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Hydrogen-transfer reactions, in which a proton, hydrogen atom, or
hydride ion moves from a donor to an acceptor, are ubiquitous in phy-
sics, chemistry, and biology – indeed throughout the natural world.
These processes occur at rates from vibrational periods to geological
periods and are studied by essentially every available theory and techni-
que. Their importance for fundamental science is enormous but they
are also vital in industrial chemistry, molecular medicine, and modern
pharmaceutical science.

This multivolume work provides interpretative reviews, written by
the most active scientists in their fields, of hydrogen transfer in systems
beginning with isolated molecules and traversing all levels of organiza-
tion up to cellular biology. Beginners will find these volumes a clear
and accessible introduction to a broad range of topics, while established
experts will be pleased by provocative and authoritative presentations of
the newest discoveries and ideas.
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Foreword
The Remarkable Phenomena of Hydrogen Transfer
Ahmed H. Zewail*
California Institute of Technology
Pasadena, CA 91125, USA

Life would not exist without the making and breaking of chemical bonds - chemi-
cal reactions. Among the most elementary and significant of all reactions is the
transfer of a hydrogen atom or a hydrogen ion (proton). Besides being a funda-
mental process involving the smallest of all atoms, such reactions form the basis
of general phenomena in physical, chemical, and biological changes. Thus, there
is a wide-ranging scope of studies of hydrogen transfer reactions and their role in
determining properties and behaviors across different areas of molecular
sciences.
Remarkably, this transfer of a small particle appears deceptively simple, but is

in fact complex in its nature. For the most part, the dynamics cannot be described
by a classical picture and the process involves more than one nuclear motion. For
example, the transfer may occur by tunneling through a reaction barrier and a
quantum description is necessary; the hydrogen is not isolated as it is part of a
chemical bond and in many cases the nature of the bond, “covalent” and/or
“ionic” in Pauling’s valence bond description, is difficult to characterize; and the
description of atom movement, although involving the local hydrogen bond, must
take into account the coupling to other coordinates. In the modern age of quan-
tum chemistry, much has been done to characterize the rate of transfer in differ-
ent systems and media, and the strength of the bond and degree of charge
localization. The intermediate bonding strength, directionality, and specificity are
unique features of this bond.
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The supreme example for the unique role in specificity and rates comes from
life’s genetic information, where the hydrogen bond determines the complemen-
tarities of G with C and A with T and the rate of hydrogen transfer controls genetic
mutations. Moreover, the not-too-weak, not-too-strong strength of the bond allows
for special “mobility” and for the potent hydrophobic/hydrophilic interactions.
Life’s matrix, liquid water, is one such example. The making and breaking of the
hydrogen bond occurs on the picosecond time scale and the process is essential to
keeping functional the native structures of DNA and proteins, and their recogni-
tion of other molecules, such as drugs. At interfaces, water can form ordered
structures and with its amphiphilic character, utilizing either hydrogen or oxygen
for bonding, determines many properties at the nanometer scale.
Hydrogen transfer can also be part of biological catalysis. In enzyme reactions,

a huge complex structure is involved in bringing this small particle of hydrogen
into the right place at the right time so that the reaction can be catalytically
enhanced, with rates orders of magnitude larger than those in solution. The mo-
lecular theatre for these reactions is that of a very complex energy landscape, but
with guided bias for specificity and selectivity in function. Control of reactivity at
the active site has now reached the frontier of research in “catalytic antibody”, and
one of the most significant achievements in chemical synthesis, using heteroge-
neous catalysis, has been the design of site-selective reaction control.
Both experiments and theory join in the studies of hydrogen transfer reactions.

In general, the approach is of two categories. The first involves the study of proto-
typical but well-defined molecular systems, either under isolated (microscopic)
conditions or in complexes or clusters (mesoscopic) with the solvent, in the gas
phase or molecular beams. Such studies over the past three decades have pro-
vided unprecedented resolution of the elementary processes involved in isolated
molecules and en route to the condensed phase. Examples include the discovery
of a “magic solvent number” for acid-base reactions, the elucidation of motions
involved in double proton transfer, and the dynamics of acid dissociation in finite-
sized clusters. For these systems, theory is nearly quantitative, especially as more
accurate electronic structure and molecular dynamics computations become avail-
able.
The other category of study focuses on the nature of the transfer in the con-

