with the group GL𝑚 (ℂ) of invertible
(𝑚 ×𝑚)-matrices, 𝑚 ≥ 1. The choice of a basis 𝐵 for 𝑉 may be viewed as an isomorphism
𝜑𝐵 : ℂ𝑚 −→ 𝑉 , 𝑚 := dimℂ (𝑉). The latter induces the isomorphism

𝜓𝐵 : GL(𝑉) −→ GL𝑚 (ℂ)
𝐿 ↦−→ 𝜑−1

𝐵 ◦ 𝐿 ◦ 𝜑𝐵.

Given 𝑚, 𝑛 ≥ 1 and an 𝑚-dimensional complex vector space 𝑉 , a representation of 𝑇𝑛

on 𝑉 is a map
𝜚 : 𝑇𝑛 −→ GL(𝑉)

for which there exists a basis 𝐵, such that 𝜓𝐵 ◦ 𝜚 is a representation of 𝑇𝑛 on ℂ𝑚. In that
case, 𝜓𝐶 ◦ 𝜚 will be a representation of 𝑇𝑛 on ℂ𝑚, for every basis 𝐶 of 𝑉 .

For a representation
𝜚 : 𝑇𝑛 −→ GL(𝑉),

we get the action
𝛼 : 𝑇𝑛 ×𝑉 −→ 𝑉

(𝑔, 𝑣) ↦−→ 𝜚(𝑔) (𝑣).
This is also a morphism of algebraic varieties.

A basic fact is that 𝜚 is diagonalizable. For this, let
𝛷𝑛 :=

{
𝑔 ∈ 𝑇𝑛 | ∃𝑙 ≥ 1 : 𝑔𝑙 = 𝑒 = (1, ..., 1)

}
be the subgroup of elements of finite order. For 𝑔 ∈ 𝛷𝑛, the image 𝜚(𝑔) is an element
of finite order in GL(𝑉). The theory of the Jordan normal form ([15], XIV, §2) shows
that an element of finite order in GL(𝑉) is diagonalizable, so that there exists a basis
𝐵 for 𝑉 , such that 𝜓𝐵 (𝜚(𝑔)) is a diagonal matrix. Moreover, any set of diagonalizable
elements of GL(𝑉), such that any two elements of the set commute with each other, may be

3For the group law, it is a bit more difficult to figure out what this should mean, for the inversion, one uses
Cramer’s rule ([15], Chapter XIII, Proposition 4.16).

4Since we are working with row vectors, the identification is GL𝑚 (ℂ) −→ GL(ℂ𝑚 ) , 𝑚 ↦−→ (𝑣 ↦−→ 𝑣 ·𝑚𝑡 ) .
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simultaneously diagonalized (compare [15], Chapter XIV, Exercise 13 (d)). In particular,
we find a basis 𝐵 for𝑉 , such that 𝜓𝐵 (𝜚(𝑔)) is a diagonal matrix, for every 𝑔 ∈ 𝛷𝑛. Observe
that

• The subgroup 𝐷𝑚 ⊂ GL𝑚 (ℂ) is a closed subset.5
• The subset 𝛷𝑛 ⊂ 𝑇𝑛 is dense.6

For reasons of continuity, 𝜓𝐵 (𝜚(𝑇𝑛)) ⊂ 𝐷𝑚.
Remark 1.3.2. We may identify 𝐷𝑚 with the 𝑚-dimensional torus 𝑇𝑚. So, at the end, we
have arrived at a homomorphism 𝑇𝑛 −→ 𝑇𝑚 of tori.

For a character 𝜒 : 𝑇𝑛 −→ ℂ★ of 𝑇𝑛, its eigenspace is given as
𝑉𝜒 :=

{
𝑣 ∈ 𝑉 | ∀𝑔 ∈ 𝑇𝑛 : 𝛼(𝑔, 𝑣) = 𝜚(𝑔) (𝑣) = 𝜒(𝑔) · 𝑣

}
.

As usual, eigenvectors for different characters are ℂ-linearly independent ([15], Chapter
XIV, Theorem 3.3). So, the above observation tells us that there are 𝑠 ≥ 1 and distinct
characters 𝜒1, ..., 𝜒𝑠 of 𝑇𝑛, such that

• 𝑉𝜒𝑖 ≠ 0, 𝑖 = 1, ..., 𝑠,
• 𝑉 = 𝑉𝜒1 ⊕ · · · ⊕ 𝑉𝜒𝑠 .

Given 𝑚, 𝑛 ≥ 1, an 𝑚-dimensional complex vector space 𝑉 , a representation 𝜚 : 𝑇𝑛 −→
GL(𝑉), and the corresponding action 𝛼 : 𝑇𝑛 × 𝑉 −→ 𝑉 , we are interested in forming the
quotient as an algebraic variety. This is a non-trivial problem. Look at

𝜚 : ℂ★ −→ GL𝑚 (ℂ)
𝑧 ↦−→ 𝑧 · 𝔼𝑚.

It corresponds to the action
𝛼 : ℂ★ × ℂ𝑚 −→ ℂ𝑚(1.3.2.1)

(𝑧, 𝑣) ↦−→ 𝑧 · 𝑣.
For every line ℓ ⊂ ℂ𝑚 through the origin, ℓ \ {0} is an orbit. In addition, {0} is an orbit.
Let 𝛺 be the set of orbits endowed with the quotient topology and 𝜋 : ℂ𝑚 −→ 𝛺 the
(continuous) quotient map. Then, for a line ℓ through the origin, 𝜋−1 ({ℓ \ {0}}) = ℓ \ {0}
is not a closed subset, so that {ℓ \ {0}} is not a closed subset of 𝛺. This means that not all
points of 𝛺 are closed, so that we cannot endow the topological space 𝛺 with the structure
of an algebraic variety.

So, in order to figure out what a suitable quotient could be, we try to determine its
ring of regular functions. For this, let ℂ[𝑉] be the ring of regular functions on 𝑉 that we
considered in Section 1.1, and define the action7

𝛼★ : 𝑇𝑛 × ℂ[𝑉] −→ ℂ[𝑉]

(𝑔, 𝑓 ) ↦−→
(
𝑔 ★ 𝑓 : 𝑣 ↦−→ 𝑓

(
𝛼(𝑔−1, 𝑣)

) )
as well as the invariant ring

(1.3.2.2) ℂ[𝑉]𝑇𝑛

:=
{
𝑓 ∈ ℂ[𝑉] | ∀𝑔 ∈ 𝑇𝑛 : 𝑔 ★ 𝑓 = 𝑓

}
.

5You may think of the usual euclidean topology or the Zariski topology. The subgroup 𝐷𝑚 is defined by the
vanishing of the off diagonal elements, i.e., by the vanishing of certain functions which are continuous in both the
euclidean and the Zariski topology.

6Again, this is true in both topologies.
7This kind of problems can also be considered for non-commutative groups, such as GL𝑛 (ℂ) . In this case,

we need to multiply by 𝑔−1 in order to get a left action. Our convention has been chosen to match this more
general situation.
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It is the ring consisting of those regular functions on 𝑉 that are constant on all 𝑇𝑛-orbits.
This should be the ring of regular functions on the quotient.

Example 1.3.3. For the action in (1.3.2.1), the only ℂ★-invariant functions which are
constant on all ℂ★-orbits are the constant functions. In fact, by continuity, a ℂ★-invariant
function is not only constant on an orbit, but also on the closure of that orbit. So, we are
dealing with functions which are constant on all lines through the origin. This suggests
that, in this example, the quotient we are looking for is just a point.

Remark 1.3.4. The ring ℂ[𝑉] of regular functions on 𝑉 is, of course, infinite dimensional
as complex vector space. Yet, the action 𝛼★ of 𝑇𝑛 on ℂ[𝑉] is locally finite, i.e., for
any 𝑓 ∈ ℂ[𝑉], there exist a finite dimensional linear subspace 𝑓 ∈ 𝑊 ⊂ ℂ[𝑉] which is
𝑇𝑛-invariant, that is,

∀𝑔 ∈ 𝑇𝑛∀ℎ ∈ 𝑊 : 𝑔 ★ ℎ ∈ 𝑊,

and a representation 𝜚𝑊 : 𝑇𝑛 −→ GL(𝑊), such that
∀𝑔 ∈ 𝑇𝑛∀ℎ ∈ 𝑊 : 𝑔 ★ ℎ = 𝜚𝑊 (𝑔)(ℎ).

For this, we refer to [6], Chapter I, 1.9, Proposition. For a character 𝜒 : 𝑇𝑛 −→ ℂ★, we let
𝑊 𝜒 :=

{
ℎ ∈ ℂ[𝑊] | ∀𝑔 ∈ 𝑇𝑛 : 𝑔 ★ ℎ = 𝜒(𝑔) · ℎ

}
be the corresponding eigenspace. Our previous result, therefore, implies

ℂ[𝑉] =
⊕

𝜒∈𝑋 (𝑇𝑛 )
𝑊 𝜒 .

Letting 0: 𝑇𝑛 −→ ℂ★, 𝑔 ↦−→ 1, be the trivial character, we find
ℂ[𝑉]𝑇𝑛

= 𝑊0.

It is a fundamental result of Hilbert’s ([12], Theorem I, [8], Chapter 3, Section 1, [19],
Theorem 3.4) that ℂ[𝑉]𝑇𝑛 is finitely generated, i.e., there are finitely many 𝑇𝑛-invariant
polynomials 𝑓1, ..., 𝑓𝑠 , such that every invariant polynomial 𝑓 ∈ ℂ[𝑉]𝑇𝑛 can be written as
a polynomial in 𝑓1, ..., 𝑓𝑠 . We define the morphism

𝜋 : 𝑉 −→ ℂ𝑠

𝑣 ↦−→
(
𝑓1 (𝑣), ..., 𝑓𝑠 (𝑣)

)
which is 𝑇𝑛-invariant, i.e., constant on all 𝑇𝑛-orbits in 𝑉 . Its image is the quotient we are
looking for. It is called the categorical quotient and is denoted by 𝑉//𝜚𝑇𝑛.8

Now, we return to the observation we made in Remark 1.3.2. We assume 𝑉 = ℂ𝑚 and
that the image of 𝜚 lies in the subgroup 𝐷𝑚 ⊂ GL𝑛 (𝑉) of diagonal matrices. Then, each
monomial in ℂ[𝑥1, ..., 𝑥𝑚] is an eigenvector for the action of 𝑇𝑛 on ℂ[𝑥1, ..., 𝑥𝑚]. This
implies that, for each character, the eigenspace 𝑊 𝜒 has a basis of monomials. In particular,
we may choose the generators 𝑓1, ..., 𝑓𝑠 to be monomials. We see that 𝜋 : ℂ𝑚 −→ ℂ𝑠

restricts to a homomorphism 𝜋◦ = 𝜋 |𝐷𝑚
: 𝑇𝑚 = 𝐷𝑚 −→ 𝑇 𝑠 of tori.

Remark 1.3.5. a) At this stage, we recognize one of the problems in forming quotients.
This process is not compatible with open embeddings. We look again at the representation

𝜚 : ℂ★ −→ GL𝑚 (ℂ)
𝑧 ↦−→ 𝑧 · 𝔼𝑚.

8The set 𝑓1, ..., 𝑓𝑠 of generators for the invariant ring is not uniquely determined. However, a different choice
of generators leads to a quotient which is “canonically isomorphic” to the given one. See [19], Chapter 2, §4, for
more details.
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We have explained that the categorical quotient is just a point, ℂ𝑚//𝜚ℂ★ = {0}, in this case.
On the other hand, we may form the quotient of𝑇𝑚, and the result is an (𝑚−1)-dimensional
torus. Recall that 𝑁 := 𝛬(𝑇𝑚) � ℤ𝑚. Then, 𝜑 := 𝛬(𝜚) : 𝛬(ℂ★) −→ 𝛬(𝑇𝑚) corresponds
to

ℤ −→ ℤ𝑚

𝑘 ↦−→ (𝑘, ..., 𝑘).

So, the quotient 𝑁 := 𝑁/Im(𝜑) is clearly a a free abelian group, and our quotient torus is
given as

𝑁 ⊗
ℤ
ℂ★.

b) It is known that the quotient morphism 𝜋 : 𝑉 −→ 𝑉//𝜚𝑇𝑛 induces a bijection between
the set of closed 𝑇𝑛-orbits in𝑉 and the set of points of the categorical quotient𝑉//𝜚𝑇𝑛 ([8],
Chapter 4, Section 1, Lemma 1, [19], Corollary 3.5.2).
Example 1.3.6. We look at the representation

𝜚 : ℂ★ −→ GL2 (ℂ)

𝑧 ↦−→
(
𝑧 0
0 𝑧−1

)
.

