Solvent and H/D Isotope Effects on the Proton Transfer Pathways in Heteroconjugated Hydrogen-Bonded Phenol-Carboxylic Acid Anions Observed by Combined UV-Vis and NMR Spectroscopy

Benjamin Koeppe,^{†,‡} Jing Guo,[†] Peter M. Tolstoy,^{*,†,§} Gleb S. Denisov,^{||} and Hans-Heinrich Limbach^{*,†}

[†]Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, D-14195 Berlin, Germany
[‡]Max Born Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max Born Strasse 2A, D-12489 Berlin, Germany
[§]Department of Chemistry, St. Petersburg State University, Universitetskij pr. 26, 198504 St. Petersburg, Russia
^{||}V.A. Fock Institute of Physics, St. Petersburg State University, Ulyanovskaja 1, St.Petersburg

State University, Russia

Supporting Information

Syntheses

4-coumaric acid methylthioester A1H. The thioester was obtained from 4-coumaric acid (4-hydroxycinnamic acid) through activation with carbonyldiimidazole and subsequent reaction with sodium thiomethoxide.¹

1-¹³C-4-nitrophenol A2H and 1-¹³C-2-chloro-4-nitrophenol A3H. 1-¹³C-4-nitrophenol was obtained by cyclization² of ¹³C2-acetone with sodium nitromalonaldehyde.³ The former was then converted into 1-¹³C-2-chloro-4-nitrophenol.^{4,5}

*CDF*₃/*CDF*₂*Cl*. A liquefied mixture of both gases was obtained by fluorination of CDCl₃.⁶ *2,5-dichloro-4-nitrophenol, 3,5-dichloro-4-nitrophenol*. These nitrophenols were obtained from the corresponding chlorophenols by nitration.⁷ Isomeric products were separated by steam distillation. Pure products were obtained by recrystallization from mixture of chloroform and hexane. ¹H NMR 2,5-dichloro-4-nitrophenol (500 MHz, acetone-d6): 10.70 (s, 1H, OH), 8.19 (s, 1H, H-3), 7.26 (s, 1H, H-6).

Spectroscopic experiments

UVNMR measurements. The experimental setup for combined UV-vis and NMR experiments has been described previously.^{4,8} Generally, 5 mm NMR quartz tubes equipped with a flat bottom and a Teflon needle valve for vacuum operations were employed. ¹H NMR spectra were referenced to CHDCl₂ (5.32 ppm) or CHF₂Cl (7.18 ppm), depending on the solvent employed. In all figures UV-vis spectra were normalized to equal maxima in absorbance.

¹³*C NMR measurements*. For ¹³*C* NMR measurements a standard (not inversed) ${}^{1}\text{H}/{}^{13}\text{C}$ NMR probe was used. Inverse gated ${}^{1}\text{H}$ broad band decoupling was employed; relaxation delay was between 1 and 2 s. Spectra were calibrated to ${}^{13}\text{CD}_2\text{Cl}_2$ (53.5 ppm) or ${}^{13}\text{CDF}_2\text{Cl}$ (117.37 ppm), respectively.

UV-vis spectra deconvolution. UV-vis spectra were analyzed by least-squares fitting using log-normal band shapes in the wavenumber dimension as described previously.⁴ Following the nomenclature of Siano *et al.*⁹ the fitting function *I* can be written as

$$I(\tilde{v}, A, \tilde{v}_0, H, \rho) = \frac{Ab}{\tilde{v} - a} \exp\left(-c^2\right) \exp\left(-\frac{1}{2c^2} \left\{ \ln\left(\frac{\tilde{v} - a}{b}\right) \right\}^2 \right)$$
(1)

for $\tilde{v} > a$, otherwise $I(\tilde{v}, A, \tilde{v}_0, H, \rho) = 0$,

where $a = \tilde{v}_0 - H\{\rho/(\rho^2 - 1)\}$, $b = H\{\rho/(\rho^2 - 1)\}\exp(c^2)$ and $c = (\ln \rho)/\sqrt{2\ln 2}$. The meaning of the four fitting parameters is as follows: *A* is the amplitude factor, \tilde{v}_0 is the wavenumber at band's maximum, *H* is full width at half-height and ρ is the skewness.

General techniques for the preparation of samples for spectroscopic experiments

To facilitate the sample preparation certain preliminary and general actions were taken, which are described below. The specific details for each of the samples are given in the following subsection.

Stock solutions. 5-100 mM stock solutions (0.5 ml) of the different acids and phenols in dry CD₂Cl₂, CH₂Cl₂, or methanol were prepared. For that purpose, substances were weighed and dissolved in 2 ml glass vials with PTFE lined screw caps (Wheaton). Solvents and solutions were handled with microliter pipettes (Eppendorf). Mixing of the components for the sample preparation was based on these stock solutions.

