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By Ron Cowen

T
racking and recording the mo-

tion of the sun, the moon, and the 

planets as they paraded across the 

desert sky, ancient Babylonian as-

tronomers used simple arithmetic 

to predict the positions of celestial 

bodies. Now, new evidence reported on 

p. 482 reveals that these astronomers, work-

ing several centuries B.C.E., also employed 

sophisticated geometric methods that fore-

shadow the development of calculus. Histo-

rians had thought such techniques did not 

emerge until more than 1400 years later, in 

14th century Europe. 

The study “is an extremely important 

contribution to the history of Babylonian 

astronomy, and more generally to the his-

tory of science,” says astronomy historian 

John Steele of Brown University, who was 

not part of the work.

Astroarchaeologist Mathieu Ossendrijver 

of Humboldt University in Berlin bases his 

findings on a reexamination of clay tablets, 

one of them unknown until recently, dating 

from 350 B.C.E. to 50 B.C.E. One week each 

year for the past 14 years, Ossendrijver has 

made a pilgrimage to the British Museum’s 

vast collection of tablets inscribed in the 

Babylonian cuneiform script. He was trying 

to solve a puzzle posed by two tablets deal-

ing with astronomical calculations: They 

also contained instructions for constructing 

a trapezoidal figure that seemed unrelated 

to anything astronomical.

Between 2002 and 2008, Ossendrijver, an 

astrophysicist turned historian, studied two 

other tablets that also prescribed the draw-

ing of a trapezoid, and in these he thought 

he could make out a reference to Jupiter. The 

giant planet was a favorite among the Baby-

lonians, who equated the orb with their main 

god, Marduk, patron deity of the city of Baby-

lon. But the Jupiter link was tentative.

Then, late in 2014, retired Assyriologist 

Hermann Hunger of the University of Vi-

enna visited Ossendrijver, bringing pho-

tos taken decades ago of an uncatalogued 

Babylonian tablet from the British Museum 

that described some kind of astronomi-

cal computation. Alone in his office a few 

months later, Ossendrijver perused the pho-

tos. The images were blurry and the inscrip-

tions slanted, making them hard to read, 

but he realized the numbers were identical 

to those in the trapezoid inscriptions he 

had been scrutinizing. By comparing the 

photos with fragments of other Babylonian 

texts, he discovered that the computations 

described the motion of Jupiter.

Examining all of the tablets at the Brit-

ish Museum, Ossendrijver figured out that 

the trapezoid calculations were a tool for 

calculating Jupiter’s displacement each day 

along the ecliptic, the path that the sun ap-

pears to trace through the stars. The com-

putations recorded on the tablets covered a 

period of 60 days, beginning on a day when 

the giant planet first appeared in the night 

sky just before dawn.

During that interval, Jupiter’s motion 

across the sky appears to slow. (Such erratic 

apparent motion stems from the complex 

combination of Earth’s own orbit around 

the sun with that of Jupiter.) A graph of Ju-

piter’s apparent velocity against time slopes 

downward, so that the area under the curve 

forms a trapezoid. The area of the trape-

zoid in turn gives the distance that Jupiter 

has moved along the ecliptic during the 

60 days. Calculating the area under a curve 

to determine a numerical value is a basic 

operation, known as the integral between 

two points, in calculus. Discovering that the 

Babylonians understood this “was the real 

‘aha!’ moment,” Ossendrijver says.  

Although elated, Ossendrijver wasn’t 

ready to publish, because a second part of 

the trapezoid prescription remained un-

clear. By delving into older, purely mathe-

matical Babylonian texts written between 

1800 B.C.E. and 1600 B.C.E., which also 

described computations with a trapezoid, 

he realized that the astronomers who made 

the tablets had gone a step further. To com-

pute the time at which Jupiter would have 

moved halfway along its ecliptic path, the 

astronomers divided the 60-day trapezoid 

into two smaller ones of equal area. The 

vertical line dividing the two trapezoids 

marked the halfway time; because of the 

different shapes of the trapezoids, it indi-

cated not 30 days but slightly fewer. 

The Babylonians had developed “ab-

stract mathematical, geometrical ideas 

about the connection between motion, 

position and time that are so common to 

any modern physicist or mathematician,” 

Ossendrijver says.

Indeed, compared with the complex geom-

etry embraced by the ancient Greeks a few 

centuries later, with its cycles and epicycles, 

the inscriptions reflect “a more abstract and 

profound conception of a geometrical object 

in which one dimension represents time,” 

says historian Alexander Jones of New York 

University in New York City. “Such concepts 

have not been found earlier than in 14th cen-

tury European texts on moving bodies,” he 

adds. “Their presence … testifies to the revo-

lutionary brilliance of the unknown Mesopo-

tamian scholars who constructed Babylonian 

mathematical astronomy.”

After cuneiform died out around 100 C.E., 

Babylonian astronomy was thought to have 

been virtually forgotten, he notes. It was 

left to French and English philosophers and 

mathematicians in the late Middle Ages to re-

invent what the Babylonians had developed. 

The new discovery may hint that Baby-

lonian geometry did not die out completely 

after all. Either way, Jones says, learning 

how the Babylonians astronomers ac-

quired their geometric acumen “would tell 

us something about why human beings do 

science in the first place, and from time to 

time do it very well indeed.” ■

Ron Cowen is a freelance writer in Silver 

Spring, Maryland. 
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Ancient Babylonians took fi rst steps to calculus
Math whizzes left precocious geometric calculations on clay tablets by 50 B.C.E.

Marduk, the patron god of Babylon, was equated 

with Jupiter, so ancient astronomers charted the 

planet’s path across the heavens with care.