For any point 𝑎 = (𝑎1, 𝑎2) ∈ (ℂ★)×2, the orbit is a hyperbola and closed inside ℂ2. The
orbit of (1, 0) is the 𝑥1-axis minus the origin and is not closed. Likewise, the orbit of (0, 1)
is the non-closed set (𝑥2-axis) \ {0}. Finally, the orbit of the origin is the closed set {(0, 0)}.
It is easy to see that the invariant ring ℂ[𝑥1, 𝑥2]ℂ

★ is generated by the monomial 𝑥1 · 𝑥2. So,
the categorical quotient is isomorphic to ℂ, and the quotient morphism is given by

𝜋 : ℂ2 −→ ℂ

(𝑎1, 𝑎2) ↦−→ 𝑎1 · 𝑎2.

If we look at the action
𝜚′ : ℂ★ −→ GL2 (ℂ)

𝑧 ↦−→
(
𝑧2 0
0 𝑧−2

)
,

we get the same orbits, the same invariant ring, the same categorical quotient, and the same
quotient morphism. However, the homomorphisms 𝛬(𝜚) and 𝛬(𝜚′) are different. The
cokernel of the first homomorphism is a free abelian group, and the one of second has
torsion. This reflects the fact that 𝜚′ has a non-trivial finite kernel, namely the subgroup
{±1}. We will come back to this example in Example 2.4.3, b), and Example 3.3.1, b).
1.4. Semistability and stability. In order to analyze the properties of a categorical quotient
and the corresponding quotient map, we will briefly discuss two common notions which
go back to Hilbert [13].

Let 𝑚, 𝑛 ≥ 1, 𝑉 an 𝑚-dimensional complex vector space, and 𝜚 : 𝑇𝑛 −→ GL(𝑉) a
representation of 𝑇𝑛 on 𝑉 . For a point 𝑣 ∈ 𝑉 , the following conditions are equivalent (see
[8], Chapter 4, Section 3, Lemma 2):

• 0 is not contained in the closure9 𝑇𝑛 · 𝑣 of the orbit of 𝑣.
9The orbit, denoted by 𝑇𝑛 · 𝑣, is the image of the morphism 𝑇𝑛 −→ 𝑉 , 𝑔 ↦−→ 𝛼(𝑔, 𝑣) = 𝜚 (𝑔) (𝑣) . For this

reason, it is constructible, by Chevalley’s theorem ([6], Chapter AG, 10.2 Corollary, [17], Chapter I, §8, Corollary
2). This implies that the closures in the strong and the Zariski topology do agree ([17], Chapter I, §10, Corollary
1).
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• There exist 𝑑 ≥ 1 and an invariant function 𝑓 ∈ ℂ[𝑉]𝑇𝑛 which is homogeneous of
degree 𝑑 and satisfies 𝑓 (𝑣) ≠ 0.

Remark 1.4.1. a) This is the way to phrase semistability for arbitrary reductive linear
algebraic groups. In view of previous observations, the second condition is equivalent to
the existence of a non-constant invariant monomial 𝑓 with 𝑓 (𝑣) ≠ 0.

b) Let 𝑉 ss
𝜚 be the set of semistable points in 𝑉 . This set is open. In fact, for a point

𝑣 ∈ 𝑉 ss
𝜚 , there is a non-constant homogeneous function 𝑓 ∈ ℂ[𝑉]𝑇𝑛 with 𝑓 (𝑣) ≠ 0. The

open subset 𝐷 ( 𝑓 ) := { 𝑤 ∈ 𝑉 | 𝑓 (𝑤) ≠ 0 } is clearly contained in 𝑉 ss
𝜚 . So, 𝑉 ss

𝜚 is an open
set. It is also invariant under the 𝑇𝑛-action.

c) Let 𝜋 : 𝑉 −→ 𝑉 ss
𝜚 be the quotient morphism. Then, 𝑉 ss

𝜚 is the complement of
𝜋−1 (𝜋(0)). This also shows that 𝑉 ss

𝜚 is a 𝑇𝑛-invariant open subset of 𝑉 .

A point 𝑣 ∈ 𝑉 is stable, if the orbit 𝑇𝑛 · 𝑣 is closed and the stabilizer of 𝑣 is finite.

Remark 1.4.2. Since we assume that 𝑛 ≥ 1, a stable point is different from the origin, and
the second assumption implies that a stable point is semistable.

Theorem 1.4.3. i) The set
𝑉 s
𝜚 :=

{
𝑣 ∈ 𝑉 | 𝑣 is stable

}
is open and 𝑇𝑛-invariant.

ii) For every 𝑇𝑛-invariant open subset 𝑈 ⊂ 𝑉 s
𝜚 , the image 𝜋(𝑈) of 𝑈 under the quotient

map 𝜋 : 𝑉 −→ 𝑉//𝜚𝑇𝑛 is an open subset of𝑉//𝜚𝑇𝑛, and any fiber of the restricted morphism
𝜋 |𝑈 : 𝑈 −→ 𝜋(𝑈)

consists of exactly one orbit,

Proof. For i), see [19], Lemma 3.12, and, for ii), [19], Theorem 3.14, (ii), and Proposition
3.10, (a). □

So, the concept of stability provides us with the subset 𝑉 s
𝜚 , such that we can endow the

set of 𝑇𝑛-orbits in this open subset with a natural structure of a quasi-affine variety. This
means that, on this open subset, the quotient can be taken in the best possible way. We will
denote it by 𝑉 s

𝜚/𝑇𝑛. In addition, for any 𝑇𝑛-invariant open subset 𝑈 ⊂ 𝑉 s
𝜚 , the quotient

𝑈/𝑇𝑛 exists as an open subset of 𝑉 s
𝜚/𝑇𝑛, by Part ii) of the above theorem. However, as we

know from Example 1.3.3, 𝑉 s
𝜚 can be empty.

Remark 1.4.4. A point 𝑣 ∈ 𝑉 \ {0} is polystable, if the orbit 𝑇𝑛 · 𝑣 is a closed subset of 𝑉 .
The set 𝑉ps

𝜚 of polystable points is, in general, not open nor does it carry a natural structure
of an algebraic variety.

Example 1.4.5. In Example 1.3.6, we have
𝑉 s
𝜚 = 𝑉 ss

𝜚 =
{
(𝑎1, 𝑎2) ∈ ℂ2 | 𝑎1 · 𝑎2 ≠ 0

}
= ℂ2 \

(
(𝑥1-axis) ∪ (𝑥2-axis)

)
.

Let 𝑚 ≥ 1. Identifying 𝑇𝑚 with the subgroup 𝐷𝑚 ⊂ GL𝑚 (ℂ) of diagonal matrices, we
arrive at the action

𝛽 : 𝑇𝑚 × ℂ𝑚 −→ ℂ𝑚(
(𝜀1, ..., 𝜀𝑚), (𝑎1, ...., 𝑎𝑚)

)
↦−→ (𝜀1 · 𝑎1, ..., 𝜀𝑚 · 𝑎𝑚).

For 𝑛 ≥ 1 and a homomorphism 𝜚 : 𝑇𝑛 −→ 𝑇𝑚, the action 𝛼 : 𝑇𝑛 ×ℂ𝑚 −→ ℂ𝑚 is induced
by 𝜚 and 𝛽, that is,

∀𝑔 ∈ 𝑇𝑛∀𝑣 ∈ ℂ𝑚 : 𝛼(𝑔, 𝑣) = 𝛽
(
𝜚(𝑔), 𝑣

)
.
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Lemma 1.4.6. i) If, in the above situation, 𝑉 ss
𝜚 ≠ ∅, then 𝑇𝑚 ⊂ 𝑉 ss

𝜚 .
ii) Likewise, if 𝑉 s

𝜚 ≠ ∅, then 𝑇𝑚 ⊂ 𝑉 s
𝜚 .

Proof. Any set which is non-empty and open in the Zariski topology is dense (both in the
euclidean and in the Zariski topology; see [11], Chapter I, Example 1.1.3, [17], Page 26 and
§10, Theorem 1). Furthermore, the intersection of two dense open subsets is non-empty.
So, under the respective assumption, we find

𝑇𝑚 ∩𝑉
(s)s
𝜚 ≠ ∅.

Pick a point 𝑣0 in this intersection. Then, 𝑇𝑚 · 𝑣0 = 𝑇𝑚. It remains to show that 𝑉 ss
𝜚 and 𝑉 s

𝜚

are 𝑇𝑚-invariant. From our observation about the compatibility of the actions 𝛼 and 𝛽 and
the commutativity of the group 𝑇𝑚, we infer

∀𝑣 ∈ ℂ𝑚∀𝑔 ∈ 𝑇𝑚 : 𝑇𝑛 · (𝑔 · 𝑣) = 𝑔 · (𝑇𝑛 · 𝑣).

Since the map

𝛽𝑔 : ℂ𝑚 −→ ℂ𝑚

𝑣 ↦−→ 𝛽(𝑔, 𝑣)

is an isomorphism, 𝑔 ∈ 𝑇𝑚, the assertions now follow immediately from the characterization
of semistable and stable points by properties of their 𝑇𝑛-orbits. □

2. Moduli spaces of neural networks

In this part, we will first review the formalism of quivers and framed quivers and discuss
the relevant group actions and quotient spaces. In the language of [2] and [1], the latter are
moduli spaces for thin representations. We will describe the class of quivers that we allow
for neural networks and give an elementary proof of a basic result about generators for
invariant rings from [10] and [1] in the special situation relevant for neural networks. We
will also recall how to determine relations among those generators. These give equations
for the moduli spaces. Finally, we will make an easy but quite interesting observation
regarding the action on and the quotient of the dense torus in the parameter space of thin
framed quiver representations.

2.1. Quivers. A quiver is a quadruple 𝑄 = (𝑉, 𝐸, 𝑠, 𝑡), consisting of finite sets 𝑉 and 𝐸

and maps 𝑠, 𝑡 : 𝐸 −→ 𝑉 . We will call the elements of 𝑉 vertices and the elements of 𝐸
arrows or oriented edges. For an arrow 𝑒 ∈ 𝐸 , the vertex 𝑠(𝑒) is the source and the vertex
𝑡 (𝑒) the target of 𝑒. So, we will think of 𝑒 as an arrow pointing from 𝑠(𝑒) to 𝑡 (𝑒). Let 𝑛 ≥ 1.
Then, a path of length 𝑛 is a tuple 𝑝 = (𝑒1, ..., 𝑒𝑛) of arrows, such that 𝑡 (𝑒𝑖) = 𝑠(𝑒𝑖+1),
𝑖 = 1, ..., 𝑛 − 1.10 We call 𝑠′ (𝑝) := 𝑠(𝑒1) the source of 𝑝 and 𝑡′ (𝑝) := 𝑡 (𝑒𝑛) the target of
𝑝. An oriented cycle is a path 𝑝 with 𝑠′ (𝑝) = 𝑡′ (𝑝) and a loop an oriented cycle of length
one. For a quiver 𝑄 = (𝑉, 𝐸, 𝑠, 𝑡), we let “∼” be the equivalence relation on𝑉 generated by
𝑠(𝑒) ∼ 𝑡 (𝑒), 𝑒 ∈ 𝐸 . The equivalence classes of “∼” are called the connected components
of 𝑄, and we say that 𝑄 is connected, if there is only one connected component.

Remark 2.1.1. The quiver𝑄 is connected if and only if, for any two distinct vertices 𝑎, 𝑏 ∈ 𝑉 ,
there exist 𝑛 ≥ 1, a tuple (𝑒1, ..., 𝑒𝑛) of arrows, and vertices 𝑣1 := 𝑎, 𝑣2, ..., 𝑣𝑛, 𝑣𝑛+1 := 𝑏

with { 𝑠(𝑒𝑖), 𝑡 (𝑒𝑖) } = { 𝑣𝑖 , 𝑣𝑖+1 }, 𝑖 = 1, ..., 𝑛.

10So, a path of length one is just an arrow.
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A framed quiver is a quadruple 𝑄 = (𝑉𝑢, 𝑉ℎ, 𝐸, 𝑠, 𝑡) in which 𝑉𝑢 and 𝑉ℎ are disjoint sets
and 𝑠, 𝑡 : 𝐸 −→ 𝑉 := 𝑉𝑢 ⊔ 𝑉ℎ are maps. So, (𝑉, 𝐸, 𝑠, 𝑡) is a quiver as before. The vertices
𝑣 ∈ 𝑉𝑢 are said to be unmarked and the vertices 𝑣 ∈ 𝑉ℎ hidden. In pictures, we will draw
unmarked vertices as circles and hidden vertices as dots. The hidden subquiver of 𝑄 is
𝑄 = (𝑉ℎ, 𝐸ℎ, 𝑠 |𝐸ℎ

, 𝑡 |𝐸ℎ
) with 𝐸ℎ := { 𝑒 ∈ 𝐸 | 𝑠(𝑒) ∈ 𝑉ℎ ∧ 𝑡 (𝑒) ∈ 𝑉ℎ }.