densed phase and in biological systems. Here, it is not perhaps beneficial to con-
sider every atom of a many-body complex system. Instead, the objective is hope-
fully to project the key electronic and nuclear forces which are responsible for
behavior. With this perspective, approximate, but predictive, theories have a
much more valuable outreach in applications than those simulating or computing
bonding and motion of all atoms. Computer simulations are important, but for
such systems they should be a tool of guidance to formulate a predictive theory.
Similarly for experiments, the most significant ones are those that dissect com-
plexity and provide lucid pictures of the key and relevant processes.
Progress has been made in these areas of study, but challenges remain. For

example, the problem of vibrational energy redistribution in large molecules, al-
though critical to the description of rates, statistical or not, and to the separation
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of intra and intermolecular pathways, has not been solved analytically, even in an
approximate but predictive formulation. Another problem of significance con-
cerns the issue of the energy landscape of complex reactions, and the question is:
what determines specificity and selectivity?
This series edited by prominent players in the field is a testimony to the

advances and achievements made over the past several decades. The diversity of
topics covered is impressive: from isolated molecular systems, to clusters and con-
fined geometries, and to condensed media; from organics to inorganics; from zeo-
lites to surfaces; and, for biological systems, from proteins (including enzymes) to
assemblies exhibiting conduction and other phenomena. The fundamentals are
addressed by the most advanced theories of transition state, tunneling, Kramers’
friction, Marcus’ electron transfer, Grote-Hynes reaction dynamics, and free ener-
gy landscapes. Equally covered are state-of-the-art techniques and tools intro-
duced for studies in this field and including ultrafast methods of femtochemistry
and femtobiology, Raman and infrared, isotope probes, magnetic resonance, and
electronic structure and MD simulations.
These volumes are a valuable addition to a field that continues to impact diverse

areas of molecular sciences. The field is rigorous and vigorous as it still chal-
lenges the minds of many with the fascination of how the physics of the smallest
of all atoms plays in diverse applications, not only in chemistry, but also in life
sciences. Our gratitude is to the Editors and Authors for this compilation of
articles with new knowledge in a field still pregnant with challenges and opportu-
nities.

Pasadena, California Ahmed Zewail
August, 2006
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Preface

As one of the simplest of chemical reactions, pervasive on this highly aqueous pla-
net populated by highly aqueous organisms, yet still imperfectly understood, the
transfer of hydrogen as a subject of scientific attention seems hardly to require
defense. This claim is supported by the readiness with which the editors of this
series of four volumes on Hydrogen-transfer Reactions accepted the suggestion that
they organize a group of their most active and talented colleagues to survey the
subject from viewpoints beginning in physics and extending into biology. Further-
more, forty-nine authors and groups of authors acceded, with alacrity and grace,
to the request to contribute and have then supplied the articles that make up these
volumes.
Our scheme of organization involved an initial division into physical and chem-

ical aspects on the one hand, and biological aspects on the other hand (and one
might well have said biochemical and biological aspects). In current science, such
a division may provide an element of convenience but no-one would seriously
claim the segregation to be either easy or entirely meaningful. We have accord-
ingly felt quite entitled to place a number of articles rather arbitrarily in one or the
other category. It is nevertheless our hope that readers may find the division ade-
quate to help in the use of the volumes. It will be apparent that the division of
space between the two categories is unequal, the physical and chemical aspects
occupying considerably more pages than the biological aspects, but our judgment
is that this distribution of space is proper to the subjects treated. For example,
many of the treatments of fundamental principles and broadly applicable tech-
niques were classified under physical and chemical aspects. But they have power-
ful implications for the understanding and use of the matters treated under bio-
logical aspects.
Within each of these two broad disciplinary categories, we have organized the

subject by beginning with the simple and proceeding toward the complex. Thus
the physical and chemical aspects appear as two volumes, volume1 on simple sys-
tems and volume 2 on complex systems. Similarly, the biological aspects appear
as volume 3 on simple systems and volume 4 on complex systems.
Volume 1 then begins with isolated molecules, complexes, and clusters, then