Published by AAAS

on
 F

eb
ru

ar
y 

3,
 2

01
6

D
ow

nl
oa

de
d 

fr
om

 



eastern tropical Pacific and Antarctica peaked
during each of the last two glacial terminations
(28), consistent with the timing of enhanced EPR
hydrothermal activity.
Isolating a mechanistic linkage between ridge

magmatism and glacial terminations will require
a suite of detailed proxy records from multiple
ridges that are sensitive to mantle carbon and
geothermal inputs, as well as modeling studies
of their influence in the ocean interior. The
EPR results establish the timing of hydrothermal
anomalies, an essential prerequisite for deter-
mining whether ridge magmatism can act as a
negative feedback on ice-sheet size. The data
presented here demonstrate that EPR hydro-
thermal output increased after the two largest
glacial maxima of the past 200,000 years, im-
plicating mid-ocean ridge magmatism in glacial
terminations.
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Ancient Babylonian astronomers
calculated Jupiter’s position from the
area under a time-velocity graph
Mathieu Ossendrijver*

The idea of computing a body’s displacement as an area in time-velocity space is usually traced
back to 14th-century Europe. I show that in four ancient Babylonian cuneiform tablets, Jupiter’s
displacement along the ecliptic is computed as the area of a trapezoidal figure obtained by
drawing its daily displacement against time.This interpretation is prompted by a newly
discovered tablet on which the same computation is presented in an equivalent arithmetical
formulation.The tablets date from 350 to 50 BCE.The trapezoid procedures offer the first
evidence for the use of geometricalmethods in Babylonianmathematical astronomy,whichwas
thus far viewed as operating exclusively with arithmetical concepts.

T
he so-called trapezoid procedures examined
in this paper have long puzzled historians
of Babylonian astronomy. They belong to
the corpus of Babylonian mathematical as-
tronomy, which comprises about 450 tab-

lets from Babylon and Uruk dating between 400
and 50 BCE. Approximately 340 of these tablets
are tables with computed planetary or lunar data
arranged in rows and columns (1). The remaining
110 tablets are procedure texts with computa-
tional instructions (2), mostly aimed at comput-
ing or verifying the tables. In all of these texts the
zodiac, invented in Babylonia near the end of the
fifth century BCE (3), is used as a coordinate sys-
tem for computing celestial positions. The un-
derlying algorithms are structured as branching
chains of arithmetical operations (additions, sub-
tractions, and multiplications) that can be rep-
resented as flow charts (2). Geometrical concepts
are conspicuously absent from these texts, whereas
they are very common in the Babylonian mathe-
matical corpus (4–7). Currently four tablets, most
likely written in Babylon between 350 and 50 BCE,
are known to preserve portions of a trapezoid
procedure (8). Of the four procedures, here labeled
B to E (figs. S1 to S4), one (B) preserves a men-
tion of Jupiter and three (B, C, E) are embedded

in compendia of procedures dealing exclusively
with Jupiter. The previously unpublished text D
probably belongs to a similar compendium for
Jupiter. In spite of these indications of a connec-
tion with Jupiter, their astronomical significance
was previously not acknowledged or understood
(1, 2, 6).
A recently discovered tablet containing an un-

publishedprocedure text, here labeled textA (Fig. 1),
shedsnew light on the trapezoidprocedures. TextA
most likely originates from the same period and
location (Babylon) as texts B to E (8). It contains
a nearly complete set of instructions for Jupiter’s
motion along the ecliptic in accordance with the
so-called scheme X.S1 (2). Before the discovery of
text A, this scheme was too fragmentarily known
for identifying its connection with the trapezoid
procedures. Covering one complete synodic cycle,
scheme X.S1 begins with Jupiter’s heliacal rising
(first visible rising at dawn), continuing with its
first station (beginning of apparent retrograde
motion), acronychal rising (last visible rising at
dusk), second station (end of retrogrademotion),
and heliacal setting (last visible setting at dusk)
(2). SchemeX.S1 and the four trapezoid procedures
are here shown to contain or implymathematically
equivalent descriptions of Jupiter’s motion during
the first 60 days after its first appearance. Whereas
scheme X.S1 employs a purely arithmetical ter-
minology, the trapezoid procedures operate with
geometrical entities.
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In text A, Jupiter’s motion along the ecliptic is
described in terms of its daily displacement (mod-
ern symbol: v) expressed in °/d (degrees/day) and
its total displacement (S) expressed in degrees. A
crucial new insight about scheme X.S1 provided
by text A concerns its use of piecewise linearly
changing values for v. Although not formulated
explicitly, this linear dependence on time is clearly
implied (8). Jupiter’s motion along the ecliptic is
described for two consecutive intervals of 60 days
between its first appearance and its first station.
For each interval, initial and final values of v are
provided. Note that Babylonian astronomy em-
ploys a sexagesimal; i.e., base-60 place-value system

in which numbers are represented as sequences of
digits between 0 and 59, each associated with a
power of 60 that decreases in the right direction. In
the commonly used modern notation for these
numbers, all digits are separated by commas, ex-
cept for the digit pertaining to 60°, which is
separated from the next one pertaining to 60−1

by a semicolon (;), the analog of our decimal point.
For the first interval of 60days,v0=0;12°/d (=12/60)
and v60 = 0;9,30°/d (=9/60 + 30/602). Their sum
is multiplied by 0;30 (=1/2), resulting in a mean
value (v0 + v60)/2 = 0;10,45°/d, which is multi-
plied by 1,0 (=60) days, resulting in a total
displacement S = 1,0•(v0 + v60)/2 = 10;45°. For

the second interval, v60 = 0;9,30°/d and v120 =
0;1,30°/d (=1/60 + 30/602), leading to (v60 +
v120)/2 = 0;5,30°/d and S = 5;30°. The sum of
the total displacements, 10;45° + 5;30° = 16;15°, is
declared to be the total distance bywhich Jupiter
proceeds along the ecliptic in 120 days. In other
words, the ecliptic longitude of Jupiter after 60
and 120 days is computed as l60 = l0 + 10;45°
and l120 = l0 + 16;15°, respectively.
Text A doesnot describe how v varies fromday

to day, but of the three forms of time dependence
of v that are attested in Babylonian planetary
texts—piecewise constant, linear, or quadratic in
each time interval (2, 9)—only the linear one comes
into question. If v were piecewise constant, then
S should equal 60•v for each interval. If v were
piecewise quadratic, then S = 60•(v0 + v60)/2 can
only be some rough approximation. That would
be unexpected, since other tablets imply that some
Babylonian scholars in this period were familiar
with the exact algorithm for summing a quadratic
series (9, 10). By contrast, the values ofS computed
in text A are exact if one assumes that v changes
linearly in each interval. It follows that in scheme
X.S1, vdecreases linearly from0;12°/d to 0;9,30°/d
between day 0 and day 60, and from 0;9,30°/d to
0;1,30°/d between day 60 and day 120.
This new reconstruction of the first 120 days of

scheme X.S1 results in trapezoidal figures if v is
plotted against time in amodern fashion (Fig. 2).
It is important to note that text A itself does not
contain or imply a geometrical representation.
However, it turns out to be explicitly formulated
in the trapezoid procedures, texts B to E (figs. S1
to S4). Although their formulation differs in details,
at least three of them (B to D) consist of the same
two parts, I and II.
In part I, Jupiter’s total displacement for the