Let 𝐿 ≥ 3. A quiver with 𝐿 layers is a tuple 𝑄 = (𝑉1, ..., 𝑉𝐿 , 𝐸, 𝑠, 𝑡) in which 𝑉1, ..., 𝑉𝐿

are pairwise disjoint non-empty sets and 𝑠, 𝑡 : 𝐸 −→ 𝑉1 ⊔ · · · ⊔𝑉𝐿 , such that
• for every element 𝑒 ∈ 𝐸 , there are 1 ≤ 𝑖 < 𝑗 ≤ 𝐿 with 𝑠(𝑒) ∈ 𝑉𝑖 and 𝑡 (𝑒) ∈ 𝑉 𝑗 ,
• the associated quiver (𝑉, 𝐸, 𝑠, 𝑡) is connected.

We call 𝐼 := 𝑉1 the input layer and 𝑂 := 𝑉𝐿 the output layer. Setting 𝑉𝑢 := 𝐼 ⊔ 𝑂,
𝑉ℎ := 𝑉2 ⊔ · · · ⊔𝑉𝑛−1, the associated framed quiver is (𝑉𝑢, 𝑉ℎ, 𝑠, 𝑡).

Remark 2.1.2. Obviously, there do not exist any oriented cycles in the associated quiver of
a quiver with 𝐿 layers.

Convention 2.1.3. To ease notation, for a quiver 𝑄 = (𝑉1, ..., 𝑉𝐿 , 𝐸, 𝑠, 𝑡) with 𝐿 layers, we
will denote the associated framed quiver as well as the associated quiver also by 𝑄.

Note that, given a quiver 𝑄 = (𝑉1, ..., 𝑉𝐿 , 𝐸, 𝑠, 𝑡) with 𝐿 layers, we may redefine the
sets 𝑉1, ..., 𝑉𝐿 , such that all sources of 𝑄 lie in 𝑉1 and all sinks in 𝑉𝐿 . This will, however,
change the associated framed quiver. Next, given a quiver 𝑄 = (𝑉1, ..., 𝑉𝐿 , 𝐸, 𝑠, 𝑡) with 𝐿

layers, we may remove all vertices from 𝑉1 and all arrows which start at a vertex in 𝑉1. The
resulting quiver may be viewed as a disjoint union of quivers with at most 𝐿 − 1 layers.

We say that a quiver 𝑄 = (𝑉1, ..., 𝑉𝐿 , 𝐸, 𝑠, 𝑡) with 𝐿 layers satisfies Condition (M), if all
sources of 𝑄 lie in 𝑉1 and all sinks in 𝑉𝐿 . Now, we recursively define Condition (N) for
quivers with 𝐿 layers:

• For a quiver with three layers, it is Condition (M).
• For a quiver with 𝐿+1 layers, it means that the connected components of the quiver

obtained by removing all vertices in𝑉1 and all arrows with source in𝑉1 are layered
quivers which satisfy Condition (N).

Remark 2.1.4. a) Given a quiver 𝑄 = (𝑉1, ..., 𝑉𝐿 , 𝐸, 𝑠, 𝑡) with 𝐿 layers which satisfies
Condition (M), it is possible to rearrange𝑉2, ..., 𝑉𝐿−1 in such a way that𝑄 satisfies Condition
(N).

b) Condition (N) allows for arrows skipping a layer as in the following example:

◦ • • ◦ .

c) Proposition 3.2.1 shows that Condition (M) is kind of a minimal requirement for
having reasonable moduli spaces.

2.2. Moduli spaces attached to framed quivers. Let 𝑄 = (𝑉𝑢, 𝑉ℎ, 𝐸, 𝑠, 𝑡) be a framed
quiver. We introduce the vector space

𝑅𝑄 :=
⊕
𝑒∈𝐸

ℂ

and the torus
𝑇𝑄 :=

?
𝑣∈𝑉

ℂ★.
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An element of 𝑅𝑄 will be written in the form (𝑟𝑒, 𝑒 ∈ 𝐸) and an element of 𝑇𝑄 as
(𝜆𝑣 , 𝑣 ∈ 𝑉). Using this notation, we define the group action11

𝛼𝑄 : 𝑇𝑄 × 𝑅𝑄 −→ 𝑅𝑄(
(𝜆𝑣 , 𝑣 ∈ 𝑉), (𝑟𝑒, 𝑒 ∈ 𝐸)

)
↦−→ (𝜆𝑡 (𝑒) · 𝑟𝑒 · 𝜆−1

𝑠 (𝑒) , 𝑒 ∈ 𝐸).
The change of basis group is

𝑇ℎ :=
?
𝑣∈𝑉ℎ

ℂ★.

Define

𝜄(𝜆𝑣 , 𝑣 ∈ 𝑉ℎ) := (𝜅𝑣 , 𝑣 ∈ 𝑉) with 𝜅𝑣 :=
{
𝜆𝑣 , if 𝑣 ∈ 𝑉ℎ

1, if 𝑣 ∈ 𝑉𝑢
, (𝜆𝑣 , 𝑣 ∈ 𝑉) ∈ 𝑇ℎ .

Then,
𝜄 : 𝑇ℎ −→ 𝑇𝑄

(𝜆𝑣 , 𝑣 ∈ 𝑉ℎ) ↦−→ 𝜄(𝜆𝑣 , 𝑣 ∈ 𝑉ℎ)
is a group homomorphism, and

𝛼 : 𝑇ℎ × 𝑅𝑄 −→ 𝑅𝑄(
(𝜆𝑣 , 𝑣 ∈ 𝑉ℎ), (𝑟𝑒, 𝑒 ∈ 𝐸)

)
↦−→ 𝛼𝑄

(
𝜄(𝜆𝑣 , 𝑣 ∈ 𝑉ℎ), (𝑟𝑒, 𝑒 ∈ 𝐸)

)
is the action we are interested in.

Remark 2.2.1. Set
𝐷𝑄 :=

?
𝑒∈𝐸

ℂ★.

Then, the action 𝛼 is associated with a homomorphism
(2.2.1.1) 𝜚 : 𝑇ℎ −→ 𝐷𝑄

of tori (compare Section 1.2). In fact, setting 𝜀𝑒 := 1, 𝑒 ∈ 𝐸 , and 𝜀 = (𝜀𝑒, 𝑒 ∈ 𝐸), we get
(2.2.1.2) 𝜚(𝜆𝑣 , 𝑣 ∈ 𝑉ℎ) = 𝛼

(
(𝜆𝑣 , 𝑣 ∈ 𝑉ℎ), 𝜀

)
= (𝜆𝑡 (𝑒) · 𝜆−1

𝑠 (𝑒) , 𝑒 ∈ 𝐸).

The categorical quotient (see Page 8)
M𝑄 := 𝑅𝑄//𝑇ℎ

is the moduli space of the framed quiver 𝑄.

2.3. The invariant ring. In this section, we will explain how to compute the invariant ring
ℂ[𝑅𝑄]𝑇ℎ (cf. (1.3.2.2)) in the case that 𝑄 = (𝑉1, ..., 𝑉𝐿 , 𝐸, 𝑠, 𝑡) is a quiver in layers. We
already know from Page 8 that it may be generated by monomials. We introduce a generator
𝑥𝑒, for every arrow 𝑒 ∈ 𝐸 . In this way, we may identify ℂ[𝑅𝑄] with the polynomial ring
ℂ[𝑥𝑒, 𝑒 ∈ 𝐸]. Accordingly, a monomial will be written in the form 𝑥

𝜇 with 𝜇 = (𝜇𝑒, 𝑒 ∈ 𝐸)
a collection of natural numbers. For a path 𝑝 = (𝑒1, ..., 𝑒𝑢), we define

𝜇
𝑝
= (𝜇𝑒, 𝑒 ∈ 𝐸) with 𝜇𝑒 :=

{
1, if 𝑒 ∈ { 𝑒1, ..., 𝑒𝑢 }
0, if 𝑒 ∉ { 𝑒1, ..., 𝑒𝑢 }

,

as well as the monomial
𝑀𝑝 := 𝑥

𝜇
𝑝 .

Exercise 2.3.1. Let 𝑝 be a path in 𝑄 whose source lies in 𝑉1 and whose target lies in 𝑉𝐿 .
Prove that the monomial 𝑀𝑝 is invariant under the action of 𝑇ℎ on 𝑅𝑄.

11See, e.g., [3] for the general set-up which explains the conventions.
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Theorem 2.3.2. The monomials 𝑀𝑝 , 𝑝 a path in 𝑄 with 𝑠′ (𝑝) ∈ 𝑉1 and 𝑡′ (𝑝) ∈ 𝑉𝐿 .
generate the invariant ring ℂ[𝑅𝑄]𝑇ℎ .

Proof. This is a special case of a more general theorem ([10], Theorem 1.1, see also [1],
Theorem 3.3). Assume that 𝜇 = (𝜇𝑒, 𝑒 ∈ 𝐸) is a collection of natural numbers, not all
zero, such that 𝑥𝜇 is an invariant monomial. We define 𝑆 := { 𝑒 ∈ 𝐸 | 𝜇𝑒 ≠ 0 }. We will
show that there is a path in 𝑄 with source in 𝑉1 and target in 𝑉𝐿 which passes only through
vertices in 𝑆. Then, the monomial 𝑀𝑝 divides the monomial 𝑥𝜇. The quotient 𝑥𝜇/𝑀𝑝

is still an invariant monomial. Iterating the construction, we see that 𝑥𝜇 is a product of
monomials of the form 𝑀𝑝 , 𝑝 a path in 𝑄 with source in 𝑉1 and target in 𝑉𝐿 .

Let 𝑗0 := min{ 𝑗 ∈ { 1, ..., 𝐿 } | ∃𝑒 ∈ 𝑆 : 𝑠(𝑒) ∈ 𝑉 𝑗 }. Assume that 𝑗0 > 1 and pick an
arrow 𝑒0 ∈ 𝑆 with 𝑠(𝑒0) ∈ 𝑉 𝑗0 . For a complex number 𝑡 ∈ ℂ★, consider

(𝜆𝑣 , 𝑣 ∈ 𝑉ℎ) ∈ 𝑇ℎ with 𝜆𝑣 :=
{

𝑡, if 𝑣 = 𝑠(𝑒0)
1, if 𝑣 ≠ 𝑠(𝑒0)

.

This element acts on the monomial 𝑥𝜇 by 𝑡−𝜇𝑠 (𝑒0 ) . Since 𝜇𝑠 (𝑒0 ) ≥ 1, the monomial 𝑥𝜇

cannot be invariant, a contradiction.
Next, we consider

𝑗1 := max
{
𝑗 ∈ { 1, ..., 𝐿 }

��∃ path 𝑝 in 𝑆 with 𝑠′ (𝑝) ∈ 𝑉1 and 𝑡′ (𝑝) ∈ 𝑉 𝑗

}
.

We already know that 𝑗1 ≥ 2, and we would like to show 𝑗1 = 𝐿. So, suppose 𝑗1 < 𝐿. Pick
a path 𝑝0 in 𝑆 with 𝑠′ (𝑝0) ∈ 𝑉1 and 𝑡′ (𝑝0) ∈ 𝑉 𝑗1 , and define, for a complex number 𝑡,

(𝜆𝑣 , 𝑣 ∈ 𝑉ℎ) ∈ 𝑇ℎ with 𝜆𝑣 :=
{

𝑡, if 𝑣 = 𝑡′ (𝑝0)
1, if 𝑣 ≠ 𝑡′ (𝑝0)

.

This element acts on the monomial 𝑥𝜇 by 𝑡
𝜇𝑡′ (𝑝0 ) . Since 𝜇𝑡 ′ (𝑝0 ) ≥ 1, the monomial 𝑥𝜇

cannot be invariant. Again, we have arrived at a contradiction. □

Exercise 2.3.3. In (1.2.0.1), we have established an isomorphism 𝑋 (𝐷𝑄) −→ ℤ#𝐸 . This
means that, for every character 𝜒 : 𝐷𝑄 −→ ℂ★, there is a unique tuple 𝜇 = (𝜇𝑒, 𝑒 ∈ 𝐸) of
integers, such that 𝜒 = 𝜒

𝜇 with

𝜒
𝜇 : 𝐷𝑄 −→ ℂ★

(𝑥𝑒, 𝑒 ∈ 𝐸) ↦−→
∏
𝑒∈𝐸

𝑥𝜇𝑒 .

The homomorphism 𝜚 : 𝑇ℎ −→ 𝐷𝑄 from (2.2.1.2) induces the homomorphism

𝑋 (𝜚) : 𝑋 (𝐷𝑄) −→ 𝑋 (𝑇ℎ)
𝜒 ↦−→ 𝜒 ◦ 𝜌.