Preparation of tetraethylammonium salts $TEA^{+}X$ of proton donors HX. A certain amount (in the order of 1-20 µmol) of HX (as stock solution) was mixed in a 10 ml flask with 0.7-1.0 equivalents of tetraethylammonium hydroxide in methanol solution. The solvents were removed

on a rotary evaporator (40 °C water bath, < 10 mbar). After pressure equilibration with inert gas, approximately 1 ml of CH_2Cl_2 (dried over molecular sieve 4 Å) was added and evaporated in vacuum to remove residual methanol and water. The latter procedure was repeated twice leaving the dry salt.

Deuteration of NMR samples in mobile proton sites. Whenever the deuteration of the sample was needed, the NMR tube equipped with a J. Young valve and containing the already prepared sample (see below) was attached to a high vacuum line and the solvent was evaporated. About 0.2 ml of methanol-OD (99.5%) was added to the sample and subsequently evaporated. In samples with volatile components a trade-off between the desirable complete evaporation of methanol and the danger of too high losses of sample substance needs to be considered. Finally, the aprotic solvent was reintroduced.

Specific techniques for the preparation of samples for spectroscopic experiments

In this work, several types of experiments have been performed which may be grouped as follows. Combined low-temperature UV-vis and ¹H NMR spectra were obtained at concentrations of the chromophore moiety A^- of approx. 1 mM. Corresponding samples were prepared in NMR/UV-vis cuvettes (see ref. 4 and below) in cases the solvent was CD₂Cl₂ (99.9% or 99.7%, Eurisotope, dried over molecular sieve 4 Å) and medium wall sized NMR tubes (5 mm outer diameter, 0.8 mm walls, 3.4 mm inner diameter) equipped with J. Young valves (Wilmad, Buena) in cases of CDF₃/CDF₂Cl as solvent. The latter type of sample container was also used when only NMR experiments were performed. CDF₃/CDF₂Cl samples were usually derived from samples in CD₂Cl₂ solution by evaporation of the latter solvent in vacuum followed by addition of CDF₃/CDF₂Cl by vacuum transfer. Procedural details will follow immediately.

Samples of chromophores in neutral forms A1H, A2H, and A3H. In cases of A2H and A3H 1 mM and 3 mM solutions in CD_2Cl_2 were used for combined UV-vis and ¹H NMR, and ¹³C NMR spectra, respectively. In the latter case, 1-¹³C enriched compounds were used. In case of A1H a saturated solution (< 1mM) was used to obtain optical spectra. Corresponding samples in CDF_3/CDF_2Cl were obtained by solvent exchange.

Samples of chromophore anions A1, A2, and A3. Samples combined UV-vis and ¹H NMR: 20 μ mol of TEA pivalate (prepared from the acid as described above) acting as proton scavenger were dissolved in 300 μ l of CD₂Cl₂ and transferred to a NMR/UV-vis cuvette. 0.3 μ mol of the chromophore as 10 mM solution were subsequently added, except for A1H of which, for reasons of low solubility, an approximate amount of solid substance was added. Samples for ¹³C NMR (A2 and A3 only): 1 μ mol of TEA salts were prepared from 1-¹³C enriched phenols and TEA

hydroxide as described in the previous subsection, dissolved in 350 μ l of CD₂Cl₂ and transferred to a sample tube. CDF₃/CDF₂Cl samples were derived from these samples by solvent exchange.

Samples for A1HX, A2HX, A3HX. The appropriate tetraethylammonium (TEA) salt TEAX (freshly prepared as described above) was dissolved in 350 µl of dry CD₂Cl₂ and transferred to a sample tube. To this were added in the order of 0.4 µmol of AH for samples for combined ¹H NMR and optical spectroscopy and in the order of 1.2 µmol of 1-¹³C-HA for ¹³C NMR samples. In cases of A2H and A3H these additions were made as CD₂Cl₂ solutions; A1H was added as the solid. Then a solution of the acid HA was added stepwise under ¹H NMR monitoring in order to shift equilibria in the direction of the desired hetero-conjugated complexes AHX. In samples for optical spectroscopy, the composition was carefully adjusted such that AHX became in good approximation the exclusive species containing the chromophore moiety at measurement conditions. This procedure is described in detail in Ref. 8. Samples for ¹³C NMR were deuterated in the mobile proton sites, as described above, as soon as a satisfactory fraction of AHX was found; thus, in these samples the AHX complexes not necessarily were the exclusive form of the chromophore moiety. To ensure the consistency of the NMR results obtained from these samples with those obtained from the corresponding samples, matching ¹H NMR chemical shifts of the studied complexes were confirmed. CDF₃/CDF₂Cl samples were principally derived from CD₂Cl₂ samples by solvent exchange. However, as described in the Results and Discussion section, relative proton donating abilities of phenols and carboxylic acids vary with solvent properties and these variations also affect complex equilibria. Thus, for optical spectra in CDF₃/CDF₂Cl a solvent specific adjustment of sample composition was necessary to ensure AHX as the exclusive form of the chromophore moiety present.