first 60 days of scheme X.S1 is computed. A cor-
responding introductory statement mentioning
Jupiter and themeasures of the trapezoid is part-
ly preserved in texts B and C, and perhaps in text
E (8). The number 10;45, referred to as the “area”
of the trapezoid (B, C), is then added to the “po-
sition of appearance” (B, C, D), the technical term
for Jupiter’s ecliptical longitude at first appearance,
i.e., l60 = l0 + 10;45°. Texts B andC partly preserve
the computation of 10;45 as the area of the trap-
ezoid through a series of steps equivalent to the
computations in text A. Its “large side” and “small
side,” v0 = 0;12°/d and v60 = 0;9,30°/d, are av-
eraged, (v0 + v60)/2 = 0;10,45°/d, which is then
multiplied by 60 days, the width of the trapezoid,
resulting in 10;45°. The latter operation is partly
preserved in text C and can be restored in text B.
Part II, partly preserved in texts B, D, and E, is

concerned with the time in which Jupiter reaches
a position referred to by a term tentatively trans-
lated as the “crossing” (8). It is now clear that this
denotes a point on the ecliptic, say lc, located
halfway between l0 and l60, i.e., lc = l0 + 10;45°/2.
This interpretation is consistent with a statement,
preserved only in text B, according to which the
“crossing” is located in the middle of Jupiter’s
“path,” readily interpreted as a reference to the
ecliptical segment from l0 to l60. Texts B and
D also preserve the following statement that

SCIENCE sciencemag.org 29 JANUARY 2016 • VOL 351 ISSUE 6272 483

Fig. 1. Photograph of text A (lines 1 to 7). (A) Full image. (B) Partial image of the right side taken
under different lighting conditions.
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Fig. 2. Time-velocity graph of Jupiter’s motion. Daily displacement along the ecliptic (v) between
Jupiter’s first appearance (day 0) and its first station (day 120) as a function of time according to scheme X.S1

as inferred from text A. All numbers and axis labels are in sexagesimal place-value notation.The areas of the
trapezoids, 10;45° and 5;30°, each represent Jupiter’s total displacement during one interval of 60 days.
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precedes the solution procedure: “Concerning
this 10;45, you see when it is halved.” The time
in which Jupiter reaches lc, say tc, is then com-
puted by the following geometrical method: The
trapezoid for days 0 to 60 is divided into two
smaller trapezoids of equal area (Fig. 3). In order
to achieve this, the Babylonian astronomers ap-
plied a partition procedure that is well-attested in
Old Babylonian (2000 to 1800 BCE) mathematics
(5, 6). In modern terms, it can be formulated as
follows: If v0 and v60 are the parallel sides of a
trapezoid, then the intermediate parallel that
divides it into two trapezoids of equal area has a
height vc = [(v0

2 + v60
2)/2]1/2. In the present case,

vc denotes Jupiter’s daily displacement when it
is at the “crossing.” This expression follows from
equating the areas of the partial trapezoids, S1 =
tc•(v0 + vc)/2 = S2 = t2•(vc + v60)/2, where tc and t2
are thewidths of these trapezoids, and using tc =
t•(v0 – vc)/(v0 – v60), where t = tc + t2 is the
width of the original trapezoid (6, 10). Inserting
v0 = 0;12°/d, v60 = 0;9,30°/d, and t = 1,0 d, we ob-
tain vc = [(0;2,24 + 0;1,30,15)/2]1/2 = (0;1,57,7,30)1/2 =
0;10,49,20,44,58,...°/d, tc = 28;15,42,0,48,...d, and
t2 = 31;44,17,59,12,...d. The computation of vc is
partly preserved in text D up to the addition
0;2,24 + 0;1,30,15 (8). In text B, the related quan-
tity u2 = (v0

2 – v60
2)/2 = (0;2,24 – 0;1,30,15)/2 =

0;0,26,52,30 is computed. This was most likely
followed by another step in which vc was com-
puted using vc

2 = v0
2 – u2. Whereas all known

Old Babylonian examples of the partition algo-
rithm concern trapezoids for which vc, v0, and
v60 are terminating sexagesimal numbers (6), the
present solution does not terminate in the sex-
agesimal system. Hence, texts B to E can only
have offered rounded results for vc and tc. Nothing
remains of this in texts B to D, but text E partly
preserves a computation involving 0;10,50, which
is, most plausibly, an approximation of vc. This
interpretation is confirmed by the fact that text
E also mentions the value tc = 28 d and, very
likely, t2 = 32 d, both in exact agreement with

tc = 60•(v0 – vc)/(v0 – v60) and t2 = 60 – tc if one
approximates vc = 0;10,50°/d. By rounding vc,
only an approximately equal partition of the trap-
ezoid is achieved.
Also partly preserved in text E is a computa-

tion of the area of the second partial trapezoid,
using the same method as before, leading to S2 =
t2•(vc + v60)/2, where t2 = 32 days, vc = 0;10,50°/d,
and v60 = 0;9,30°/d. The value of S2 is broken
away but can be restored as 5;25,20°. The probable
purpose of this computation was to verify the
solution for vc, as is done in the Old Babylonian
mathematical text UET 5, 858 (5, 11). The anal-
ogous computation of the area of the first par-
tial trapezoid, which can be reconstructed as S1 =
tc•(v0 + vc)/2 = 5;19,40°, is not preserved. Neither
of these values equals 5;22,30° = S/2 as they
ideally should (Fig. 3), a direct consequence of the
rounding of vc to 0;10,50°/d. At most two more
lines are partly preserved in texts B, D, and E, but
they are too fragmentary for an interpretation.
The evidence presented here demonstrates

that Babylonian astronomers construed Jupiter’s
displacement along the ecliptic during the first
60 days after its first appearance as the area of a
trapezoid in time-velocity space. Moreover, they
computed the time when Jupiter covers half this
distance by partitioning the trapezoid into two
smaller ones of ideally equal area. These compu-
tations predate the use of similar techniques by
medieval European scholars by at least 14 cen-
turies. The “Oxford calculators” of the 14th cen-
tury CE, who were centered at Merton College,
Oxford, are credited with formulating the “Mer-
tonian mean speed theorem” for the distance
traveled by a uniformly accelerating body, cor-
responding to the modern formula s = t•(v0 +
v1)/2, where v0 and v1 are the initial and final
velocities (12, 13). In the same century Nicole
Oresme, in Paris, devised graphicalmethods that
enabled him to prove this relation by computing
s as the area of a trapezoid of width t and heights
v0 and v1 (12). Part I of the Babylonian trapezoid