Check that 𝑀𝑝 ∈ ker(𝑋 (𝜚)), for every path 𝑝 in 𝑄 with 𝑠′ (𝑝) ∈ 𝑉1 and 𝑡′ (𝑝) ∈ 𝑉𝐿 , and
mimic the proof of Theorem 2.3.2 to show that, for every character 𝜒 ∈ ker(𝑋 (𝜚)), there
are paths 𝑝1, ..., 𝑝𝑟 in 𝑄 with 𝑠′ (𝑝 𝑗 ) ∈ 𝑉1 and 𝑡′ (𝑝 𝑗 ) ∈ 𝑉𝐿 , 𝑗 = 1, ..., 𝑟, as well as integers
𝛼1, ..., 𝛼𝑟 , such that

𝜒 =

𝑟∏
𝑗=1

𝑀
𝛼𝑗

𝑝 𝑗
,

or, in additive notation,

𝜒 =

𝑟∑︁
𝑗=1

𝛼 𝑗 · 𝑀𝑝 𝑗
.
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Example 2.3.4. In Figure 1 of [16], the quiver

◦ ◦
•

◦ ◦

𝑒1 𝑒3

𝑒4𝑒2

has been considered. According to Theorem 2.3.2, we need to look at the four paths
𝑝1 := (𝑒1, 𝑒3), 𝑝2 := (𝑒1, 𝑒4), 𝑝3 := (𝑒2, 𝑒3), and 𝑝4 := (𝑒2, 𝑒4), yielding generators
𝑀𝑝1 , 𝑀𝑝2 , 𝑀𝑝3 , 𝑀𝑝4 for the invariant ring. Note that there is the relation

𝑀𝑝1 · 𝑀𝑝4 = 𝑀𝑝2 · 𝑀𝑝3 .

This shows that the quotient M(𝑄) is isomorphic to a quadric cone inℂ4 (see also Examples
2.4.3 and 3.1.5).

There are general algorithms for determining relations among the generators from The-
orem 2.3.2 in concrete examples based on Gröbner basis techniques (see [23]). Suppose
we are given 𝜇

1
, ..., 𝜇

𝑠
∈ ℕ×𝑛. We then look at the homomorphism

ℎ : ℂ[𝑡1, ..., 𝑡𝑠] −→ ℂ[𝑥1, ..., 𝑥𝑛]
𝑡𝑖 ↦−→ 𝑥

𝜇
𝑖 , 𝑖 = 1, ..., 𝑠.

It corresponds to the morphism

𝐹 : ℂ𝑛 −→ ℂ𝑠

(𝑥1, ..., 𝑥𝑛) ↦−→ (𝑥𝜇1 , ..., 𝑥
𝜇
𝑠 ).

The kernel 𝐼 of ℎ is a toric ideal in the sense of [23], Page 31. It describes the image of
𝐹. Algorithm 4.5 in [23] describes an easy way to compute a reduced Gröbner basis of 𝐼.
Using the remarks at the bottom of Page 32, we get the following procedure:

• Fix an order “≺” on the set of monomials in 𝑥1, ..., 𝑥𝑛, 𝑡1, ..., 𝑡𝑠 , such that 𝑡𝑖 ≺ 𝑥 𝑗 ,
𝑖 = 1, ..., 𝑠, 𝑗 = 1, ..., 𝑛.

• Compute the reduced Gröbner basis G with respect to “≺” of the ideal〈
𝑡𝑖 − 𝑥

𝜇
𝑖 : 𝑖 = 1, ..., 𝑠

〉
.

• The elements of G ∩ ℂ[𝑡1, ..., 𝑡𝑠] will form the reduced Gröbner basis for 𝐼 with
respect to “≺”.

Example 2.3.5. Consider the quiver

1 3 5

2 4 6

𝑒1

𝑒3

𝑒2

𝑒5

𝑒7

𝑒4

𝑒8

𝑒6 .

The moduli space is the spectrum of the corresponding invariant ring. By Theorem 2.3.2,
the invariant ring is

ℂ
[
𝑥1𝑥2, 𝑥1𝑥5, 𝑥2𝑥4, 𝑥3𝑥6, 𝑥3𝑥8, 𝑥4𝑥5, 𝑥6𝑥7, 𝑥7𝑥8

]
⊂ ℂ[𝑥1, ..., 𝑥8] .

We choose the lexicographic ordering 𝑡1 ≺ · · · ≺ 𝑡8 ≺ 𝑥1 ≺ · · · ≺ 𝑥8, and we form the ideal〈
𝑡1 − 𝑥1𝑥2, 𝑡2 − 𝑥1𝑥5, 𝑡3 − 𝑥2𝑥4, 𝑡4 − 𝑥3𝑥6, 𝑡5 − 𝑥3𝑥8, 𝑡6 − 𝑥4𝑥5, 𝑡7 − 𝑥6𝑥7, 𝑡8 − 𝑥7𝑥8

〉
.
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The above procedure yields12

𝐼 =
〈
𝑡1𝑡6 − 𝑡2𝑡3, 𝑡4𝑡8 − 𝑡5𝑡7

〉
.

So, the moduli space is the complete intersection of two quadric cones in ℂ6.

We can partially generalize these observations. For this, we will first produce some obvious
equations for the moduli space. We set

(2.3.5.1) P :=
{
𝑝 | 𝑝 a path in 𝑄 with 𝑠′ (𝑝) ∈ 𝑉1 and 𝑡′ (𝑝) ∈ 𝑉𝐿

}
.

For a path 𝑝 = (𝑒1, ..., 𝑒𝑡 ) ∈ P and an index ℓ ∈ { 2, ..., 𝐿 − 1 }, such that 𝑝 passes through
a vertex in the layer 𝑉ℓ , we let 𝑘 ∈ { 1, ..., 𝑡 − 1 } be the index with 𝑡 (𝑒𝑘) ∈ 𝑉ℓ and define

ℓ 𝑝 := (𝑒1, ..., 𝑒𝑘), ℓ 𝑝 := (𝑒𝑘+1, ..., 𝑒𝑡 ),

so that, using the symbol “•” for the usual concatenation of paths, we have

𝑝 = ℓ 𝑝 • ℓ 𝑝.

Next, let 𝑝1, 𝑝2 ∈ P and ℓ ∈ { 2, ..., 𝐿 − 1 }. We say that 𝑝1 and 𝑝2 meet in the (hidden)
layer 𝑉ℓ , if there is a vertex 𝑣0 ∈ 𝑉ℓ , such that both 𝑝1 and 𝑝2 pass through 𝑣0. We then
define

𝑝1 ⊔
ℓ
𝑝2 := ℓ 𝑝1 • ℓ 𝑝2.

Note that
𝑀𝑝1 · 𝑀𝑝2 = 𝑀𝑝1 ⊔

ℓ
𝑝2 · 𝑀𝑝2 ⊔

ℓ
𝑝1 .

For a path 𝑝 ∈ P, we let 𝑡𝑝 ∈ { 𝑡1, ..., 𝑡𝑠 } be the variable with ℎ(𝑡𝑝) = 𝑀𝑝 . By the above
observation, we have

𝑡𝑝1 · 𝑡𝑝2 − 𝑡𝑝1 ⊔
ℓ
𝑝2 · 𝑡𝑝2 ⊔

ℓ
𝑝1 ∈ ker(ℎ).

If ℓ 𝑝1 = ℓ 𝑝2 or ℓ 𝑝1 = ℓ 𝑝2, then this relation will be just zero. There are further redun-
dancies. In fact, if 𝑝1 and 𝑝2 share a path 𝑝′, then the above construction will produce
the same result, for every ℓ ∈ { 2, ..., 𝐿 − 1 }, such that 𝑝′ contains a vertex of 𝑉ℓ . So, for
𝑝1, 𝑝2 ∈ P and ℓ ∈ { 2, ..., 𝐿 − 1 }, we say that 𝑝1 and 𝑝2 properly meet in the (hidden)
layer 𝑉ℓ , if there is a vertex 𝑣0 ∈ 𝑉ℓ , such that13

𝑡′ (ℓ 𝑝1) = 𝑡′ (ℓ 𝑝2), ℓ 𝑝1 ≠ ℓ 𝑝2, and 𝑡′ (ℓ+1𝑝1) ≠ 𝑡′ (ℓ+1𝑝2).

There is one further redundancy which we will mention in Remark 2.3.7, a). Based on our
discussion, we set

E :=
{
𝑡𝑝1 𝑡𝑝2−𝑡𝑝1 ⊔

ℓ
𝑝2 𝑡𝑝2 ⊔

ℓ
𝑝1 | 𝑝1, 𝑝2 ∈ P, ℓ ∈ { 2, ..., 𝐿−1 } : 𝑝1, 𝑝2 properly meet in 𝑉ℓ

}
.

The equations in E cut out an algebraic subset 𝑋 ⊂ ℂ𝑠 , and we clearly have

M𝑄 ⊂ 𝑋.

We would like to show that we actually do have equality. More precisely, the following
holds true.

Theorem 2.3.6. The ideal 𝐼 = ker(ℎ) is generated by the elements of E.

12Of course, one readily checks that these two relations do hold.
13The last condition says that 𝑝1 and 𝑝2 split at the layer 𝑉ℓ , i.e., continue to different vertices in the quiver.
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Proof. Let us make some preliminary observations. The polynomial ring ℂ[𝑥1, ..., 𝑥𝑛] is
an integral domain, i.e., for polynomials 𝐹, 𝐺 ∈ ℂ[𝑥1, ..., 𝑥𝑛], the identity 𝐹 ·𝐺 = 0 implies
that 𝐹 = 0 or 𝐺 = 0. For this reason, 𝐼 is a prime ideal, i.e., for 𝑓 , 𝑔 ∈ 𝐼, the relation
𝑓 · 𝑔 ∈ 𝐼 implies 𝑓 ∈ 𝐼 or 𝑔 ∈ 𝐼.

Furthermore, by [23], Lemma 4.3, a toric ideal is generated by elements of the form
"monomial minus monomial", i.e., elements of the form

(2.3.6.1) 𝑡𝑝1 · · · · · 𝑡𝑝𝑎 − 𝑡𝑞1 · · · · · 𝑡𝑞𝑏 ,
for appropriate natural numbers 𝑎, 𝑏 and elements 𝑝1, ..., 𝑝𝑎, 𝑞1, ..., 𝑞𝑏 ∈ P. Since 𝐼 is a
prime ideal, we may assume that the sets { 𝑝1, ..., 𝑝𝑎 } and { 𝑞1, ..., 𝑞𝑏 } are disjoint. Finally,
note that we must have 𝑎 = 𝑏. In fact, 𝑎 and 𝑏 count (with multiplicities) the number of
variables associated with arrows 𝑒 ∈ 𝐸 with 𝑠(𝑒) ∈ 𝑉1 in 𝑡𝑝1 · · · · · 𝑡𝑝𝑎 and 𝑡𝑞1 · · · · · 𝑡𝑞𝑏 ,
respectively.

We will show by induction on 𝑎 that an element from 𝐼 as in (2.3.6.1) is contained in
the ideal 𝐼 that is generated by the elements of E. First, note that there is no element of the
form 𝑡𝑝 − 𝑡𝑞 with 𝑝 ≠ 𝑞 in 𝐼. If we have an element as in (2.3.6.1) with 𝑎 = 𝑏 ≥ 2 and
write 𝑞1 = ( 𝑓1, ..., 𝑓𝑢), then there must be an index 𝑖 ∈ { 1, ..., 𝑎 }, such that 𝑝𝑖 starts with
𝑓1. So, it makes sense to define

(2.3.6.2) 𝑗0 := max
{
𝑗 ∈ { 1, ..., 𝑢 }

��∃𝑖 ∈ { 1, ..., 𝑎 } : 𝑝𝑖 = ( 𝑓1, ..., 𝑓 𝑗 , 𝑒 𝑗+1, ..., 𝑒𝑡 )
}
.

Since 𝑞1 ∉ { 𝑝1, ..., 𝑝𝑎 }, we have 𝑗0 < 𝑢. We may assume that 𝑝1 realizes the maximum.
Then, 𝑝1 does not contain the arrow 𝑓 𝑗0+1. However, there must be an index 𝑖0 ∈ { 2, ..., 𝑎 },
such that 𝑝𝑖0 contains 𝑓 𝑗0+1. Without loss of generality, we may assume 𝑖0 = 2. Then, 𝑝1
and 𝑝2 properly meet in the layer 𝑉ℓ . Here, 𝑉ℓ contains 𝑠( 𝑓 𝑗0+1). Then,

(𝑡𝑝1 · 𝑡𝑝2 − 𝑡𝑝1 ⊔
ℓ
𝑝2 · 𝑡𝑝2 ⊔

ℓ
𝑝1 ) · 𝑡𝑝3 · · · · · 𝑡𝑝𝑎 ∈ 𝐼 .

We subtract this element from the one in (2.3.6.1). The result is

𝑡𝑝1 ⊔
ℓ
𝑝2 · 𝑡𝑝2 ⊔

ℓ
𝑝1 · 𝑡𝑝3 · · · · · 𝑡𝑝𝑎 − 𝑡𝑞1 · · · · · 𝑡𝑞𝑎 .