Samples for A2HX5, A2HX6. These samples were prepared in analogy to those for the ¹³C NMR spectra of A1HX, however, only ¹H NMR spectra were recorded and substances were neither ¹³C enriched nor deuterated in mobile proton sites.

Samples for A3HX10, and X8HX10. 10 μ mol of the commercially available salt TEACl was dried by repeated addition and evaporation of dry CH₂Cl₂ in a rotary evaporator, taken up in 350 μ l of dry CD₂Cl₂ and transferred to a sample tube. To this were added in the order of 1.2 μ mol of the proton donor, A3H or X8H, respectively, readily yielding the desired complexes at low temperatures.

Acquisition and processing of combined ¹H, ¹³C NMR and UV-vis spectra.

Combined UV-vis and ¹*H NMR measurements.* The experimental setup was the same as those described in Refs. 4 and 8 (experiments with NMR/UV-vis cuvettes and standard NMR tubes,

respectively). ¹H NMR spectra were calibrated to $CHDCl_2$ (5.32 ppm) or $CHClF_2$ (7.18 ppm), depending on the solvent employed. In all figures UV-vis spectra were normalized to equal maxima in absorbance.

¹³*C NMR measurements*. For ¹³*C* NMR measurements a standard (not inversed) ${}^{1}\text{H}/{}^{13}\text{C}$ NMR probe was used. Inverse gated ${}^{1}\text{H}$ broad band decoupling was employed; relaxation delay was between 1 and 2 s. Spectra were calibrated to ${}^{13}\text{CD}_2\text{Cl}_2$ (53.5 ppm) or ${}^{13}\text{CDF}_2\text{Cl}$ (117.37 ppm), respectively.

Additional Data of Heteroconjugated Phenol-Carboxylic Acid Complexes A2HX⁻ in Polar Solvents

Figure 1. Additional ¹H, ¹³C NMR, and normalized UV-vis absorption spectra of heteroconjugated anions of phenols with carboxylic acids.

¹H NMR and optical spectra have been recorded of the same samples; ¹³C NMR may have been recorded separately. Vertical bars in optical spectra indicate centers of gravity of log-normal fit functions (dashed lines). ¹³C NMR signals are referenced to TMS *via* calibration to solvent signals.

species	solvent	<i>T</i> /K	∂(A <u>H</u> X)	$\lambda_{ m max}$	$\tilde{v}_{ m cog}$	$\Delta \widetilde{\nu}$	$ ilde{ u}_{ ext{blue}}$	$\Delta \tilde{v}_{\rm bue}$	$\tilde{V}_{ m red}$	$\Delta \tilde{v}_{\rm red}$	ρ	q_1	q_2	<i>x</i> _{blue}
A1H	CD ₂ Cl ₂	175		317	33000	7400					1.5			1
A1HX1 ⁻	CD ₂ Cl ₂	175	16.57	372	27900	4700					1.5	-0.21	2.50	1
A1HX1 ⁻	Freon	120	15.99	359	29000	5100					1.5	-0.23	2.52	1
A1HX3 ⁻	CD ₂ Cl ₂	175	16.31	371	28100	5200					1.5	-0.22	2.51	1
A1HX4 ⁻	CD ₂ Cl ₂	175	15.62	368	28300	5100					1.5	-0.24	2.53	1
A1HX4 ⁻	Freon	120	15.26	355	29400	5400					1.5	-0.25	2.54	1
A1HX8 ⁻	CD ₂ Cl ₂	175	13.27	360	28900	5000					1.5	-0.30	2.60	1
A1HX9 ⁻	CD ₂ Cl ₂	175	12.57	357	29300	5600					1.5	-0.33	2.64	1
A1 ⁻	CD ₂ Cl ₂	175		463	22400	2400					1.8			0
A2H	CD ₂ Cl ₂	175		314	33150	6190					1.5			1
A2HX1 ⁻	CD ₂ Cl ₂	175	18.13	362	30000	5000	29600	4900	26200	3700	1.5	-0.18	2.48	0.60
			10110	0.02	20000					0700		0.12	2.44	0.00
A2HX1 ⁻	Freon	120	17.66	350	29700	5000	30000	5100	26700	3900	15	-0.21	2.50	0.77
11211/11	1 Icon	120	17.00	550	27700	2000	20000	5100	20700	5700	1.0	0.07	2.42	0.77
A 211V2-	CD.CL	175	18.02	257	30100	5600	20800	5000	26500	3000	15	-0.19	2.49	0.68
ΑΖΠΑΖ		175	10.02	557	30100	3000	29800	5000	20300	3900	1.5	0.09	2.43	0.08
A 211V2-	froop	120	17.22	247	20600	4000	20100	5600	26800	4000	15	-0.23	2.52	0.00
ΑΔΠΛΔ		120	17.32	347	29000	4200	30100	5000	20800	4000	1.5	0.06	2.42	0.00

Table S1. ¹H NMR and UV-vis data of hydrogen-bonded PYP model anions AHX⁻ in polar solvents.