procedures can be viewed as a concrete example
of the same computation. They also show that
Babylonian astronomers did, at least occasionally,
use geometricalmethods for computing planetary
positions. Ancient Greek astronomers such as
Aristarchus of Samos, Hipparchus, and Claudius
Ptolemy also used geometrical methods (12),
while arithmetical methods are attested in the
Antikytheramechanism (14) and inGreco-Roman
astronomical papyri from Egypt (15). However,
the Babylonian trapezoid procedures are geo-
metrical in a different sense than the methods
of the mentioned Greek astronomers, since the
geometrical figures describe configurations not
in physical space but in an abstract mathemat-
ical space defined by time and velocity (daily
displacement).
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Fig. 3. Partitioning the trapezoid for
days 0 to 60. The time at which
Jupiter reaches the “crossing,” tc,
where it has covered the distance
5;22,30° = 10;45°/2, is computed
geometrically by dividing the trapezoid
for days 0 to 60 into two smaller
trapezoids of equal area. In text E, vc is
rounded to 0;10,50°/d, resulting in tc =
28 d, S1 = 5;19,40°, t2 = 32 d, and S2 =
5;25,20°.
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Materials and Methods

Transliterations, translations and photographs of the cuneiform tablets

Cuneiform Texts A-E were transliterated and translated from the original  clay tablets
during several visits to the Study Room of the Middle Eastern department of the British
Museum  (London)  between  2002  and  2015  and  from  photographs  made  on  these
occasions. All tablets and fragments are identified by registration numbers assigned by
the  British  Museum  (BM).  The  transliterations  were  made  in  accordance  with
Assyriological  conventions,  i.e.  logograms are  written  in  capitals,  Akkadian  phonetic
signs in italics, [x] indicates a sign broken away, [...] a break of unknown length, and x⸢ ⸣
a damaged sign. In the translations, missing text is indicated by [...], untranslatable text
by .... Note that  the cuneiform notation for sexagesimal numbers lacks an equivalent of
our decimal point. In the transliterations this feature is maintained by separating all digits
by a period (.). In the translations the absolute value of each number, as inferred from the
context, is indicated by separating the digit pertaining to 600 from the next one pertaining
to 60–1 by a semicolon (;) and all other digits by commas. Also note that initial and final
vanishing digits are not written in cuneiform. For instance, in line 1 of Text A the number
written as 12 represents 0;12, which stands for 12/60, 1 represents 1,0 = 60, and 9.30
represents 0;9,30 = 9/60+30/602. All displacements of Jupiter in Texts A-E are measured
in  degrees  (º),  but  this  unit  is,  as  usual  in  Babylonian  mathematical  astronomy, not
mentioned explicitly.

Provenance and date of Texts A-E

The tablets on which Texts A-E are written were excavated unscientifically in Iraq in the
19th century, along with thousands of other tablets (16). Even though their exact findspot
is  not  documented,  there  is  a  consensus  that  the  astronomical  tablets  from  these
excavations originate from Babylon, the main center of Babylonian astronomy during the
first Millennium BCE (2, 16). This is confirmed by occasional references to Babylon's
main temple on some of the astronomical tablets (1, 2). 

Due to a combination of factors it is impossible to assign very precise dates to Texts A-E.
First, they lack a colophon that might have mentioned a date of writing or the name of a
datable astronomer. Second, they do not mention datable astronomical phenomena. Third,
since  they  were  excavated  unscientifically  no  information  about  the  archaeological
stratigraphy of the tablets is available. However, the range of possible dates is constrained
by the following considerations. First, the computations in Texts A-E employ ecliptical
coordinates, which implies that they were written after the estimated date of introduction
of these coordinates near the end of the fifth century BCE (3). Second, many of the other
tablets from Babylon that deal with mathematical astronomy have been dated. The dates
of these tablets roughly extend from 350 BCE to 50 BCE, while their distribution peaks
between 180 BCE and 100 BCE (1). Texts A-E therefore very likely date from 350-50
BCE, the range of most probable dates being 180-100 BCE. 
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Text A

Text A is inscribed, in a highly cursive hand, on the tablet BM 40054, which measures 4.3
x 3.8 x 2.0 cm (Fig. 1). The tablet arrived in the British Museum in 1881, having been
excavated unscientifically in Iraq, very likely in Babylon (16). The tablet is nearly intact,
apart from a slice of clay, perhaps corresponding to one line of text, that is missing from
the lower edge of the obverse and the upper edge of the reverse. The surface of the tablet
is notably curved. The tablet contains a single procedure concerning scheme X.S1 for
Jupiter. It was previously unpublished. Text A comprises lines 1-7 of the obverse; the
remaining approximately 12  lines  deal  with  subsequent  intervals  of  Jupiter's  synodic
cycle and will be published elsewhere. 

Transliteration

1 ME IGI 12 EN 1 ME 9.30

2 12 u3 9.30 21.30 A 30

3 10.45 A 1 10.4 5⸢ ⸣

4 TA 1 ME GI EN  1 ME 1.30⸢ ⸣

5 9.30 u3 1.30 11 A.RA2 30 5.30

6 5.30 A 1 5.30 (erasure) 10.45 u3 5.30

7 16 .15 PAP.PAP TA IGI EN U⸢ ⸣ Š 16.15 DU.DU?

Translation

1 The day when it appears: 0;12, until 1,0 days, 0;9,30.

2 0;12 and 0;9,30 is 0;21,30, times 0;30

3 is 0;10,45, times 1,0 is 10;45.

4 After completing 1,0 days, until 1,0 days 0;1,30.

5 0;9,30 and 0;1,30 is 0;11, times 0;30 is 0;5,30.

6 0;5,30 times 1,0 days is 5;30. (erasure) 10;45 and 5;30 is

7 16;15, the total. From appearance until station the motion is 16;15.

Philological remarks

2, 3, 6) In these lines the usual logogram A.RA2, „times“, is abbreviated to A.

6) After 5.30 there is an erased sign that was overwritten by the 10.