Now,
𝑝2 ⊔

ℓ
𝑝1 = ( 𝑓1, ...., 𝑓 𝑗0+1, ℎ 𝑗0+2, ..., ℎ𝑣).

This shows that we may modify our orginal element by an element from 𝐼, such that the
result has the form

𝑡𝑞1 · (𝑡𝑤2 · · · · · 𝑡𝑤𝑎
− 𝑡𝑧2 · · · · · 𝑡𝑧𝑎 ),

for appropriate paths 𝑤2, ..., 𝑤𝑎, 𝑧2, ..., 𝑧𝑎 ∈ P. This element still belongs to 𝐼. Since
𝑡𝑞1 ∉ 𝐼, we must have 𝑡𝑤2 · · · · · 𝑡𝑤𝑎

− 𝑡𝑧2 · · · · · 𝑡𝑧𝑎 ∈ 𝐼. If 𝑎 = 2, this element must be zero,
by our initial observation. Otherwise, we conclude by induction that it must belong to 𝐼.
This ends the proof. □

Remark 2.3.7. a) Let 𝑝1, 𝑝2 ∈ P and ℓ ∈ { 2, ..., 𝐿 − 1 } be such that 𝑝1 and 𝑝2 meet in the
layer 𝑉ℓ . Then, 𝑞1 := 𝑝1 ⊔

ℓ
𝑝2 and 𝑞2 := 𝑝2 ⊔

ℓ
𝑝1 are paths properly meeting in the layer 𝑉ℓ ,

such that
𝑝1 = 𝑞1 ⊔

ℓ
𝑞2 and 𝑝2 = 𝑞2 ⊔

ℓ
𝑞1.

So, for every equation in E, also minus that equation belongs to E.
b) It is a natural question to determine the number #E/2. Given 𝐿 ≥ 3 and sets

𝑉1, ..., 𝑉𝐿 , the associated (multilayer) perceptron is 𝑄 = (𝑉1, ..., 𝑉𝐿 , 𝐸, 𝑠, 𝑡) where, for each
ℓ ∈ { 1, ...., 𝐿 − 1 }, each 𝑣 ∈ 𝑉ℓ , and each 𝑤 ∈ 𝑉ℓ+1, there is exactly one arrow pointing
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from 𝑣 to 𝑤. Examples 2.3.4, 2.3.5, and 3.3.6 all display multilayer perceptra. For a three
layer perceptron, one computes

#E

2
=

(
#𝑉1
2

)
· #𝑉2 ·

(
#𝑉3
2

)
.

For perceptra with more layers, the counting becomes more difficult, because distinct paths
may meet in more than one layer, including the input layer and the output layer. For a four
layer perceptron 𝑄 = (𝑉1, 𝑉2, 𝑉3, 𝑉4, 𝐸, 𝑠, 𝑡), one finds
#E

2
=

(
#𝑉2
2

)
·
(
#𝑉4
2

)
· (#𝑉1)2 · #𝑉3 +

(
#𝑉1
2

)
·
(
#𝑉3
2

)
· #𝑉2 · (#𝑉4)2 +

(
#𝑉1
2

)
·
(
#𝑉4
2

)
· #𝑉1 · #𝑉2.

In Example 3.3.6, we indeed get #E/2 = 20. In general, the right hand sides in the above
equations provide sharp upper bounds for quivers in layers contained in the corresponding
multilayer perceptron.

We conclude this section by an exercise which we will use in Section 3.1.

Exercise 2.3.8. Let𝑄 = (𝑉1, ..., 𝑉𝐿 , 𝑠, 𝑡) be a quiver with 𝐿 layers which satisfies Condition
(N).

a) Show that, for every vertex 𝑣0 ∈ 𝑉ℎ = 𝑉2 ⊔ · · · ⊔ 𝑉𝐿−1, there exists a path 𝑝 in 𝑄

which starts at a vertex in 𝑉1, passes through 𝑣0, and ends at a vertex in 𝑉𝐿 .
b) Let 𝑒 ∈ 𝐸 be an arrow. Show that there exists a path 𝑝 = (𝑒1, ..., 𝑒𝑡 ) in 𝑄 with

𝑠′ (𝑝) ∈ 𝑉1, 𝑡′ (𝑝) ∈ 𝑉𝐿 , and 𝑒 ∈ { 𝑒1, ..., 𝑒𝑡 }.

2.4. The quotient of the torus 𝑫𝑸. Next, we will present an important observation which
will eventually enable us to understand the real points of the moduli spaces. Here, we will
work with a quiver 𝑄 = (𝑉1, ..., 𝑉𝐿 , 𝐸, 𝑠, 𝑡) in layers.

Remark 2.4.1. The invariant open subset 𝐷𝑄 is clearly characterized by the inequality

𝑀0 ≠ 0 with 𝑀0 :=
∏
𝑒∈𝐸

𝑥𝑒 .

The monomial 𝑀0 need not be invariant under the action of 𝑇ℎ. However, by Exercise
2.3.8, b), the open subset 𝐷𝑄 may also be described by the inequality

𝑀0 ≠ 0, 𝑀0 :=
∏
𝑝∈P

𝑀𝑝 , P the set of paths from a vertex in 𝑉1 to a vertex in 𝑉𝐿 .

The monomial 𝑀0 is invariant under the 𝑇ℎ-action, by Exercise 2.3.1. Accordingly, the
ring of 𝑇ℎ-invariant regular functions is given by the localization

(ℂ[𝑅𝑄]𝑇ℎ )𝑀0 =

{
𝑓

𝑀 𝑘
0

��� 𝑓 ∈ ℂ[𝑅𝑄]𝑇ℎ , 𝑘 ∈ ℕ

}
.

First, let 𝑟 ≥ 1 and 𝑁 � ℤ⊕𝑟 a finitely generated free abelian group. A subgroup 𝐴 ⊂ 𝑁

is saturated, if the quotient 𝐵 := 𝑁/𝐴 is torsion free. In that case, 𝐵 is also a finitely
generated free abelian group, and there exists a group homomorphism 𝜎 : 𝐵 −→ 𝑁 with
𝑠 ◦ 𝜎 = id𝐵, 𝑠 : 𝑁 −→ 𝐵 the projection. This yields an isomorphism 𝑁 � 𝐴 ⊕ 𝐵.

Proposition 2.4.2. In the above situation, the homomorphism

𝛬(𝜚) : 𝛬(𝑇ℎ) −→ 𝛬(𝐷𝑄)
is injective, and the image is a saturated subgroup.
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Proof. For 𝑣 ∈ 𝑉ℎ, we define the one parameter subgroup
𝜀𝑣 : ℂ★ −→ 𝑇ℎ

𝑧 ↦−→ (𝑧𝛿𝑣,𝑤 , 𝑤 ∈ 𝑉).
Then, (𝜀𝑣 , 𝑣 ∈ 𝑉) is a basis for the free abelian group 𝛬(𝑇ℎ). In a similar fashion, we define
the basis (𝜂𝑒, 𝑒 ∈ 𝐸) for the free abelian group 𝛬(𝐷𝑄).

Suppose we are given 𝜂 =
∑
𝑒∈𝐸

𝛽𝑒 · 𝜂𝑒 ∈ 𝛬(𝐷𝑄) and 𝛼𝑣 ∈ ℚ with

𝜂 =
∑︁
𝑣∈𝑉ℎ

𝛼𝑣 · 𝛬(𝜚) (𝜀𝑣).

We need to show that the coefficients 𝛼𝑣 , 𝑣 ∈ 𝑉ℎ, are uniquely determined integers.
First, we look at an arrow 𝑒0 ∈ 𝐸 , such that 𝑠(𝑒0) is a source of 𝑄. Then, 𝛬(𝜚) (𝜀𝑡 (𝑒0 ) )

is the only element which can contribute to 𝜂𝑒0 , so that14

𝛼𝑡 (𝑒0 ) = 𝛽𝑒0 .

For the element
𝜂′ := 𝜂 − 𝛽𝑒0 · 𝛬(𝜚) (𝜀𝑡 (𝑒0 ) ) =

∑︁
𝑒∈𝐸

𝛽′𝑒 · 𝜂𝑒,

we have 𝛽′𝑒0 = 0, and also 𝛽′𝑒 = 0, for any other arrow 𝑒 with 𝑠(𝑒) ∈ 𝑉1 and 𝑡 (𝑒) = 𝑡 (𝑒0).
We set

𝑉2 :=
{
𝑣 ∈ 𝑉 | ∃𝑒 ∈ 𝐸 : 𝑠(𝑒) ∈ 𝑉1 ∧ 𝑡 (𝑒) = 𝑣

}
,

and pick, for every vertex 𝑣 ∈ 𝑉2, an arrow 𝑒(𝑣) ∈ 𝐸 with 𝑠(𝑒(𝑣)) ∈ 𝑉1 and 𝑡 (𝑒(𝑣)) = 𝑣.
So, if we replace 𝜂 by

𝜂 −
∑︁
𝑣∈𝑉2

𝛽𝑒 (𝑣) · 𝛬(𝜚) (𝜀𝑣),

we may assume that 𝜂𝑒 = 0, for all 𝑒 ∈ 𝐸 with 𝑠(𝑒) ∈ 𝑉1.
We may now prove the assertion by induction on the number of hidden layers. If there is

only one hidden layer, the above consideration immediately does the trick. In general, we
also carry out the above construction. Let 𝑄′ = (𝑉 ′, 𝐸 ′, 𝑠′, 𝑡′) be the quiver that is obtained
from 𝑄 by removing the layer 𝑉1 and all arrows 𝑒 ∈ 𝐸 with 𝑠(𝑒) ∈ 𝑉1. We define 𝐷𝑄′ and
𝑇 ′
ℎ

as above. Then,

𝐷𝑄 = 𝐷𝑄′ ×
?
𝑒∈𝐸:

𝑠 (𝑒) ∈𝑉1

ℂ★ and 𝑇ℎ = 𝑇 ′
ℎ ×

?
𝑣∈𝑉2

ℂ★.

Therefore, the natural maps

𝛬(𝐷𝑄′ ) −→ 𝛬(𝐷𝑄) and 𝛬(𝑇 ′
ℎ) −→ 𝛬(𝑇ℎ)

are injective and their images are saturated subgroups of 𝛬(𝐷𝑄) and 𝛬(𝑇ℎ), respectively.
Furthermore, there is the commutative diagram

𝛬(𝑇 ′
ℎ
) 𝛬(𝐷𝑄′ )

𝛬(𝑇ℎ) 𝛬(𝐷𝑄).

By the initial construction, we are reduced to the case that 𝜂 lies in 𝛬(𝐷𝑄′ ) and is the image
of an element of 𝛬(𝑇 ′

ℎ
). Let𝑄 (1) , ..., 𝑄 (𝑐) be the connected components of the quiver𝑄. By

14Compare Equation (2.2.1.2).
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assumption, 𝑄 (𝑖) satisfies Condition (N) and we define 𝑇 (𝑖)
ℎ

as well as 𝜚 (𝑖) : 𝑇 (𝑖)
ℎ

−→ 𝐷𝑄 (𝑖)

as before, 𝑖 = 1, ..., 𝑐. Then,

𝐷𝑄′ =

𝑐?
𝑖=1

𝐷𝑄 (𝑖) and 𝑇 ′
ℎ =

𝑐?
𝑖=1

𝑇
(𝑖)
ℎ

,

so that

𝛬(𝐷𝑄′ ) =
𝑐⊕
𝑖=1

𝛬(𝐷𝑄 (𝑖) ) and 𝛬(𝑇 ′
ℎ) =

𝑐⊕
𝑖=1

𝛬(𝑇 (𝑖)
ℎ

)

and the map 𝛬(𝑇 ′
ℎ
) −→ 𝛬(𝐷𝑄′ ) considered before is just

𝑐⊕
𝑖=1

𝛬(𝜚 (𝑖) ).

Now, the quiver 𝑄 (𝑖) has at least one layer less than 𝑄, 𝑖 = 1, ..., 𝑐. So, the claim follows
from the inductive hypothesis for 𝑄 (𝑖) , 𝑖 = 1, ..., 𝑐. □

By the proposition, the quotient

𝛬 := 𝛬(𝐷𝑄)/𝛬(𝑇ℎ) := 𝛬(𝐷𝑄)/Im
(
𝛬(𝜚)

)
is torsion free, as well, and we get a splitting

(2.4.2.1) 𝛬(𝐷𝑄) � 𝛬(𝑇ℎ) ⊕ 𝛬.

As we explained in (1.2.0.2), we have isomorphisms

𝛬(𝑇ℎ) ⊗
ℤ
ℂ★ � 𝑇ℎ and 𝛬(𝐷𝑄) ⊗

ℤ
ℂ★ � 𝐷𝑄 .

Now, we may define the torus
𝑇 := 𝛬 ⊗

ℤ
ℂ★.