treats condensed-phase molecules, complexes, and crystals, and finally reaches
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treatments of molecules in polar environments and in electronic excited states.
Volume 2 reaches higher levels of complexity in protic systems with bimolecular
reactions in solution, coupling of proton transfer to low-frequency motions and
proton-coupled electron transfer, then organic and organometallic reactions, and
hydrogen-transfer reactions in solids and on surfaces. Thereafter articles on quan-
tum tunneling and appropriate theories of hydrogen transfer complete the treat-
ment of physical and chemical aspects.
Volume 3 begins with simple model (i.e., non-enzymic) reactions for proton-

transfer, both to and from carbon and among electronegative atoms, hydrogen-
atom transfer, and hydride transfer, as well as the extension to small, synthetic
peptides. It is completed by treatments of how enzymes activate C-H bonds, mul-
tiple hydrogen transfer reactions in enzymes, and theoretical models. Volume 4
moves then into enzymic reactions and a thorough consideration of quantum
tunneling and protein dynamics, one of the most vigorous areas of study in bio-
logical hydrogen transfer, then considers several specific enzyme systems of high
interest, and is completed by the treatment of proton conduction in biological sys-
tems.
While we do not claim any sort of comprehensive coverage of this large subject,

we believe the reader will find a representative treatment, written by accomplished
and respected experts, of most of the matters currently considered important for
an understanding of hydrogen-transfer reactions. I am enormously grateful to
James T. (Casey) Hynes and Hans-Heinrich Limbach, who saw to the high quality
of the volumes on the physical and chemical aspects, and to Judith Klinman, who
gave me a nearly free pass as her co-editor of the volumes on biological aspects.
We are all grateful indeed to the authors who contributed their wisdom and elo-
quence to these volumes. It has been a very great pleasure to be assisted, encour-
aged, and supported at every turn by the outstanding staff of VCH-Wiley in Wein-
heim, particularly (in alphabetical order) Ms. Nele Denzau, Dr. Renate D�tzer,
Dr. Tim Kersebohm, Dr. Elke Maase, Ms. Claudia Zschernitz, and – of course –
Dr. Peter G�litz.

Lawrence, Kansas, USA, September 2006 Richard L. Schowen
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Preface to Volumes 1 and 2

These volumes together address the subject of the physical and chemical aspects
of hydrogen transfer, volume 1 focusing on comparatively simple systems and
volume 2 treating relatively more complex ones.
Volume 1 comprises three parts, commencing with Part I, dealing with hydro-

gen transfers of polyatomic molecules and complexes in relatively isolated condi-
tions. In the first three contributions, the transfer is a coherent tunneling process
rather than a rate process, characterized by “tunnel splittings” or delocalized
hydrogen nuclei, for which electronic and vibrational spectroscopies are common
and potent tools. The molecular systems discussed are malonaldehyde and
tropolone (Redington, Ch. 1), carboxylic acid dimers (Havenith, Ch. 2) and
strongly hydrogen-bonded systems such as (H2O...H...OH2)+ (Asmis, Neumark
and Bauman, Ch. 3). K�hn and Gonzales (Ch. 4) consider theoretically the more
active role of infrared radiation in controlling hydrogen dissociation dynamics in
e.g. OHF–.
The five contributions of Part II focus on condensed matter. If the barriers are

large, the hydrogen transfer becomes a rate process which may involve incoherent
tunneling. Ceulemans (Ch. 5) examines proton abstraction by alkanes from
strongly acidic alkane radical cations in inert matrices. Limbach (Ch. 5) follows
the kinetics of single and multiple hydrogen and deuteron transfers in liquids and
solids via NMR. Optical methods are applied by Douhal (Ch. 6) to systems
embedded in a nanocavity, and embedded in liquids and polymer matrices by
Waluk (Ch. 7), with a contrast to coherent hydrogen transfer in supersonic jets.
Finally, Vener (Ch. 9) compares theory and experiment for anharmonic vibrations
of strong hydrogen bonds in crystals.
Part III, comprising four chapters, commences the examination of hydrogen

transfer – here proton transfer – in polar environments. The strong electrostatic
proton-environment interaction guarantees incoherent rate phenomena. Kiefer
and Hynes (Ch. 10) lay out the theoretical description for such reactions. The next
three chapters exploit the greatly enhanced acidity of aromatic acids in the excited
electronic state. Lochbrunner, Schriever and Riedle (Ch. 11) focus on the role of
the motion of the groups between which the proton transfers, Pines and Pines
(Ch. 12) thoroughly examine the insight to be gained from F�rster cycle and free
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Preface to Volumes 1 and 2

energy analyses, while Tolbert and Solnstev (Ch. 13) pursue related themes for
“super” photoacids in the concluding chapter of volume 1.
Volume 2 opens with Part IV dealing with hydrogen transfer in protic systems.