7) DU.DU?: the sign following DU is written on the edge in a crammed manner. It looks
like BI with a horizontal wedge below it. This sign is here assumed to be a deformed DU.
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Like DU alone, the logogram DU.DU? probably represents alāku, „course; motion“, or a
related noun derived from this verb. Alternatively it may represent the present tense of
this verb, illak, „it proceeds“.

Commentary

Of the five currently known tablets and fragments concerned with Jupiter's scheme X.S1,
this is the best preserved one. However, compared to the other tablets its formulation is
more  terse.  The  name  of  Jupiter  is  not  mentioned  and  the  significance  of  several
parameters, e.g. 0;12 and 0;9,30, is not indicated. Two close duplicates of Text A, BM
36801 and BM 41043, published as Nos. 21 and 22 in (2), clarify the meaning of Text A.
They do  mention  the  name  of  Jupiter  and  they  qualify  0;12  as  a  value  of  its  daily
displacement (along the ecliptic), as can be seen in lines 1-3 of BM 36801:

Transliteration

1 MUL2.BABBAR ME IGI 12 ZI-šu2 EN  [... A.RA⸢ ⸣ 2 ]

2 1 ME DU-ma 10.45 TA 1 ME GI  [...] ⸢ ⸣

3 5.30 5.30 A.RA2 1 ME DU-⸢ma  [5.30 ...]⸣

Translation

1 Jupiter. The day when it appears its (daily) displacement is 0;12, until [... times]

2 1,0 days you multiply, it is 10;45. After completing 1,0 days [...] 

3 0;5,30. You multiply 0;5,30 by 1,0 days, it is [5;30 ...]

This agreement between Text A and BM 36801 proves that Text A pertains to Jupiter and
that the numbers 0;12 and 0;9,30 are values of its daily displacement. That this motion
proceeds along the ecliptic and that the displacements are measured in degrees follows
from a comparison with other tablets about planetary motion (1, 2).

General remarks about Texts B-E

Texts B-D and,  as was argued,  Text  E,  deal  with the same trapezoid with short  side
0;9,30, long side 0;12 and width 1,0, but they are not exact duplicates. That is, in each of
the four texts the trapezoid procedure is formulated in slightly different words. Several
phrases appear in more than one text, but not always in the same order. Text E deviates
the most, being the only one that partly preserves the end of part II.
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Text B

Text B is written on the fragment BM 34757, which measures 5.1 x 6.3 x 2.0-2.9 cm (Fig.
S1).  It  arrived  in  the  British  Museum  around  1879,  having  been  excavated
unscientifically in Iraq, most likely in Babylon (16). The fragment belongs to the left half
of a tablet. Apart from the left edge, no other edges of the original tablet are preserved.
The textual restorations imply that about 2 cm of clay are missing from the right side;
hence the original width was about 7 cm. Text B occupies one side of BM 34757, which
might equally be the obverse or the reverse. The other side partly preserves three more
procedures about Jupiter. For an edition of the complete tablet see No. 38 in (2). The
present edition incorporates several significant corrections to the previous one (2).

Transliteration

1 xx MUL⸢ 2 .BABBAR ⸣ ina šu-tam-ḫi-⸢ri  [12 SAG]⸣

2 GAL-tu2 9.30 SAG TUR-tu2 UŠ-šu2 E[N.NAM]

3 10.45 ana UGU KI IGI TAB-ma ina 1-šu [xx]

4 DU3.DU3.BI ša2 SAG.KI GU4 SAG-⸢su  [xx]⸣

5 ana muḫ-ḫi a-ḫa-miš2 TAB-ma 1/2-šu2 GIŠ-⸢ma  [A.RA⸣ 2 1-šu DU-ma]

6 10.45 A.ŠA3 10.45 ana UGU KI [IGI TAB xx]

7 s ṣal-pi ina KASKAL-šu2 ina ŠA3-šu2 (erasure) SE3.AM3 ⸢u4 -[⸣ mu ša2]

8 ana s ṣal-pi DIB-iq tam-mar ki-ma-a ⸢mu -[⸣ šam-ša2 x]

9 10.45 šu-u2 tam-mar ki BAR šu-u2 12 SAG  [GAL-⸢ ⸣ tu2 A.RA2 12 DU-ma]

10 2.24 9.30 SAG t ṣe-ri-tu2 A.RA2 9.3[0 DU-ma 1.30.15]

11 TA 2.24 ZI-ma ša2 re-ḫi A.RA2 KI [xxx]

12 ⸢ša2
? 10.4 5 DU-⸣ ma 26.52.30 9.30 xx  [xx]⸢ ⸣

(unknown number of lines missing)

Translation

1 ... of Jupiter by squaring. [0;12 is]

2 the large [side], 0;9,30 is the small side, w[hat] is its station?

3 You add 10;45 to the position of appearance, and in sixty [days ...]

4 Its procedure: the [...] side(s) of the trapezoid

5 you add together, you compute half of it and [you multiply it by sixty days, it is]

6 10;45, the area; 10;45 [you add] to the position [of appearance. ...]

7 You place the crossing in its path, in its middle. The da[y when]
(or: You se[e] the crossing in its path, whereby it is halved. [The day when])

5



8 it passes the crossing, you see how long it is spen[ding ...]

9 (Concerning) this 10;45, you see when (or: how; that) it is halved: 0;12, the [large]
side, [you multiply by 0;12, it is]

10 0;2,24. 0;9,30, the pinched side, [you multiply] by 0;9,30, [it is 0;1,30,15.]

11 You subtract it from 0;2,24, what remains you multiply by ... [...]

12 of? 10;45, it is 0;0,26,52,30. 0;9,30 ... [...]

(unknown number of lines missing)

Philological remarks

1) The first two signs are too strongly damaged to be identified. At the end of the line,
traces compatible with the beginning of ri are visible. šu-tam- i-ḫ ⸢ri : ⸣ šutam iruḫ  is most
likely a variant spelling of šutam uruḫ , infinitive of the Št stem of ma āruḫ , which means
„to square“ in mathematical contexts (4). Apart from the present instance this verb is not
attested in the astronomical corpus. Because several numbers are squared later on in the
procedure,  „squaring“ might be the appropriate translation. However, since the phrase
occurs at the beginning of the procedure it may also be interpreted as a more general
reference to the geometrical method underlying the entire procedure.

2) UŠ-šu2: in the present context this most likely represents nēmettašu, „its station“, i.e.
Jupiter's  first  station.  The  traces  that  remain  of  the  last  sign  are  compatible  with
E[N.NAM] = mīnû, „what“, as proposed in (1).

