Let $n\ge 1$, $G$ a finite graph, $Z$ a subset of the vertices and $\{V_i\}_{i\in I}$ an open cover of $G$.
For each map $$\phi\colon \{1,\ldots,n\}\to I$$ define the open subset $U_\phi$ of $\mathrm{Conf}_n(G,Z)$ as $$ U_\phi = \bigcap_{1\le j\le n} \pi_j^{-1}( V_{\phi(j)}), $$ where $\pi_j\colon\mathrm{Conf}_n(G,Z)\to G$ projects to the $j$-th particle.
This defines an open cover $\{ U_\phi \}$ of $\mathrm{Conf}_n(G,Z)$.