Then, we have a splitting

(2.4.2.2) 𝐷𝑄 � 𝑇ℎ × 𝑇

of tori. So, if we take the quotient of 𝐷𝑄 by the action of 𝑇ℎ, we will get 𝑇 as the result.
One of the problems of forming quotients in algebraic geometry is that the process does
not necessarily commute with open embeddings. In Remark 3.1.4, we will explain that, in
the present example, 𝑇 is a dense open part of the moduli space we are considering and the
projection 𝐷𝑄 −→ 𝑇 is a model for the quotient over 𝐷𝑄.

Example 2.4.3. a) Let us have another look at Example 2.3.4. The displayed equation
shows

𝑀𝑝4 = 𝑀−1
𝑝1 · 𝑀𝑝2 · 𝑀𝑝3 .

So, we can set
𝛬 := ⟨𝑀𝑝1 , 𝑀𝑝2 , 𝑀𝑝3 ⟩.

b) The first action described in Example 1.3.6 is modeled on the level of one parameter
subgroups by the homomorphism

ℤ −→ ℤ ⊕ ℤ

𝑘 ↦−→ (𝑘,−𝑘),
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and the second one by

ℤ −→ ℤ ⊕ ℤ

𝑘 ↦−→ (2 · 𝑘,−2 · 𝑘).
The image of the first homomorphism spans a direct summand of ℤ ⊕ ℤ, and the cokernel
is isomorphic to ℤ. It may be spanned by the class of, e.g., (1, 0). The image of the second
homomorphism does not split off, and the cokernel is isomorphic to ℤ ⊕ (ℤ/2ℤ), and, so,
has torsion. The cokernel is generated, for example, by the classes of (1, 0) and (1,−1).
The latter defines a 2-torsion element.

3. Stable, polystable, and real points

Stable tuples in 𝑅𝑄 were determined in [1] and [3] in a more general setting. We first
rephrase the stability criterion from those papers. Combining the result with Proposition
2.4.2, we get an algebraic proof and a generalization of a result from the paper [16].
Afterwards, we will also characterize the polystable tuples in 𝑅𝑄. The final section applies
this characterization and Proposition 2.4.2 in order to describe the moduli space of a neural
network over the real numbers.

3.1. Stable points and a theorem of Meng et al. In geometric invariant theory, the
Hilbert–Mumford criterion is an important tool for characterizing semistable and sta-
ble points by intrinsic properties (see [22], Theorem 1.5.1.2). It can be applied to
representations of network quivers. We need to introduce some more notation. Let
𝑄 = (𝑉1, ..., 𝑉𝐿 , 𝐸, 𝑠, 𝑡) be a quiver in layers. We set

𝐴in :=
⊕
𝑢∈𝑉1

ℂ, 𝐴out :=
⊕
𝑣∈𝑉𝐿

ℂ. and 𝐴ℎ :=
⊕
𝑤∈𝑉ℎ

ℂ.

A tuple 𝑟 = (𝑟𝑒, 𝑒 ∈ 𝐸) ∈ 𝑅𝑄 and a path 𝑝 = (𝑒1, ..., 𝑒𝑡 ) ∈ P define the ℂ-linear map

𝜑
𝑟
𝑝 : 𝐴in −→ 𝐴out

(𝜆𝑢, 𝑢 ∈ 𝑉1) ↦−→ (𝜈𝑣 , 𝑣 ∈ 𝑉𝐿)
with

𝜈𝑣 :=
{
𝑟1 · · · · · 𝑟𝑡 · 𝜆𝑠′ (𝑝) , if 𝑣 = 𝑡′ (𝑝)

0, if 𝑣 ≠ 𝑡′ (𝑝) .

Altogether, we get, for a tuple 𝑟 = (𝑟𝑒, 𝑒 ∈ 𝐸) ∈ 𝑅𝑄, the ℂ-linear map

𝜑𝑟 :=
∑︁
𝑝∈P

𝜑
𝑟
𝑝 : 𝐴in −→ 𝐴out.

Next, we consider 𝐸− := { 𝑒 ∈ 𝐸 | 𝑠(𝑒) ∈ 𝑉1 } and 𝐸+ := { 𝑒 ∈ 𝐸 | 𝑡 (𝑒) ∈ 𝑉𝐿 }. With a
similar construction as before, we associate ℂ-linear maps

𝜑𝑟
− : 𝐴in −→ 𝐴ℎ and 𝜑

𝑟
+ : 𝐴ℎ −→ 𝐴out

with 𝐸− and 𝐸+, respectively, and a tuple 𝑟 = (𝑟𝑒, 𝑒 ∈ 𝐸) ∈ 𝑅𝑄.
Finally, if we are given a tuple 𝑟 = (𝑟𝑒, 𝑒 ∈ 𝐸) ∈ 𝑅𝑄, we call a subset 𝑊 ⊂ 𝑉ℎ

admissible, if

∀𝑒 ∈ 𝐸 : (𝑠(𝑒) ∈ 𝑊 ∧ 𝑡 (𝑒) ∈ 𝑉ℎ ∧ 𝑟𝑒 ≠ 0) =⇒ 𝑡 (𝑒) ∈ 𝑊.

For an admissible subset 𝑊 ⊂ 𝑉ℎ and 𝑤 ∈ 𝑉ℎ, we set

𝐵𝑤 :=
{

ℂ, if 𝑤 ∈ 𝑊

{0}, if 𝑤 ∉ 𝑊
,
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and get the ℂ-linear subspace

𝐵𝑊 :=
⊕
𝑤∈𝑉ℎ

𝐵𝑤 ⊂ 𝐴ℎ .

Theorem 3.1.1. i) A tuple 𝑟 = (𝑟𝑒, 𝑒 ∈ 𝐸) is semistable if and only if the associated
ℂ-linear map 𝜑𝑟 is non-zero.

ii) A tuple 𝑟 = (𝑟𝑒, 𝑒 ∈ 𝐸) is stable if and only if the following two properties hold true:
1. There is no admissible subset 𝑊 ≠ ∅ with 𝐵𝑊 ⊂ ker(𝜑𝑟

+).
2. There is no admissible subset 𝑊 ≠ 𝑉ℎ with im(𝜑𝑟

−) ⊂ 𝐵𝑊 .

Proof. This is [1], Lemma 4.1. In the proof, a procedure called “deframing” was applied.
A direct proof without deframing is contained in [3]. □

In our setting, we may reformulate the criterion as follows.

Theorem 3.1.2. Let𝑄 = (𝑉1, ..., 𝑉𝐿 , 𝐸, 𝑠, 𝑡) be a quiver in layers, satisfying Condition (N).
i) A tuple 𝑟 = (𝑟𝑒, 𝑒 ∈ 𝐸) is semistable if and only if there exists a path 𝑝 = (𝑒1, ..., 𝑒𝑡 )

in 𝑄 with 𝑠′ (𝑝) ∈ 𝑉1, 𝑡′ (𝑝) ∈ 𝑉𝐿 , and 𝑟𝑒1 · · · · · 𝑟𝑒𝑡 ≠ 0.
ii) A tuple 𝑟 = (𝑟𝑒, 𝑒 ∈ 𝐸) is stable if and only if, for every hidden vertex 𝑣0 ∈ 𝑉ℎ, there

exists a path 𝑝 = (𝑒1, ..., 𝑒𝑡 ) in 𝑄 with 𝑠′ (𝑝) ∈ 𝑉1, 𝑡′ (𝑝) ∈ 𝑉𝐿 , and 𝑟𝑒1 · · · · · 𝑟𝑒𝑡 ≠ 0 which
passes through 𝑣0.

Proof. i) This is immediate from Theorem 3.1.1, i).
ii) Assume that 𝑟 = (𝑟𝑒, 𝑒 ∈ 𝐸) is unstable. First, suppose that 𝑊 ⊊ 𝑉ℎ is an admissible

subset with im(𝜑𝑟
−) ⊂ 𝐵𝑊 . Let 𝑣0 ∈ 𝑉ℎ \𝑊 be a vertex. For every path 𝑝 = (𝑒1, ..., 𝑒𝑢)

with 𝑠′ (𝑝) ∈ 𝑉1 and 𝑡′ (𝑝) = 𝑣0, we must have 𝑟𝑒1 · · · · · 𝑟𝑒𝑢 = 0. Second, let ∅ ≠ 𝑊 ⊂ 𝑉ℎ be
an admissible subset with 𝐵𝑊 ⊂ ker(𝜑𝑟

+) . Pick a vertex 𝑣0 ∈ 𝑊 . It is obvious that, for every
path 𝑝 = (𝑒1, ..., 𝑒𝑢) in 𝑄 with 𝑠′ (𝑝) = 𝑣0 and 𝑡′ (𝑝) ∈ 𝑉𝐿 , we must have 𝑟𝑒1 · · · · · 𝑟𝑒𝑢 = 0.

Conversely, let 𝑣0 ∈ 𝑉ℎ be a hidden vertex for which the stated conditions fails. Note
that this mean that one of the following properties holds true:

• For every path 𝑝 = (𝑒1, ..., 𝑒𝑢) with 𝑠′ (𝑝) ∈ 𝑉1 and 𝑡′ (𝑝) = 𝑣0, we have 𝑟𝑒1 · · · · ·
𝑟𝑒𝑢 = 0.

• For every path 𝑝 = (𝑒1, ..., 𝑒𝑢) in 𝑄 with 𝑠′ (𝑝) = 𝑣0 and 𝑡′ (𝑝) ∈ 𝑉𝐿 , we have
𝑟𝑒1 · · · · · 𝑟𝑒𝑢 = 0.

If the first property is satisfied, then we let 𝑊 ⊂ 𝑉ℎ be the set of vertices 𝑤 ∈ 𝑉ℎ for which
there exists a path 𝑝 = (𝑒1, ..., 𝑒𝑢) in 𝑄 with 𝑠′ (𝑝) ∈ 𝑉1, 𝑡′ (𝑝) = 𝑤, and 𝑟𝑒1 · · · · · 𝑟𝑒𝑢 ≠ 0.
This is an admissible subset with 𝑣0 ∉ 𝑊 and im(𝜑𝑟

−) ⊂ 𝐵𝑊 .
If the second condition holds, then we let𝑊 ⊂ 𝑉ℎ be the set formed by 𝑣0 and the vertices

𝑤 ∈ 𝑉ℎ for which there exists a path 𝑝 = (𝑒1, ..., 𝑒𝑢) in 𝑄 with 𝑠′ (𝑝) = 𝑣0, 𝑡′ (𝑝) = 𝑤,
and 𝑟𝑒1 · · · · · 𝑟𝑒𝑢 ≠ 0. It is readily checked that 𝑊 is a non-empty admissible subset with
𝐵𝑊 ⊂ ker(𝜑𝑟

+). In both cases, we conclude by Theorem 3.1.1. □

Corollary 3.1.3. Let 𝑄 = (𝑉1, ..., 𝑉𝐿 , 𝐸, 𝑠, 𝑡) be a quiver in layers, satisfying Condition
(N). Then, 𝐷𝑄 ⊂ 𝑅𝑠 (𝑄).
Proof. A tuple 𝑟 = (𝑟𝑒, 𝑒 ∈ 𝐸) satisfies, by definition, 𝑟𝑒 ≠ 0, 𝑒 ∈ 𝐸 . So, the result follows
directly from Theorem 3.1.2, ii), and Exercise 2.3.8, a). □

Remark 3.1.4. a) Theorem 4.2 in [1] also implies the existence of stable tuples. Together
with Lemma 1.4.6, ii), we get 𝐷𝑄 ⊂ 𝑅𝑠

𝑄
from this.

b) Since 𝐷𝑄 is a 𝑇ℎ-invariant open subset of the subset 𝑅𝑠
𝑄

⊂ 𝑅𝑄 of stable points, its
image𝑈 ⊂ M𝑄 is an open subset, and the induced map 𝐷𝑄 −→ 𝑈 is a categorical quotient
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for 𝐷𝑄 with respect to the induced 𝑇ℎ-action and an orbit space. Since M𝑄 is irreducible,
𝑈 is also dense. Finally, by the universal property of categorical quotients, there is a unique
isomorphism 𝜂 : 𝑇 −→ 𝑈, such that the diagram

𝐷𝑄 𝑇

𝑈

𝜂

commutes. The unlabeled arrows represent the canonical quotient maps.
c) If 𝑟 = (𝑟𝑒, 𝑒 ∈ 𝐸) ∈ 𝑅𝑄 is an unstable tuple, then there is a hidden vertex 𝑣0 ∈ 𝑉ℎ,

such that 𝑟𝑒1 · · · · · 𝑟𝑒𝑡 = 0, for every path 𝑝 = (𝑒1, ..., 𝑒𝑡 ) in 𝑄 which connects a vertex in
𝑉1 to a vertex in 𝑉𝐿 and passes through 𝑣0. In terms of networks, this means that the vertex
does not pass any information from the input to the output. So, it can be removed. We will
describe the precise construction in Section 3.2.