3)  1-šu  = uššu,  „sixty“:  here  the  number  60  is  written  semi-phonetically and not  in
sexagesimal place value notation, perhaps in order to avoid a misinterpretation, since in
that notation 1 and 60 would both be rendered as 1.

7) s ṣal-pi: the technical term s ṣalpu is tentatively translated as „crossing“ (2). After ŠA3-šu2

one or two signs were partly erased, most likely on purpose by the scribe. The surviving
traces suggest that  s ṣal-pi,  „crossing“, was previously written there. SE3: in the present
context, two readings of this logogram appear possible. First, a form of  mašālu, „to be
half;  equal“,  most  likely a  stative  of  the  G stem,  mašil,  „it  is  halved“.  The pseudo-
Sumerian affirmative suffix AM3 can be interpreted as a marker of this stative form. In
this reading of SE3 the preceding  ina libbi(ŠA3)-šu2 is most suitably interpreted as the
instrumental conjunction „whereby“ (20). A second plausible option is to interpret SE3 as
a second person of the present tense of the G stem of šakānu,  „to place“, i.e.  tašakkan,
„you place“, in which case ina libbi(ŠA3)-šu2 can be translated „within it; in its middle“.
Neither interpretation can be ruled out. 

8) tam-mar ki-ma-a ⸢mu -[⸣ šam-ša2 x], „you see how long it is spend[ing ...]“: as in line 9,
the phrase following tammar,  „you see“, is best interpreted as an indirect question (17-
19). For a discussion of mušamšâ see the commentary to Text D, line 6.
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9) 10.45  šū tammar kī mašlu?(BAR)  šū,  „(Concerning) this 10;45: you see when it is
halved“. Since 10.45 šū, „this 10;45“, is in the nominative case, it is not the object of the
following  tammar,  „you  see“.  Instead,  the  object  of  tammar,  „you  see“,  is  the
immediately following clause introduced by the conjunction kī,  „when; how; that“ (17-
19). In the present context, the most suitable interpretation of this clause is an indirect
question („when; how“). Alternatively it can be an object clause („that“), but they are
usually introduced by ša (18). The subject of the clause is šū, „that; this; it“, the predicate
BAR, which  most  likely represents  a  form of  mašālu,  „to  be half;  equal“.  It  is  here
assumed  to  represent  mašlu,  a  subjunctive  of  the  stative  form of  the  G stem,  „it  is
halved“, but some other form of this verb would also be possible.

12) ⸢ša2? 10.4 5,  ⸣ „of 10;45“: the meaning of this incompletely preserved phrase is not
fully clear. It  presumably belongs to  a  descriptive term that  qualifies  the  factor  0;30
(=1/2) by which the outcome of line 11 is multiplied here (see the commentary below).

Commentary

Text B preserves 12 nearly complete lines of a trapezoid procedure. Line 1 is probably
the actual first line of the procedure. Lines 1-6 belong to part I; lines 7-12 to part II,
which continued beyond line 12 for an unknown number of lines. 

Part I: in lines 1-2 two measures of the trapezoid are preserved. The problem to be solved
is formulated as a question for the station of Jupiter (line 2). In line 3 the number 10;45 is
added  to  the  position  of  Jupiter  at  its  first  appearance,  i.e.  λ60=λ0+10;45º.  The
corresponding time  interval  of  60  days  is  also  preserved. In  the  following  lines  this
number,  10;45,  is  computed  as  the  area  of  the  trapezoid  (lines  4-6).  Its  addition  to
Jupiter's position at the first appearance is then repeated, i.e. λ60=λ0+10;45º (line 6). 

Part II begins with a statement concerning the  „crossing“ (line 7), which is said to be
located in the middle of Jupiter's path. This is followed by a statement of the quantity that
is asked for, namely the time in which Jupiter reaches the  „crossing“ (lines 7-8). The
solution  procedure  is  partly  preserved  in  lines  9-12.  The  quantity  asked  for  is  here
specified as the time in which Jupiter covers half the distance 10;45 (line 9). The solution
procedure begins with a computation of  v0

2 (line 9) and of  v60
2 (line 10). The latter is

subtracted  from  the  former,  v0
2–v60

2,  which  is  multiplied  by  0;30  (=1/2),  leading  to
(0;2,24–0;1,30,15)/2 = 0;0,26,52,30 = u2.

Text C

Text C is written on BM 34081+34622+34846+42816+45851+46135, which measures
22.6 x 13.1 cm. The six known fragments of this tablet arrived in the British Museum
between 1878 and 1881, having been excavated unscientifically in Iraq, most likely in
Babylon (16).  The left  and right edges of the original tablet  are partly preserved, but
nothing remains of the original upper and lower edges. On both sides the tablet is divided
into  three  columns.  It  is  inscribed with  a  compendium of  at  least  32 procedures  for
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Jupiter. Text C is the fifth procedure,  which occupies lines 20-24 of column i on the
obverse (Fig. S2). For an edition and photograph of the complete tablet see No. 18 in (2).
The present edition incorporates several corrections to the previous one (2).

Transliteration

20 [xxxxxxx] 1-en SAG.KI GU4 ša2 12 SAG

21 [GAL-tu2 9.30 SAG TUR-tu2 xx] 1-⸢ šu  ME 10.45 A.ŠA⸣ 3-šu2

22 [xxxxxxxx] ME  10.45 KI DU⸢ ⸣

23 [xxxxxxxxx] x  ⸢ ⸣ t ṣe-ri-tu2

24 [xxxxxxxxxxx] x⸢ ⸣

[unknown number of lines missing]

Translation

20 [...] one trapezoid of which the [large] side is 0;12,

21 [... the small side is 0;9,30 ... times] sixty days is 10;45, its area.

22 [... In sixty] days the position proceeds 10;45.

23 [...] pinched ...

24 [...] ...

[unknown number of lines missing]

Philological remarks

22) The new reading qaqqaru(KI) illak(DU), „the position proceeds“, replaces E11, „you
subtract“ (2).

Commentary

Text C preserves up to 9 final signs of the first 5 lines of a trapezoid procedure. In what
remains of part I (lines 20-22), two measures of the trapezoid are provided (lines 20-21)
and its area is obtained as 10;45 (line 21). In line 22 this is declared to be the distance by
which the position (of Jupiter) proceeds, i.e. λ60=λ0+10;45º. What remains of lines 23-24
is insufficient for identifying their meaning, but they probably belong to part II, which
continued below line 24 for an unknown number of lines. 

