The Snedecor's F-distribution or the Fisher-Snedecor distribution (after Sir Ronald A. Fisher and George W. Snedecor) or short the F-distribution is a continuous probability distribution with range [0,+∞), depending on two parameters denoted v1,v2 (Lovric 2011). In statistical applications, v1,v2 are positive integers.
Let Y1 and Y2 be two independent random variables distributed as chi-square, with v1 and v2 degrees of freedom, respectively. Then the distribution of the ratio (Z)
Z=Y1/v1Y2/v2is called the F-distribution with v1 and v2 degrees of freedom. The F-distribution is often referred to as the distribution of the variance ratio (Lovric 2011).
A F-distribution has two numbers of degrees of freedom, v1 and v2, determining its shape. The first number of degrees of freedom, v1, is called the degrees of freedom of the numerator and the second, v2, the degrees of freedom of the denominator.
start = 0
end = 3
v1 = (1, 5, 10, 20, 50, 100)
v2 = (100, 50, 20, 10, 5, 1)
col_map = plt.get_cmap("Spectral", len(v1))
handle = ["$v_1=1$", "$v_1=5$", "$v_1=10$", "$v_1=20$", "$v_1=50$", "$v_1=100$"]
plt.figure(figsize=(10, 5))
plt.ylim([-0.1, 1.5])
x = np.arange(0, 3, 0.001)
plt.title(
"Densities of F-distribution with $v_1 = 1, 5, 10, 20, 50, 100$ and $v_2 = 20$",
fontsize=16,
)
for d, c, h in zip(v1, col_map(range(len(v1))), handle):
y = stats.f.pdf(x, dfn=d, dfd=20)
plt.plot(x, y, color=c, label=h)
plt.axvline(x=0, color="grey", linewidth=0.9)
plt.axhline(y=0, color="grey", linewidth=0.9)
plt.legend(fontsize=14)
plt.show()
start = 0
end = 3
v1 = (1, 5, 10, 20, 50, 100)
v2 = (100, 50, 20, 10, 5, 1)
col_map = plt.get_cmap("Spectral", len(v1))
handle = ["$v_2=1$", "$v_2=5$", "$v_2=10$", "$v_2=20$", "$v_2=50$", "$v_2=100$"]
plt.figure(figsize=(10, 5))
plt.ylim([-0.1, 1.5])
x = np.arange(0, 3, 0.001)
plt.title(
"Densities of F-distribution with $v_1 = 20$ and $v_2 = 1, 5, 10, 20, 50, 100$",
fontsize=16,
)
for d, c, h in zip(v1, col_map(range(len(v1))), handle):
y = stats.f.pdf(x, dfn=20, dfd=d)
plt.plot(x, y, color=c, label=h)
plt.axvline(x=0, color="grey", linewidth=0.9)
plt.axhline(y=0, color="grey", linewidth=0.9)
plt.legend(fontsize=14)
plt.show()
Basic Properties of F-Curves (Weiss, 2010)
Citation
The E-Learning project SOGA-Py was developed at the Department of Earth Sciences by Annette Rudolph, Joachim Krois and Kai Hartmann. You can reach us via mail by soga[at]zedat.fu-berlin.de.
Please cite as follow: Rudolph, A., Krois, J., Hartmann, K. (2023): Statistics and Geodata Analysis using Python (SOGA-Py). Department of Earth Sciences, Freie Universitaet Berlin.