A2HX5 ⁻	CD ₂ Cl ₂	175	16.46											1
A2HX5 ⁻	freon	120	15.83											1
A2HX6 ⁻	CD ₂ Cl ₂	175	16.00											1
A2HX6 ⁻	freon	120	15.94											1
A2HX7 ⁻	CD ₂ Cl ₂	175	15.45											1
A2HX7 ⁻	freon	140	15.02											1
A2 ⁻	CD ₂ Cl ₂	175		431	23800	2800					1.5			0
A2 ⁻	freon	120		425	24400	3200					1.5			0
АЗН	CD ₂ Cl ₂	175	6.70*	310	33220	6000					1.5			1
АЗН	freon	160		314	33200	5500					1.5			1
АЗН	freon	120		316	33100	6200					1.5			1
A3HX2 ⁻	CD_2Cl_2	175	17.98	402	25900	4100	28700	4700	25400	3500	1.5	-0.11	2.44	0.16
												0.22	2.51	
A3HX2 ⁻	freon	120	18.81	391	26900	5800	29100	5000	25800	4000	1.5	-0.14	2.45	0.28
												0.17	2.47	
A3HX4 ⁻	CD_2Cl_2	175	18.69	391	26900	5800	29000	4800	25700	3600	1.5	-0.13	2.45	0.38
												0.18	2.48	
A3HX4 ⁻	freon	120	18.91	353	28700	6700	29900	5100	26200	3900	1.5	-0.21	2.50	0.67
												0.12	2.44	
A3HX10 ⁻	CD ₂ Cl ₂	200	12.39											1
A3HX10 ⁻	CD_2Cl_2	185	12.35											1

A3 ⁻	CD ₂ Cl ₂	175		432	23500	2700			1.5		0
A3 ⁻	freon	120		423	24100	2900			1.5		0
X8HX10 ⁻	CD ₂ Cl ₂	175	14.22								
X8HX10 ⁻	freon	150	14.04								
X8HX10 ⁻	freon	120	13.95								

Freon: CDF₃/CDF₂Cl. Chemical shifts δ in ppm. Wavelengths λ_{max} in nanometers, wavenumbers \tilde{v} in cm⁻¹, geometric parameter q_1 in Å, temperature T in K. \tilde{v}_{COG} : Center of gravity of single or dual bands. \tilde{v}_{blue} , \tilde{V}_{red} : Centers of gravity of components of the dual bands; $\Delta \tilde{v}$ experimental band widths; $\Delta \tilde{v}_{bue}$, $\Delta \tilde{v}_{red}$: Corresponding band widths of the log normal fit functions of eq 1 with skewness parameter ρ . $q_1 = \frac{1}{2}(r_{AH}-r_{HX})$ and $q_2 = r_{AH}+r_{HX}$ estimated according to eq 6 in cases of species A2HX⁻ and A3HX⁻. In cases of species A1HX values have been estimated from (AHX) using eq 5. x_{blue} : mole fraction of the "blue" tautomer estimated from the integral band intensities assuming equal extinction coefficients of the blue and the red bands.

species	solvent	77K	$\delta(\underline{A}HX)$	$\delta^*(\underline{A}HX)$	⊿(<u>A</u> DX)
			ppm	ppm	ppm
A2H	CD ₂ Cl ₂	175	160.52*	-10.38*	
A2H	freon	175	163.13*	-9.91*	
A2H	freon	140	163.98*	-9.06*	
A2HA2 ⁻	CD_2Cl_2	175	170.90	0	-0.08
A2HA2 ⁻	freon	120	173.04	0	-0.04
A2HX1 ⁻	CD ₂ Cl ₂	175	169.57	-1.31	-1.01
A2HX1 ⁻	freon	120	169.52	-3.49	-1.27
A2HX2 ⁻	CD_2Cl_2	175	168.70	-2.21	-1.16
A2HX2 ⁻	freon	125	169.00	-4.04	-1.08
A2HX5 ⁻	CD_2Cl_2	170	166.25		-
A2HX5 ⁻	freon	140	167.78		-0.55
A2HX6 ⁻	CD_2Cl_2	175	165.95		
A2HX6 ⁻	freon	140	167.86		-0.59
A2HX7 ⁻	CD_2Cl_2	170	165.58		
A2HX7 ⁻	freon	140	167.25		-0.48
A2 ⁻	CD_2Cl_2	175	179.85*	8.95*	
A2 ⁻	freon	130	181.30*	8.25*	
A3H	CD_2Cl_2	175	155.90*	-9.58*	
A3H	freon	140	158.70*	-9.13*	
A3HA3 ⁻	CD_2Cl_2	175	165.50	0	-0.10
A3HA3 ⁻	freon	120	167.83	0	
A3HX2 ⁻	CD_2Cl_2	175	168.43	2.94	0.99
A3HX2 ⁻	freon	130	169.95	2.16	1.09
A3HX4 ⁻	$\overline{\text{CD}_2\text{Cl}_2}$	175	166.68	1.18	0.52
A3HX4 ⁻	freon	120	166.68	-1.01	-0.90
A3 ⁻	CD_2Cl_2	175	172.86*	7.38*	
A3 ⁻	freon	140	175.84*	8.01*	