Text D

Text D is inscribed on the previously unpublished fragment BM 35915, which measures
3.5 x 4.0 x 0.8 cm (Fig. S3). It arrived in the British Museum around 1880, having been
excavated unscientifically in Iraq, most likely in Babylon (16). No edges of the original
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tablet are preserved. Text D occupies one entire side of the fragment; the other side is
destroyed. 

Transliteration

[unknown number of lines missing]

1 [...] xxxx  [...]⸢ ⸣

2 [... 10].45 ana UGU KI I[GI TAB-ma ...]

3 [...] ⸢ki -⸣ ma-a ana s ṣal-pi DIB [...]

4 [... 10.45 šu]-⸢u2  ⸣ tam-mar ki-ma BAR-šu2 [...]

5 [... 9.30] SAG.KI t ṣe-ri-tu2 A. RA⸢ 2  [9.30 DU-⸣ ma 1.30.15 ...]

6 [...] DU?  ⸢ ⸣ ki-ma mu-šam-ša2 x  [...]⸢ ⸣

7 [...] 1 .30. 1 5 ⸢ ⸣ ⸢ ⸣ ana UGU x  [...]⸢ ⸣

8 [...] DU?⸢ ⸣ al-la DIB?  [...]⸢ ⸣

9 [...] x ⸢ ana  ⸣ s ṣal-pi [...]

[unknown number of lines missing]

Translation

[unknown number of lines missing]

1 [...] ... [...]

2 [... 10];45 [you add] to the position of appea[rance, and ...] 

3 [...] How long does it pass to the crossing [...]

4 [... Concerning th]is [10;45], you see when (or: how; that) it is halved: [...]

5 [... You multiply 0;9,30], the pinched side, times [0;9,30, it is 0;1,30,15 ...]

6 [...] You multiply [... times ...] ... how long it is spending ... [...]

7 [... You add] 0;1,30,15 to ... [...]

8 [...] ... beyond ... [...]

9 [...] ... to the crossing [...]

[unknown number of lines missing]

Philological remarks

4) For this clause see Text B, line 9. BAR can be read with a form of the verb mašālu, „to
halve; be equal“, but it might also be read „half; 1/2“, in which case one can translate „...
you see how its half [...]“.

9



6)  mu-šam-ša2:  the  most  plausible  interpretation  is  mušamšâ,  a  participle  of  šumšû,
literally „to spend the night“, which presumably has the more general meaning „to spend
time; stay“ here. See also the philological remarks to line 8 of Text B.

Commentary

Text D preserves portions of 9 lines of a trapezoid procedure. Lines 1-2 belong to part I;
lines 3-9 to part II. Line 1 was most likely preceded by several more lines and part II
continued below line 9 for an unknown number of lines. The name of a planet is not
preserved, but a comparison with Texts A-C strongly suggests that Text D deals with
Jupiter. 

In what remains of part I, 10;45, Jupiter's total displacement after 60 days, is added to its
position at first appearance, i.e. λ60=λ0+10;45º (line 2). The problem to be solved in part
II, namely to compute the time in which a planet, most likely Jupiter, covers half the
distance 10;45, is partly preserved in line 3. The solution procedure is introduced in line 4
and  then  executed.  Line  5  preserves  the  computation  of  v60

2.  The  computation  of
v0

2=0;2,24 is missing,  but a comparison with Text B (lines 9-10) suggests that it  was
written at the end of line 4. In line 7 v60

2 is added to something, presumably v0
2. Lines 8-9

are too damaged for an interpretation.

Text E

Text E is inscribed on the tablet BM 82824+99697+99742, which measures 8.3 x 5.3 x
1.2 cm. The three fragments arrived in the British Museum in 1883 and 1884, having
been excavated unscientifically in Iraq, most likely in Babylon (16). The fragments do
not include any portion of the original edges of the tablet. Only one side is inscribed; the
other side is destroyed. Text E is the first preserved procedure (Fig. S4). It is followed by
two more procedures, both concerned with Jupiter. The textual restorations in the latter
imply that not much clay is missing from the left side and perhaps a few cm from the
right side.  For an edition and a photograph of the complete tablet see No. 40 in (2). The
present edition incorporates numerous corrections to (2).

Transliteration

[unknown number of lines missing]

1 [...xxxxxxxxx] xxxx  [...]⸢ ⸣

2 [...] UŠ? xxx  [xxxx] x UŠ 12?  SAG.KI G[AL-⸢ ⸣ ⸢ ⸣ tu4 ...]

3 [...] x  SAG.KI TUR-⸢ ⸣ tu4 E? x  [xxx] 30? ⸢ ⸣ ⸢ uz -⸣ zab-bil IGI 2.50? [...]

4 [...] TA U4.MEŠ.AM3 KI UD x ⸢ u4-mu⸣ ša2 KI ⸢s ṣal⸣-pi DIB-qa tam-mar 3 2  [...]⸢ ⸣

5 [...] re-ḫi 27? 28 KI U⸢ 4 -⸣ ka TAB-ma u4-me KI⸢  s ṣal-pi  DIB-⸣ qa tam-m[ar ...]

6 [...] ⸢ki -⸣ i TAG4 9. 30  ⸢ ⸣ ana UGU 10.50 TAB-ma 1/2-šu2 GIŠ-ma A.RA2 32 U⸢ 4 .⸣
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[MEŠ DU-ma 5.25.20 ...]

7 [...] xx BU.AM⸢ 3  10⸣  tu!-šaḫ-ḫi-zu PI AN  NU TUKU 50 ⸢ ⸣ ana tar-s ṣa x  [...]⸢ ⸣

8 [...] x ⸢ ša2  U⸣ 4.MEŠ ina 1.3 ME E ina 2 UŠ ina 2.12 ŠU⸢ 2  ⸣ ki-s ṣir AN x  [...]⸢ ⸣

Translation

1 [...] ... [...]

2 [...] width? ... [...] ... the width, 0;12? the la[rge] side [...]

3 [...] ... the small side ... [...] 30? was carried ... [...]

4 [...] from the days ... You see the day when it passes the position of the crossing; 32
[... you subtract from 1,0 ...]

5 [...] there remains 27 (error for 28). You add 28 to your day, and you see the day
when it passes the position of the crossing [...]