Example 3.1.5. We continue Example 2.3.4 and Example 2.4.3, a). The torus (ℂ★)3 � 𝑇 =

𝛬 ⊗
ℤ
ℂ★ acts on ℂ4 by

(ℂ★)3 × ℂ4 −→ ℂ4(
(𝑧1, 𝑧2, 𝑧3), (𝑎1, 𝑎2, 𝑎3, 𝑎4)

)
↦−→ (𝑧1 · 𝑎1, 𝑧2 · 𝑎2, 𝑧3 · 𝑎3, 𝑧

−1
1 · 𝑧2 · 𝑧3 · 𝑎4).

The quotient M𝑄 ⊂ ℂ4 is cut out by the equation 𝑎1 · 𝑎4 − 𝑎2 · 𝑎3. Note that the orbit of
(1, 1, 1, 1) under the above group action lies in M𝑄, and this embeds 𝑇 as an open subset
into M𝑄. Note that the equation of M𝑄 is invariant under the group action, and, therefore,
the multiplication on 𝑇 extends to an action of 𝑇 on M𝑄 .

Proposition 3.1.6. Let 𝑄 = (𝑉1, ..., 𝑉𝐿 , 𝐸, 𝑠, 𝑡) be a quiver in layers, satisfying Condition
(N). Then, the dimension of the moduli space M𝑄 is #𝐸 − #𝑉ℎ.

Proof. Let 𝑅𝑠
𝑄
⊂ 𝑅𝑄 be the non-empty open subset of stable tuples. The image M𝑠

𝑄
of 𝑅𝑠

𝑄

under the quotient map 𝑅𝑄 −→ M𝑄 is a non-empty open subset. Since 𝑅𝑄 is irreducible,
so are M𝑄 and M𝑠

𝑄
, and M𝑄 and M𝑠

𝑄
have the same dimension. Furthermore, the fibers

of the map 𝑅𝑠
𝑄

−→ M𝑠
𝑄

are the orbits of stable tuples. For a stable tuple, the orbit has
the same dimension as the acting group 𝑇ℎ. The group 𝑇ℎ obviously has dimension #𝑉ℎ.
Moreover, the dimension of 𝑅𝑄 is #𝐸 , and as before, dim(𝑅𝑠

𝑄
) = dim(𝑅𝑄). By general

properties of the dimension ([6], 10.1 Theorem), we find

dim(M𝑠
𝑄) = dim(𝑅𝑠

𝑄) − dim(𝑇ℎ) = #𝐸 − #𝑉ℎ .

This concludes the proof. □

Next, we explain the notation of the paper [16]. For this, we let 𝑚 := #𝐸 be the number
of arrows and enumerate the arrows, i.e., we write 𝐸 = { 𝑒(1), ..., 𝑒(𝑚) }. Recall from
(2.3.5.1) that P is the set of paths in 𝑄 starting at a vertex in 𝑉1 and ending at a vertex in
𝑉𝐿 . For a path 𝑝 ∈ P, we define the column vector 𝑐𝑝 ∈ 𝔽𝑚

2 whose 𝑗-th entry is one, if 𝑒( 𝑗)
appears in the path 𝑝, and zero otherwise. Let 𝑠 := #P and write P = { 𝑝(1), ..., 𝑝(𝑠) }.
The (𝑚 × 𝑠)-matrix

𝐴 :=
(
𝑐𝑝 (1) , ..., 𝑐𝑝 (𝑠)

)
∈ Mat(𝑚, 𝑠; 𝔽2)

is called the structure matrix of the network quiver 𝑄.

Theorem 3.1.7. The rank of the structure matrix 𝐴 is #𝐸 − #𝑉ℎ.
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In [16], this theorem is stated and proved for multilayer perceptra (see loc. cit., Theorem
3.4).

Proof. We recall the splitting from (2.4.2.2). It leads to the short exact sequence

0 𝑋 (𝑇) 𝑋 (𝐷𝑄) 𝑋 (𝑇ℎ) 0.𝑋 ( 𝜚)

According to Exercise 2.3.3, the monomials 𝑀𝑝 , 𝑝 ∈ P, generate the kernel of 𝑋 (𝜚). By
the above exact sequence, the latter is isomorphic to 𝑋 (𝑇). Note that 𝑋 (𝑇) is a free abelian
group of rank

dim(𝑇) = dim(𝐷𝑄) − dim(𝑇ℎ) = #𝐸 − #𝑉ℎ .

We can tensorize the above sequence over the integers with the field 𝔽2 = { 0, 1 } and get,
in particular, the surjection

𝑋 (𝐷𝑄) ⊗
ℤ
𝔽2 𝑋 (𝑇ℎ) ⊗

ℤ
𝔽2.

𝑋 ( 𝜚)

The´classes 𝑀 𝑝 , 𝑝 ∈ P, generate the kernel of 𝑋 (𝜚). On the other hand, the enumeration
of 𝐸 gives the isomorphism 𝑋 (𝐷𝑄) � ℤ𝑚 from (1.2.0.1). We can also tensorize this
isomorphism over the integers with the field 𝔽2. This leads to the map

𝑋 (𝐷𝑄) 𝑋 (𝐷𝑄) ⊗
ℤ
𝔽2 𝔽𝑚

2 .
�

This map sends 𝑀𝑝 to 𝑐𝑝 , 𝑝 ∈ P. It is now clear that the rank of the structure matrix 𝐴

equals the dimension (over 𝔽2) of the kernel of 𝑋 (𝜚) and, so, the dimension of 𝑋 (𝑇) ⊗
ℤ
𝔽2,

i.e., the rank of 𝑋 (𝑇). As we have seen above, that number equals #𝐸 − #𝑉ℎ. □

3.2. Polytstable points. We let𝑄 = (𝑉1, ..., 𝑉𝐿 , 𝐸, 𝑠, 𝑡) be a quiver in layers which satisfies
Condition (N) and 𝑟 = (𝑟𝑒, 𝑒 ∈ 𝐸) ∈ 𝑅𝑄. Then, the support of 𝑟 is the subquiver
Supp(𝑟) = (𝑉 ′

1, ..., 𝑉
′
𝐿
, 𝐸 ′, 𝑠′, 𝑡′) of 𝑄 that is obtained by first removing all arrows 𝑒 ∈ 𝐸

with 𝑟𝑒 = 0 and then all isolated vertices from the resulting quiver. Using this concept, we
obtain the following characterization of polystable tuples (compare Page 10).

Proposition 3.2.1. In the above situation, the tuple 𝑟 = (𝑟𝑒, 𝑒 ∈ 𝐸) is polystable if and
only if the connected components of Supp(𝑟) satisfy Condition (M).

Proof. First, assume that 𝑟 is polystable and suppose 𝑣0 ∈ 𝑉 ′
2 ⊔ · · · ⊔𝑉 ′

𝐿−1 is a source. For
a complex number 𝑡 ∈ ℂ★, introduce

𝜆(𝑡) := (𝜆𝑡𝑣 , 𝑣 ∈ 𝑉ℎ) ∈ 𝑇ℎ with 𝜆𝑡𝑣 :=
{

𝑡, if 𝑣 = 𝑣0
1, if 𝑣 ≠ 𝑣0

.

Then, for 𝑟 (𝑡) := (𝑟𝑒 (𝑡), 𝑒 ∈ 𝐸) := 𝜆(𝑡) · 𝑟, we have

𝑟𝑒 (𝑡) =
{
𝑡−1 · 𝑟𝑒, if 𝑠(𝑒) = 𝑣0

𝑟𝑒, if 𝑠(𝑒) ≠ 𝑣0
, 𝑡 ∈ ℂ★.

We set
𝑟 ′ := (𝑟 ′𝑒, 𝑒 ∈ 𝐸) := lim

𝑡→∞
𝜆(𝑡) · 𝑟.

Then, 𝑟 ′ is contained in the closure of the orbit of 𝑟 . Since we assume that the latter is
closed, 𝑟 ′ is actually contained in the orbit of 𝑟 . But, then, 𝑟 ′𝑒 = 0, for every arrow 𝑒 ∈ 𝐸

with 𝑠(𝑒) = 𝑣0, implies 𝑟𝑒 = 0, for every arrow 𝑒 ∈ 𝐸 with 𝑠(𝑒) = 𝑣0. So, 𝑣0 is an isolated
vertex of Supp(𝑟), and this contradicts our construction. A similar argument works, if
𝑣0 ∈ 𝑉 ′

2 ⊔ · · · ⊔𝑉 ′
𝐿−1 is a sink.
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Now, let 𝑟 ∈ 𝑅𝑄 be a tuple, such that the connected components of 𝑄′ := Supp(𝑟)
satisfy Condition (M), and let 𝑟 ′ ∈ 𝑅𝑄 be a tuple which is contained in the closure of the
orbit of 𝑟. Then, Supp(𝑟 ′) is a subquiver of 𝑄′. We may view 𝑅𝑄′ as a closed subset of
𝑅𝑄. It contains both 𝑟 and 𝑟 ′ and is invariant under the action of 𝑇ℎ. More precisely, the
group

𝑇𝑐
ℎ :=

?
𝑣∈𝑉ℎ\𝑉 ′

ℎ

ℂ★, 𝑉 ′
ℎ := 𝑉 ′

2 ⊔ · · · ⊔𝑉 ′
𝐿−1,

acts trivially on 𝑅𝑄, and we may interpret the image of 𝑅𝑄′ in M𝑄 as the quotient of 𝑅𝑄′

by the action of

𝑇 ′
ℎ :=

?
𝑣∈𝑉 ′

ℎ

ℂ★.

Altogether, we arrive at the commutative diagram

(3.2.1.1)
𝑅𝑄′ 𝑅𝑄

M𝑄′ M𝑄

in which the horizontal arrows are closed embeddings. Since the connected components of
𝑄′ satisfy Condition (M), we may rearrange the layers of𝑄′ in such a way that its connected
components satisfy Condition (N) (see Remark 2.1.4, a). However, the group 𝑇 ′

ℎ
and its

action on 𝑅𝑄′ depend only on the set 𝑉 ′
ℎ

of hidden vertices. This means that Corollary
3.1.3 applies to 𝑄′ as well, so that 𝑟 is stable with respect to the 𝑇 ′

ℎ
-action on 𝑅𝑄′ . Our

assumptions imply that 𝑟 and 𝑟 ′ are both mapped to the same point in M𝑄′ . The stability
of 𝑟 now implies that 𝑟 ′ lies in the 𝑇 ′

ℎ
-orbit of 𝑟, and the latter equals the 𝑇ℎ-orbit of 𝑟. We

infer that the 𝑇ℎ-orbit of 𝑟 in 𝑅𝑄 is closed. □

Remark 3.2.2. Let 𝑟 = (𝑟𝑒, 𝑒 ∈ 𝐸) ∈ 𝑅𝑄 be any element. The above proof gives a
constructive procedure for determining an element 𝑟 𝑝 = (𝑟 𝑝𝑒 , 𝑒 ∈ 𝐸), such that the orbit of
𝑟 𝑝 is the unique closed orbit that is contained in the closure of the orbit of 𝑟. In fact, let
𝑣0 ∈ 𝑉2 ⊔ · · · ⊔𝑉𝐿−1 be a source or a sink of Supp(𝑟) and introduce 𝑟1 := (𝑟1

𝑒, 𝑒 ∈ 𝐸) by

𝑟1
𝑒 :=

{
0, if 𝑠(𝑒) = 𝑣0
𝑟𝑒, if 𝑠(𝑒) ≠ 𝑣0

, 𝑒 ∈ 𝐸,

if 𝑣0 is a source, and by

𝑟1
𝑒 :=

{
0, if 𝑡 (𝑒) = 𝑣0
𝑟𝑒, if 𝑡 (𝑒) ≠ 𝑣0

, 𝑒 ∈ 𝐸,

if 𝑣0 is a sink. Then, replace 𝑟 by 𝑟1 and iterate the construction. At some stage, you
will arrive at a tuple 𝑟 𝑝 , such that its support is empty or its connected components satisfy
Condition (M). By the proposition, the orbit of 𝑟 𝑝 is closed,15 and the arguments in the
proof show that 𝑟 𝑝 is contained in the closure of the orbit of 𝑟. We will encounter this
construction in Example 3.3.6, b).

15The case of the empty quiver corresponds to 𝑟 𝑝 = 0.
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3.3. Real points. In applications of neural networks, the set-up is real. To be more precise,
given a network quiver 𝑄 = (𝑉1, ..., 𝑉𝐿 , 𝐸, 𝑠, 𝑡), the weights attached to the arrows 𝑒 ∈ 𝐸

are real. This means that
𝑅𝑄 (ℝ) :=

⊕
𝑒∈𝐸

ℝ

should be the parameter space for the weights. We would then look at the groups

𝑇𝑄 (ℝ) :=
?
𝑣∈𝑉

ℝ★, 𝑇ℎ (ℝ) :=
?
𝑣∈𝑉ℎ

ℝ★, and 𝐷𝑄 (ℝ) :=
?
𝑒∈𝐸

ℝ★

and the actions analogous to those considered in Section 2.2. Recall that P is the set
of paths in 𝑄 that connect a vertex in 𝑉1 to a vertex in 𝑉𝐿 . Set 𝑠 := #P and write
P = { 𝑝(1), ..., 𝑝(𝑠) }. Before, we considered the regular map

𝜓 : 𝑅𝑄 −→ ℂ𝑠

(𝑥𝑒, 𝑒 ∈ 𝐸) ↦−→ (𝑀𝑝 (1) , ...., 𝑀𝑝 (𝑠) ).
Obviously, under this map, real points go to real points, so that we get an induced map

𝜓ℝ : 𝑅𝑄 (ℝ) −→ ℝ𝑠 .