Table S2. ¹³C NMR chemical shifts of phenolic 1-¹³C of hydrogen-bonded PYP model anions AHX⁻in polar solvents

 $\delta^*(\underline{A}HX) = \delta(\underline{A}HX) - \delta(\underline{A}HA), \ \Delta(\underline{A}DX) = \delta(\underline{A}DX) - \delta(\underline{A}HX).$ *Chemical shift of selfassociates of AH of unkown composition. *The chemical shift refers to a self-associate of AH of unkown size or to a solvated anion.

Table S3. Parameters of eq 5 of the main text for hydrogen-bonded PYP model anions AHX⁻ in polar solvents.

$\tilde{v}_{AH}/\mathrm{cm}^{-1}$	$\tilde{\nu}_{A}/\mathrm{cm}^{-1}$	a/Å	b/Å	systems	reference
33300	22400	0.20	0.26	A1HX ⁻ in CD_2Cl_2	this work
34000	23500	0.11	0.22	$A3HX^{-}$ in CD_2Cl_2	4
34000	23500	0.11	0.22	A2HX ^{$-$} and A3HX ^{$-$} in CD ₂ Cl ₂ or Freons	this work

structure	conditions	δ(A <u>H</u> X)	δ(<u>A</u> HX)	$\delta^*(\underline{\mathbf{A}}\mathbf{H}\mathbf{X})$	$\delta^*(\underline{\mathbf{A}}D\mathbf{X})$
	conditions	/ppm	/ppm	/ppm	/ppm
	CD ₂ Cl ₂ 175 K	17.17	166.93	-3.97	-1.05
O_2N	Freon 120 K	16.24	167.99	-5.06	-0.71
O	CD ₂ Cl ₂ , 175 K	17.18	166.98	-3.93	
O ₂ N					
OHO OHO	CD ₂ Cl ₂ 175 K	14.35	176.83	5.93	
O ₂ N					
	CD ₂ Cl ₂ 175 K	14.96	176.45	5.54	0.42
0 ₂ N ⁻ Cl		15.05		2.7.1	1.0.1
	CD_2Cl_2 175 K	17.27	174.44	3.54	1.04
ÇI	CD ₂ Cl ₂ 175 K	18.28	171.67	0.76	
$O_2 N^2 $					
CI	CD ₂ Cl ₂ 175 K	16.49	166.04	-4 86	-0.97
OHO	CD2CI2175 K	10.49	100.04	4.00	0.97
$O_2N \sim NO_2$		17.40	161.05	2.62	0.02
	CD_2Cl_2 1/5 K	17.40	161.85	-3.63	-0.82
	CD.Cl. 175 K	16.91	167 17	1.69	0.72
	CD_2CI_2 175 K	10.71	107.17	1.07	0.72
CI F	CD ₂ Cl ₂ 175 K	18.41	165.96	0.48	0.17
OHO		10.11	105.90	0.10	0.17
$O_2 N \sim NO_2$	CD C1 175 V	10.12	164.55	0.02	0.99
	$CD_2CI_2, 1/5 K$	18.15	104.35	-0.95	-0.88
O ₂ N F F					
– I F					
	CD ₂ Cl ₂ 175 K	17.39	164.66	-0.83	-0.71
-2 5. 51	1	1	1	1	1

Table S4. ¹H Chemical shifts $\partial (A\underline{H}X)$ and ¹³C chemical shifts of the phenolic 1-¹³C-position $\partial^*(\underline{A}HX)$ and $\partial^*(\underline{A}DX)$ of various homo- and heteroconjugated anions of phenols with acids

 $\delta^{*}(\underline{A}DX) {=} \delta(\underline{A}DX) {-} \delta(\underline{A}DA)$