Generally, a larger number of solvent molecules is involved, and hence multiple
protons may be transferred. The first two chapters elucidate molecular details of
proton transfer in solution via ultrafast infrared spectroscopy. Nibbering and
Pines (Ch. 14) examine the transfer between acid-base pairs for the acid in the
excited electronic state, while Elsaesser (Ch. 15) discusses coherent low frequency
motions coupled to related proton transfers as well as in hydrogen-bonded com-
plexes. The final two chapters in Part IV deal with proton transfer coupled to elec-
tron transfer, with Hammes-Schiffer (Ch. 16) expounding and illustrating the the-
ory for these, while Hodgkiss, Rosenthal and Nocera (Ch. 17) discuss these reac-
tions with a special emphasis on the connection to hydrogen atom transfer.
Part V, consisting of four chapters, opens with a discussion of the kinetics and

mechanisms of proton abstraction from carbon in organic systems by Koch
(Ch. 18) and then turns to a presentation by Williams (Ch. 19) on free energy rela-
tionships for proton transfer, as informed by various theoretical approaches. The
final two chapters are devoted to hydrogen and dihydrogen mobility in the coordi-
nation sphere of transition metal complexes, where the transition from coherent
to incoherent H-tunneling can be observed, with a review of the field given by
Kubas in Ch. 20 and a discussion of insights from NMR studies presented by
Buntkowsky and Limbach in Ch. 21.
In the first three of the five chapters of Part VI, hydrogen transfer is examined

in assorted complex solids of importance in various applications: zeolites by Sauer
in Ch. 22, fuel cells by Kreuer in Ch. 23 and ice bilayers by Aoki in Ch. 24. Atten-
tion is then turned to hydrogen transfer at metal surfaces in Ch. 25 by Christ-
mann and in metals in Ch. 26 by Hempelmann and Skripov.
Volume 2 concludes in Part VII with contributions on the variational transition

state theory approach to hydrogen transfer in various contexts (Truhlar and Gar-
rett, Ch. 27), on experimental evidence of hydrogen atom tunneling in simple sys-
tems (Ingold, Ch. 28), and finally on a theoretical perspective for multiple hydro-
gen transfers (Smedarchina, Siebrand and Fern�ndez-Ramos, Ch. 29).
JTH acknowledges the support of grant CHE-0417570 from the US National

Science Foundation. HHL thanks the Deutsche Forschungsgemeinschaft, Bonn,
and the Fonds der Chemischen Industrie, Frankfurt, for financial support.

Boulder and Paris, September 2006 James T. Hynes
Berlin, September 2006 Hans-Heinrich Limbach
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Preface

As one of the simplest of chemical reactions, pervasive on this highly aqueous pla-
net populated by highly aqueous organisms, yet still imperfectly understood, the
transfer of hydrogen as a subject of scientific attention seems hardly to require
defense. This claim is supported by the readiness with which the editors of this
series of four volumes on Hydrogen-transfer Reactions accepted the suggestion that
they organize a group of their most active and talented colleagues to survey the
subject from viewpoints beginning in physics and extending into biology. Further-
more, forty-nine authors and groups of authors acceded, with alacrity and grace,
to the request to contribute and have then supplied the articles that make up these
volumes.
Our scheme of organization involved an initial division into physical and chem-

ical aspects on the one hand, and biological aspects on the other hand (and one
might well have said biochemical and biological aspects). In current science, such
a division may provide an element of convenience but no-one would seriously
claim the segregation to be either easy or entirely meaningful. We have accord-
ingly felt quite entitled to place a number of articles rather arbitrarily in one or the
other category. It is nevertheless our hope that readers may find the division ade-
quate to help in the use of the volumes. It will be apparent that the division of
space between the two categories is unequal, the physical and chemical aspects
occupying considerably more pages than the biological aspects, but our judgment
is that this distribution of space is proper to the subjects treated. For example,
many of the treatments of fundamental principles and broadly applicable tech-
niques were classified under physical and chemical aspects. But they have power-
ful implications for the understanding and use of the matters treated under bio-
logical aspects.
Within each of these two broad disciplinary categories, we have organized the