The relations among the monomials 𝑀𝑝 (1) , ...., 𝑀𝑝 (𝑠) ] are of the form "monomial=mono-
mial" ([23], Lemma 4.3). Those define the equations of M𝑄 in ℂ𝑠 . We let M𝑄 (ℝ) be the
set of real solutions to those equations, i.e.,

M𝑄 (ℝ) := M𝑄 ∩ℝ𝑠 .

We can ask the following questions about the "quotient" map

𝑞ℝ : 𝑅𝑄 (ℝ) −→ M𝑄 (ℝ) :

• Is 𝑞ℝ surjective?
• Are the points in the image of 𝑞ℝ in bijection to the closed𝑇ℎ (ℝ)-orbits in 𝑅𝑄 (ℝ)?

We will show that both questions have positive answers (Theorem 3.3.4), so that 𝑞ℝ is
the reasonable quotient to look at in the real case. Let us first discuss two examples from
the more general area of quotient problems which illustrate that the answers to the above
questions are not obvious.

Example 3.3.1. a) We study the action

{±1} ×ℝ −→ ℝ

(𝜀, 𝜆) ↦−→ 𝜀 · 𝜆.
It is easy to see that the ring of polynomials that are invariant under this action is generated
by 𝑥2. This implies that the real quotient map is modeled by

ℝ −→ ℝ

𝑥 ↦−→ 𝑥2.

The image of this map is ℝ≥0 = { 𝑦 ∈ ℝ | 𝑦 ≥ 0 }, and we see that the quotient map is not
surjective.

b) We come back to the second action considered in Example 1.3.6. The real quotient
map is modeled on

ℝ2 −→ ℝ

(𝑥, 𝑦) ↦−→ 𝑥 · 𝑦.
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The orbits are {0}, the positive 𝑥-axis, the negative 𝑥-axis, the positive 𝑦-axis, the negative
𝑦-axis, the positive branch of the hyperbola { 𝑥 · 𝑦 = 𝜆 }, and the negative branch of the
hyperbola { 𝑥 · 𝑦 = 𝜆 }, 𝜆 ∈ ℝ★. The first five orbits are all mapped to zero. For 𝜆 ∈ ℝ★,
both the positive and the negative branch are mapped to 𝜆. So, the quotient does not
parameterize the closed orbits.

Remark 3.3.2. a) It is a general fact that the intersection of a closed ℂ-orbit with the set of
real points is the union of finitely many closed ℝ-orbits (see [7], 2.3. Proposition).

b) The set of closed ℝ-orbits carries the structure of a Hausdorff space [21]. We have
an induced (proper) map of that space to the set of real points of the quotient. In Part a) of
the above example, this is the inclusion ℝ≥0 −→ ℝ. In the second example, the quotient is
the union of two copies of ℝ, intersecting at zero, and the map is two-to-one over ℝ★ and
one-to-one over {0}.

For the studying the separation properties of the real quotient map, we follow the strategy
of the proof of Proposition 3.2.1. First note that, intrinsically, we have

𝐷𝑄 (ℝ) = 𝛬(𝐷𝑄) ⊗
ℤ
ℝ and 𝑇ℎ (ℝ) = 𝛬(𝑇ℎ) ⊗

ℤ
ℝ.

Likewise,
𝑇 (ℝ) = 𝛬 ⊗

ℤ
ℝ.

Clearly, 𝐷𝑄 (ℝ), 𝑇ℎ (ℝ), and 𝑇 (ℝ) are the sets of real points of 𝐷𝑄, 𝑇ℎ, and 𝑇 , respectively.
Because of the splitting (2.4.2.1), we have the commutative diagram

𝐷𝑄 (ℝ) 𝐷𝑄

𝑇 (ℝ) 𝑇.

By our previous discussion, we also have the commutative diagram

𝐷𝑄 (ℝ) 𝑅𝑄 (ℝ)

𝑇 (ℝ) M𝑄 (ℝ).

𝑞ℝ

Remark 3.3.3. The quotient map 𝑝 : 𝐷𝑄 −→ 𝑇 induces the homomorphism

𝑋 (𝑝) : 𝑋 (𝑇) −→ 𝑋 (𝐷𝑄)
𝜒 ↦−→ 𝑝 ◦ 𝜒

on the level of groups of characters (see Section 1.2). We may pick characters 𝜒1, ..., 𝜒𝑠 ,
such that

𝑋 (𝜒 𝑗 ) = 𝑀𝑝 𝑗
, 𝑗 = 1, ..., 𝑠.

Then,
𝑇 −→ M𝑄

𝜏 ↦−→
(
𝜒1 (𝜏), ..., 𝜒𝑠 (𝜏)

)
.

The above diagram tells us that the restriction of the quotient map 𝑞ℝ : 𝑅𝑄 (ℝ) −→
M𝑄 (ℝ) to 𝐷𝑄 (ℝ) is injective and has the image

M𝑄 (ℝ) ∩𝑈.
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For the latter, recall Remark 3.1.4, b).

Theorem 3.3.4. Let 𝑄 = (𝑉1, ..., 𝑉𝐿 , 𝐸, 𝑠, 𝑡) be a quiver in layers which satisfies Condition
(N). Then, the real quotient map 𝑞ℝ : 𝑅𝑄 (ℝ) −→ M𝑄 (ℝ) is surjective and separates
closed 𝑇ℎ (ℝ)-orbits in 𝑅𝑄 (ℝ).

Proof. Let us first check the claim about the separation of closed orbits. Let 𝑟 𝑖 = (𝑟 𝑖𝑒, 𝑒 ∈
𝐸) ∈ 𝑅𝑄 (ℝ), 𝑖 = 1, 2, be two real tuples whose 𝑇ℎ (ℝ)-orbits in 𝑅𝑄 (ℝ) are closed and
assume 𝑞ℝ (𝑟1) = 𝑞ℝ (𝑟2). We point out that the argument in the first half of the proof of
Proposition 3.2.1 can be performed exactly in the same way over the real numbers. So,
the connected components of the supports Supp(𝑟1) and Supp(𝑟2) must satisfy Condition
(M). So, we infer that the 𝑇ℎ-orbits of 𝑟1 and 𝑟2 are closed in 𝑅𝑄 without having to recur to
the general theory. Since 𝑟1 and 𝑟2 map to the same point in M𝑄 and are both polystable,
they must lie in the same 𝑇ℎ-orbit. So, we must actually have Supp(𝑟1) = Supp(𝑟2). Let’s
denote this support quiver by 𝑄′. Now, we can invoke Diagram (3.2.1.1). All the maps in
that diagram are defined over the real numbers, so that we get the induced diagram

(3.3.4.1)
𝑅𝑄′ (ℝ) 𝑅𝑄 (ℝ)

M𝑄′ (ℝ) M𝑄 (ℝ)

𝑞′
ℝ

𝑞ℝ .

Now, both 𝑟1 and 𝑟2 lie in 𝐷𝑄′ (ℝ) ⊂ 𝑅𝑄′ (ℝ). As before, we see that the fact that the
connected components of 𝑄′ satisfy Condition (M) suffices to infer that the quotient map
𝑞′
ℝ

: 𝑅𝑄′ (ℝ) −→ M𝑄′ (ℝ) separates orbits in 𝐷𝑄′ (ℝ). So, 𝑟1 and 𝑟2 belong to the same
𝑇 ′
ℎ
(ℝ)-orbit which is the same as the corresponding 𝑇ℎ (ℝ)-orbit.
Finally, we turn to the surjectivity of 𝑞ℝ. Let 𝑦 ∈ M𝑄 (ℝ) and 𝑟 ∈ 𝑅𝑄 a polystable

tuple with 𝜓(𝑟) = 𝑦. Then, the connected components of the quiver 𝑄′ := Supp(𝑟) satisfy
Condition (M). We use Diagram (3.3.4.1). Note that 𝑦 ∈ M𝑄′ (ℝ) ∩𝑈′. By the previous
discussion, there exists a real tuple 𝑟 ′ ∈ 𝐷𝑄′ (ℝ) with 𝑞′

ℝ
(𝑟 ′) = 𝑦. This finishes the

proof. □

Remark 3.3.5. a) If 𝑟 ∈ 𝑅𝑄 is a polystable tuple with 𝜓(𝑟) ∈ M𝑄 (ℝ), then it is easy to
find an element in 𝑔 ∈ 𝑇ℎ, such that 𝑔 · 𝑟 ∈ 𝑅𝑄 (ℝ). We will illustrate this in the following
example.

b) If 𝑟 ∈ 𝑅𝑄 is tuple with 𝜓(𝑟) ∈ M𝑄 (ℝ) which is not polystable, then it might not be
possible to find a real tuple in the 𝑇ℎ-orbit of 𝑟. See Example 3.3.6, b), for this. In this
case, we need to apply the procedure in Remark 3.2.2 to replace 𝑟 by a polystable tuple.

c) The interested reader may find a more sophisticated approach to real points on moduli
spaces of (unframed) quiver representations in [14].

Example 3.3.6. Let 𝑄 = (𝑉1, 𝑉2, 𝑉3, 𝑉4, 𝐸, 𝑠, 𝑡) be the following multilayer perceptron:

◦ • • ◦

◦ • • ◦

𝑒1

𝑒2

𝑒5

𝑒6

𝑒9

𝑒10

𝑒4

𝑒3

𝑒8

𝑒7

𝑒12

𝑒11
.

For convenience, we will write 𝑟𝑖 instead of 𝑟𝑒𝑖 , 𝑖 = 1, ..., 12.
a) Let 𝑟 = (𝑟𝑖 , 𝑖 = 1, ..., 12) be a tuple in which all entries are non-zero which defines a

real point in the moduli space. We rescale at the top left hidden vertex by 𝑟−1
1 and at the
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bottom left hidden vertex by 𝑟−1
2 . We then get

𝑟 ′ =

(
1, 1,

𝑟3
𝑟1
,
𝑟4
𝑟2
, 𝑟1 · 𝑟5, 𝑟1 · 𝑟6, 𝑟2 · 𝑟7, 𝑟2 · 𝑟8, 𝑟9, 𝑟10, 𝑟11, 𝑟12

)
.

We assume that 𝑟1 · 𝑟5 · 𝑟9 and 𝑟3 · 𝑟5 · 𝑟9 are both real. So, 𝑟3/𝑟1 is also real. Rescaling at
the second layer yields

𝑟 ′′ =

(
1, 1,

𝑟3
𝑟1
,
𝑟4
𝑟2
, 1, 1,

𝑟2 · 𝑟7
𝑟1 · 𝑟5

,
𝑟2 · 𝑟8
𝑟1 · 𝑟6

, 𝑟1 · 𝑟5 · 𝑟9, 𝑟1 · 𝑟5 · 𝑟10, 𝑟1 · 𝑟6 · 𝑟11, 𝑟1 · 𝑟6 · 𝑟12

)
.

This will then be a real tuple in the orbit of 𝑟 .
b) Consider 𝑟 = (𝑟𝑖 , 𝑖 = 1, ..., 12) with

𝑟2 = 𝑟4 = 0, 𝑟1 = 𝑟3 = 𝑟5 = 𝑟6 = 𝑟7 =
√
−1, 𝑟8 = 1 +

√
−1, and 𝑟9 = 𝑟10 = 𝑟11 = 𝑟12 = 1.

The tuple 𝑟 defines a real point in the moduli space. It is not polystable. Its support is

◦ • • ◦

◦ • • ◦

𝑒1 𝑒5

𝑒6

𝑒9

𝑒10

𝑒3

𝑒8

𝑒7

𝑒12

𝑒11

and does not satisfy Condition (M). We can only rescale with real numbers at the second
hidden layer in order to keep the weights at the arrows going to the output layer real, and
we cannot rescale at the bottom left hidden vertex in such a way that we make both

√
−1

and 1+
√
−1 real. So, there is no real tuple in the orbit of 𝑟. We must replace 𝑟 by the tuple

which assigns the weight zero to the arrows 𝑒7 and 𝑒8 while keeping the other weights.
This has support

◦ • • ◦

◦ • ◦

𝑒1 𝑒5

𝑒6

𝑒9

𝑒10

𝑒3

𝑒12

𝑒11

and is polystable.
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