Table S5. pK_a values of the proton donors used in this study

Name	pK _a	reference
4-methylphenol	10.19	10
phenol	9.92	11
4-chlorophenol	9.38	10
2,4-dichlorophenol	7.80	12
4-nitrophenol	7.14	10
2,4,5-trichlorophenol	7.00	12
2,6-dichlorophenol	6.79	11
3,5-dibromo-2,4-dichlorophenol	6.13	13
2-fluoro-4-nitrophenol	5.95	13
pentafluorophenol	5.53	11
2,4,6-trichlorophenol	5.50	14
3,5-dichloro-4-nitrophenol	5.50	13
2-chloro-4-nitrophenol	5.45	15
pivalic acid	5.01	16
2,5-dichloro-4-nitrophenol	4.81	13
4-phenylbutyric acid	4.76	10
acetic acid	4.76	16
3-phenylpropionic acid	4.66	10
pentachlorophenol	4.50	11

4-tert-butylbenzoic acid	4.40	10
phenylacetic acid	4.31	16
benzoic acid	4.20	10
4-chlorophenylacetic acid	4.18	11
4-chlorobenzoic acid	3.99	10
formic acid	3.77	16
2,6-dichloro-4-nitrophenol	3.55	13
3,5-dichlorobenzoic acid	3.54	11
3,5-dinitro-4-toluic acid	2.86	13
chloroacetic acid	2.86	16
2,3,5-trichlorobenzoic acid	2.18	13
dichloroacetic acid	1.29	16
trifluoroacetic acid	0.23	16
hydrochloric acid	-3.7	9
hydroiodic acid	-4.9	9
tetrafluoroboric acid	-4.9	9
hydrobromic acid	-5.2	17

Hydrogen bond correlation analysis

The hydrogen bond correlation analysis used in this work has been described recently for OHO¹⁸ and for OHN hydrogen bonds¹⁹ in detail. For a hydrogen bonded system A-H…X we define the coordinates

$$q_1 = \frac{1}{2} (r_1 - r_2), q_2 = r_1 + r_2.$$
⁽²⁾

where $r_1 = r_{AH}$ and $r_2 = r_{HX}$. In the case of a linear hydrogen bond, q_1 corresponds directly to the distance of the proton with respect to the hydrogen bond center, and q_2 is equal to the heavy atom distance r_{AX} .

According to the valence bond order concepts proposed by Pauling ²⁰ and Brown,²¹ one can associate to both hydrogen bond distances valence bond orders given by

$$p_1 = \exp\{-(r_1 - r_1^{\circ})/b_1\} \text{ and } p_2 = \exp\{-(r_2 - r_2^{\circ})/b_2\}.$$
 (3)

where r_1° and r_2° represent the equilibrium distances in the fictive free diatomic units AH and HB, and b_1 and b_2 describe bond order decays with increasing bond distances. Assuming that the total valency of hydrogen is unity it follows that

$$p_1 + p_2 = \exp\{-(r_1 - r_1^{\circ})/b_1\} + \exp\{-(r_2 - r_2^{\circ})/b_2\} = 1.$$
(4)

Thus, both distances r_1 and r_2 depend on each other. Using eq (4), it is possible to express r_1 as a function of r_2 , or q_1 as a function of q_2 . Eq (4) can describe equilibrium geometries resulting from *ab initio* calculations, *i.e.* cases of almost harmonic potentials for the proton motions. However, eq (4) fails for strong hydrogen bonds involving anharmonic proton potentials. Thus, eq (4) is valid only in the absence of quantum zero point vibrational effects (QZPVE) present in strong hydrogen bonds.

Some of us have, therefore, proposed to calculate the corrected bond orders p_{AL} and p_{LX} of ALX hydrogen bonds as a function of the equilibrium bond orders accessible by *ab initio* calculations in the following way²²

$$p_{AL} = \exp\{-(r_{AL}-r_{1}^{o})/b_{1}\} = p_{1L}^{*} - 2d^{L}p_{1}(p_{1L}^{*}p_{2L}^{*})^{g},$$

$$p_{LX} = \exp\{-(r_{LX}-r_{2}^{o})/b_{2}\} = p_{2L}^{*} - 2d^{L}p_{2}(p_{1L}^{*}p_{2L}^{*})^{g},$$

$$p_{1L}^{*} = p_{1} - c^{L}(p_{1}p_{2})^{f}(p_{1}-p_{2}),$$

$$p_{2L}^{*} = p_{2} + c^{L}(p_{1}p_{2})^{f}(p_{1}-p_{2}).$$
(5)

The parameters c^{L} and d^{L} determine the size of the isotope sensitive correction term for QZPVE. c^{L} describes isotope shifts along the correlation line, keeping the total bond valencies of H and of D equal to unity (eq (4)). By contrast, d^{L} describes the deviation of the total valency of the hydrons from unity; this term leads to a flattening of the correlation curve q_{1} *vs.* q_{2} in the minimum. *f* and *g* are empirical numbers and may depend on the system studied. The parameter values used in the present work are listed in Table S6.