6 [...]  what  remains:  you  add  0;9,30  to  0;10,50,  you  compute  half  of  it  and  you
multiply it by 32 day[s, it is 5;25,20 ...]

7 [...] ... you let proceed ... nothing. 50. Opposite ... [...]

8 [...] ... of the days: in 1,3 rising to daylight, in 2,0 the station, in 2,12 the setting: the
node of ... [...]

Philological remarks

1) Only illegible traces are visible.

2) x UŠ , ⸢ ⸣ „..., the width“: the term UŠ, „width“, follows a damaged sign, most likely a
number. Only a final vertical wedge of that sign remains visible, compatible with 1-šu,
„sixty“. 12? : only one vertical wedge is clearly visible after the 10, which would yield⸢ ⸣
11, but they are separated by an anomalously large empty space. However, in that space
are visible faint traces of another vertical wedge (Fig. S4), which prompts a tentative
reading 12, to be interpreted as 0;12. The traces that follow  pūtu(SAG.KI),  „side“, are
compatible with rabītu(GAL), „large“. Hence this line may be part of a declaration of the
measures of a trapezoid of „width“ 60 (days) and „large side“ 0;12.

3) The term  pūtu(SAG.KI)  s ṣe ertuḫ (TUR-tu4),  „small side“, should be preceded by the
numerical value of that side. The partly preserved sign might be a 50 or a 30 followed by
a separator (:). E: replaces the previous reading PI, but the meaning remains unclear. 30⸢
uz⸣-zab-bil:  replaces  the previous reading 10 x  ⸢ ⸣ ŠU2 ZALAG2 GIBIL  (2).  The form
uzzabbil is a preterite tense of the Dt or Dtn stem, or  a perfect tense of the D stem of
zabālu,  „to  carry“.  This  verb  is  thus  far  attested  in  mathematical  contexts  only  in
connection with brick computations (21), but the related verbs  wabālu,  „to carry“, and
tabālu, to „carry away“, appear in mathematical texts with a meaning „to multiply“ and
„to subtract“, respectively (4, 21). The present context is insufficient for determining the
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intended meaning of uzzabbil. IGI? 2.50?: the 50 may also be read as 20 followed by a
separator (:). The meaning of these signs is not clear.

4)  [...]  ina/ultu(TA)  ūmē(U4.MEŠ.AM3)  KI  UD x  [x],  ⸢ ⸣ „[...]  from the  days  ...“:  the
meaning of this fragmentary phrase is unclear. KI: most likely to be read itti, „with“, or
qaqqaru,  „position“, but no plausible interpretation could be found. UD   x : the sign⸢ ⸣
following UD begins with a vertical wedge. One might read tam-mar, „you see“, but this
does not result in a meaningful sentence, so the correct reading remains unclear. We are
on firm ground from ⸢u4-mu , ⸣ „day“, onwards, because this phrase clearly belongs to part
II of the trapezoid procedure. 3 2 : only the left wedge of the 2 is preserved before the⸢ ⸣
break.

5)  U⸢ 4 -⸣ ka,  „your  day“:  replaces  the  previous  reading x -⸢ ⸣ ka (2).  etēqa(DIB-qa).  „to
pass“: replaces the previous reading HAB? UD (2).

7)  This  line  contains  a  procedure  for  Jupiter  that  turns  out  to  be  distinct  from the
trapezoid procedure (see the commentary). ME E,  „rising to daylight“, is the synodic
phenomenon of acronychal rising; UŠ,  „station“, here denotes the second station,  and
ŠU2, „setting“, is the last appearance (2). 

8) This line also contains a procedure that is distinct from the trapezoid procedure (see
the commentary).

Commentary

Lines 1-3 deal with a trapezoidal figure but they are difficult to interpret due to their bad
state of preservation and the presence of signs and words for which no suitable translation
could be established, in spite of several improved readings. The end of line 2 and the
beginning of line 3 contain a declaration of the measures of the trapezoid that presumably
belongs to part I of the trapezoid procedure. Lines 4-6 are now understood for the first
time as belonging to part II of the trapezoid procedure. However, they do not constitute
its beginning, which implies that some portion of lines 2-3 must also belong to part II.
Even though a horizontal ruling is not visible below lines 6 or 7, but below line 8, it is
now clear that the trapezoid procedure ends either at the end of line 6, or in line 7 (see
below). 

Line 5 begins with the phrase  „there remains“.  In  Late Babylonian astronomical  and
mathematical  texts  this  introduces  the  outcome  of  a  preceding  operation  (2).  This
outcome is nearly always repeated when it  is passed on to an immediately following
computation (2). Here the result is passed on as 28, but the number preceding it looks like
27. Hence this 27 is very likely a damaged 28 or a scribal error for 28. The phrase „there
remains“ occurs almost exclusively after subtractions (2), which strongly suggests that
the 28 was obtained by subtracting 32 days, the number partly preserved at the end of line
4, from 60 days, which can be restored in the following gap. In line 5 the 28 days are to
be added to „your day“, resulting in the „day when it (= Jupiter) passes the position of the
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crossing“,  which  confirms  that  28  days  is  a  value  of  tc,  in  agreement  with  the
interpretation of the trapezoid algorithm. 

In line 6 the area of the second partial trapezoid is computed, very likely in order to
verify  the  partition.  The  correctness  of  this  interpretation  is  supported  by  an  Old
Babylonian mathematical tablet,  UET 5, 858, on which the partition of a trapezoid of
different dimensions is followed by exactly the same type of verification (5, 11).

Line 7 is very difficult to interpret. It is provisionally assumed here that the trapezoid
procedure ended in line 6, but some initial part of line 7 may constitute the end of the
trapezoid procedure. In line 8 we have definitely left the trapezoid procedure, since it
deals with a new topic, namely the duration of various intervals between Jupiter's synodic
phenomena measured in days. 1,3 (=63) days is close to 60 days, attested as the time
between the first station and the acronychal rising of Jupiter (2). 2,0 (=120) days is an
attested value of the time between the first station and the second station (2). 2,12 (=132)
days is an attested value of the time between second station and last appearance (2). 
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Fig. S1. 

Photograph of Text B (lines 1-12). Reproduced from (2).
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Fig. S2

Photograph of Text C (lines 20-24).
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Fig. S3.

Photograph of Text D (lines 1-9).
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Fig. S4

Photograph of Text E (lines 1-8).
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