Table S6. Parameters of the geometric hydrogen bond correlations of OHO hydrogen bonds heteroconjugated anions AHX⁻ of phenols with carboxylates in polar solvents

	$b_{ m OH}$ /Å	r _{OH} °∕Å	f	g	c^{H}	$d^{\rm H}$	c ^D	d^{D}
ОНО	0.371	0.942	5	2	440	0.2	5	0.4

Eq (6) defines the *primary geometric hydrogen bond isotope effect* (primary GIE),²³

$$\Delta q_1 = q_{1\mathrm{D}} - q_{1\mathrm{H}},\tag{6}$$

and Eq (7) of the secondary geometric hydrogen bond isotope effect (secondary GIE),

$$\Delta q_2 = q_{2\mathrm{D}} - q_{2\mathrm{H}}.\tag{7}$$

The secondary effect has also been called the "Ubbelohde effect", as it was observed by this author for a number of hydrogen bonded systems.²⁴ It describes a different position of the heavy atoms after isotopic substitution. By contrast, the *primary geometric isotope effect* describes a different location of hydrogen isotopes in the hydrogen bond.

The NMR parameters of hydrogen bonds can be related to their geometries. For example, Benedict *et al.* have proposed to express the chemical shifts of the nuclei of the hydrogen bridge as a function of the valence bond orders^{25e}

$$\delta(\underline{A}\underline{H}\underline{X}) = \delta(\underline{A}\underline{H})^{\circ} p_{1} + \delta(\underline{H}\underline{X})^{\circ} p_{2} + \Delta(\underline{A}\underline{H}\underline{X})(4p_{1}p_{2})^{m},$$

$$\delta(\underline{A}\underline{H}\underline{X}) = \delta(\underline{A}\underline{H})^{\circ} p_{1} + \delta(\underline{A})^{\circ} p_{2} + \Delta(\underline{A}\underline{H}\underline{X})(4p_{1}p_{2})^{m}.$$
(8)

Here, ¹H chemical shifts are symbolized by underlining the letter H and ¹³C chemical shifts by underlining the letter A. $\delta(A\underline{H})^{\circ}$, $\delta(\underline{H}X)^{\circ}$, $\delta(\underline{A}H)^{\circ}$ and $\delta(\underline{A})^{\circ}$ are the limiting chemical shifts of the separate fictive groups. The terms $\Delta(A\underline{H}X)$ and $\Delta(\underline{A}HX)$ represent excess hydrogen bond shifts which describe the chemical shift deviation of a symmetric or quasisymmetric complex with $p_1 = p_2 = 0.5$ from the average limiting values. *m* is an empirical fitting parameter with a value normally set to unity. We note that the value of $\Delta(AH\underline{X})$ might be different for equilibrium structures and structures where QZPVE is taken into account.

The solid correlation lines in Figure 7b and 7c of the main paper were calculated using the values $\delta(A\underline{H})^{\circ} = 3$ ppm, $\delta(\underline{H}X)^{\circ} = 3$ ppm, $\Delta(A\underline{H}X) = 17.5$ ppm, $\delta(\underline{A}H)^{\circ} = -9$ ppm, $\delta(\underline{A})^{\circ} = 9$ ppm and $\Delta(\underline{A}HX) = 0$.

References

- Hendriks, J.; Gensch, Th.; Hviid, L.; van der Horst, M. A.; Hellingwerf, K. J.; van Thor, J. J. *Biophysical Journal* **2002**, *82*, 1632-1643.
- (2) Drehmann, U.; Pürschel, U.; Wauschkun, H. *Journal für Praktische Chemie* **1961**, *14*, 122-126.
- (3) Fanta, P. Organic Syntheses **1952**, *32*, 95-96.
- (4) Koeppe, B.; Tolstoy, P. M.; Limbach, H. H. J. Am. Chem. Soc. 2011, 133, 7897-7908.
- (5) Ermakov, A. A.; Ermakov, S. A.; Polomarchuk, N. I. *Russian Patent* **2006**, RU 268877.
- (6) Siegel, J. S.; Anet, F. A. I. J. Org. Chem. **1988**, *53*, 2629-2630.
- (7) Hodgson, H. H.; Wignall, J. S. J. Chem. Soc. 1927, 2216-2221.
- (8) Tolstoy, P. M.; Koeppe, B.; Denisov, G. S.; Limbach, H. H. Angew. Chem. Int. Ed.
 2009, 48, 5745-5747.
- (9) Siano, D. B.; Metzler, D. E. J. Chem. Phys. 1969, 51, 1856-1861.
- (10) Jencks, W.; Regenstein, J. 1976, in G. D. Fasman (ed.), Handbook of Biochemistry and Molecular Biology, 3rd edition, Vol. 1, CRC Press, Cleveland, pp. 305-351.
- Serjeant, E. P.; Dempsey, B., Ionisation constants of organic acids in aqueous solution, Pergamon Press, Oxford, 1979.
- (12) Blackman, G. E.; Parke, M. H.; Garton, G. Arch. Biochem. Biophys. 1955, 54, 55-71.
- (13) Perrin, D. D.; Dempsey, B.; Serjeant, E. P. pK_a prediction for organic acids and bases, Chapman and Hall, London, 1981.
- (14) Ogston, A. G. J. Chem. Soc. 1936, 1713.
- (15) Bower, V. E.; Robinson R. A. J. Phys. Chem. **1960**, 64, 1078.
- (16) Brown, H. C.; McDaniel, D. H.; Häfliger, O. in Braude, E. A.; Nachod, F. C. Eds., *Determination of Organic Structures by Physical Methods*, Academic Press, New York, 1955, p. 567–662.
- (17) Bessiére, J. Anal. Chim. Acta 1970, 52, 55-63.
- Limbach, H. H.; Tolstoy, P. M.; Pérez-Hernández, N.; Guo, J.; Shenderovich, I. G.; Denisov, G. S. *Israel J. Chem.* 2009, 49, 199-216.
- (19) Ip, B. C. K.; Shenderovich, I. G.; Tolstoy, P. M.; Frydel, J.; Denisov, G. S.;
 Buntkowsky, G.; Limbach, H. H. J. Phys. Chem. A. 2012, 116, 11180-11188.
- (20) Pauling, L. J. Am. Chem. Soc. 1947, 69, 542-553.

- (21) Brown, I. D. Acta Cryst. 1992, B48, 553-572.
- (22) (a) Limbach, H. H.; Pietrzak, M.; Benedict, H.; Tolstoy, P. M.; Golubev, N. S.; Denisov, G. S. *J. Mol. Struct.* 2004, 706, 115-119; b) Limbach, H. H.; Pietrzak, M.; Sharif, S.; Tolstoy, P. M.; Shenderovich, I. G.; Smirnov, S. N.; Golubev, N. S.; Denisov, G. S. *Chem. Eur. J.* 2004, 10, 5195-5204.
- (23) (a) Limbach, H. H.; Denisov, G. S.; Golubev, N. S. in *Isotope Effects In Chemistry* and *Biology*, (Eds: Kohen, A.; Limbach, H. H.), Taylor & Francis, Boca Raton FL **2005**; Chapter 7, pp 193-230. *Hydrogen Bond Isotope Effects Studied by NMR*. (b) Detering, C.; Tolstoy, P. M.; Golubev, N. S.; Denisov, G. S.; Limbach, H. H. *Doklady Phys. Chem.*, **2001**, *379*, 1-4.
- (24) (a) Ubbelohde, A. R.; Gallagher, K. J. *Acta Cryst.* 1995, *8*, 71-83; (b) Legon, A. C.;
 Millen, D. J. *Chem. Phys. Lett.* 1988, *147*, 484-489; (c) Sokolov, N. D.; Savel'ev, V.
 A. *Chem. Phys.* 1977, *22*, 383-399; d) Sokolov, N. D.; Savel'ev, V. A. *Chem. Phys.* 1994, *181*, 305-317.
- (25) (a) Golubev, N. S.; Smirnov, S. N.; Gindin, V. A.; Denisov, G. S.; Benedict, H.; Limbach, H. H. J. Am. Chem. Soc. 1994, 116, 12055-12056; (b) Smirnov, S. N.; Golubev, N. S.; Denisov, G. S.; Benedict, H.; Schah-Mohammedi, P.; Limbach, H. H. J. Am. Chem. Soc. 1996, 118, 4094-4101; (c) Golubev, N. S.; Smirnov, S. N.; Schah-Mohammedi, P.; Shenderovich, I. G.; Denisov, G. S.; Gindin, V. A.; Limbach, H. H. Russian J. Gen. Chem. 1997, 67, 1082-1087; (d) Shenderovich, I. G.; Smirnov, S. N.; Denisov, G. S.; Gindin, V. A.; Golubev, N. S.; Dunger, A.; Reibke, R.; Kirpekar, S.; Malkina, O. L.; Limbach, H. H. Ber. Bunsenges. Phys. Chem. 1998, 102, 422-428; (e) Benedict, H.; Shenderovich, I. G.; Malkina, O. L.; Malkin, V. G.; Denisov, G. S.; Golubev, N. S.; Limbach, H. H. J. Am. Chem. Soc. 2000, 122, 1979-1988; (f) Shenderovich, I. G.; Limbach, H. H.; Smirnov, S. N.; Tolstoy, P. M.; Denisov, G. S.; Golubev, N. S. Phys. Chem. Chem. Phys. 2002, 4, 5488-5497; (g) Smirnov, S. N.; Benedict, H.; Golubev, N. S.; Denisov, G. S.; Kreevoy, M. M.; Schowen, R. L.; Limbach, H. H. Can. J. Chem. 1999, 77, 943-949.