subject by beginning with the simple and proceeding toward the complex. Thus
the physical and chemical aspects appear as two volumes, volume1 on simple sys-
tems and volume 2 on complex systems. Similarly, the biological aspects appear
as volume 3 on simple systems and volume 4 on complex systems.
Volume 1 then begins with isolated molecules, complexes, and clusters, then

treats condensed-phase molecules, complexes, and crystals, and finally reaches
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treatments of molecules in polar environments and in electronic excited states.
Volume 2 reaches higher levels of complexity in protic systems with bimolecular
reactions in solution, coupling of proton transfer to low-frequency motions and
proton-coupled electron transfer, then organic and organometallic reactions, and
hydrogen-transfer reactions in solids and on surfaces. Thereafter articles on quan-
tum tunneling and appropriate theories of hydrogen transfer complete the treat-
ment of physical and chemical aspects.
Volume 3 begins with simple model (i.e., non-enzymic) reactions for proton-

transfer, both to and from carbon and among electronegative atoms, hydrogen-
atom transfer, and hydride transfer, as well as the extension to small, synthetic
peptides. It is completed by treatments of how enzymes activate C-H bonds, mul-
tiple hydrogen transfer reactions in enzymes, and theoretical models. Volume 4
moves then into enzymic reactions and a thorough consideration of quantum
tunneling and protein dynamics, one of the most vigorous areas of study in bio-
logical hydrogen transfer, then considers several specific enzyme systems of high
interest, and is completed by the treatment of proton conduction in biological sys-
tems.
While we do not claim any sort of comprehensive coverage of this large subject,

we believe the reader will find a representative treatment, written by accomplished
and respected experts, of most of the matters currently considered important for
an understanding of hydrogen-transfer reactions. I am enormously grateful to
James T. (Casey) Hynes and Hans-Heinrich Limbach, who saw to the high quality
of the volumes on the physical and chemical aspects, and to Judith Klinman, who
gave me a nearly free pass as her co-editor of the volumes on biological aspects.
We are all grateful indeed to the authors who contributed their wisdom and elo-
quence to these volumes. It has been a very great pleasure to be assisted, encour-
aged, and supported at every turn by the outstanding staff of VCH-Wiley in Wein-
heim, particularly (in alphabetical order) Ms. Nele Denzau, Dr. Renate D�tzer,
Dr. Tim Kersebohm, Dr. Elke Maase, Ms. Claudia Zschernitz, and – of course –
Dr. Peter G�litz.

Lawrence, Kansas, USA, September 2006 Richard L. Schowen
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Preface to Volumes 3 and 4

These volumes together address the rather enormous subject of hydrogen transfer
in biological systems, volume 3 presenting the role of relatively simple systems in
the understanding of hydrogen transfer while volume 4 considers complex sys-
tems, for the most part enzymes.
Volume 3 contains two parts that treat basic concepts and systems not limited

to a single enzyme or class of enzymes in their significance. Part I consists of five
chapters on the chemistry of the transfer of hydrogen in biological model systems:
as a proton to and from carbon (Amyes and Richard, Ch. 1); as a proton in acid-
base catalysis; i.e., largely among electronegative atoms (Kirby, Ch. 2); as a hydro-
gen atom (Sch�neich, Ch. 3); as a hydride ion (Schowen, Ch..4); as a proton in
acid-base catalysis in designed peptides (Baltzer, Ch. 5). Part II is composed of
three chapters on generally significant features of biological hydrogen-transfer
reactions: in enzyme-catalyzed proton transfer from carbon (Gerlt, Ch. 6); in mul-
tiple proton transfers in enzymic systems (Spies and Toney, Ch. 7); and in com-
puter simulations of enzymic hydrogen transfer (Braun-Sand, Olsson, Mavri, and
Warshel, Ch. 8).
Volume 4, consisting of three parts, then proceeds to studies in enzyme and

protein systems that for the most part serve well as paradigms for broader groups
in which hydrogen transfer is important. Part III brings together seven chapters
on the subject of quantum tunneling in enzymic hydrogen-transfer and its rela-
tionship to protein motions. A relative new theoretical approach is described by
Schwartz (Ch. 9), leading into a general consideration of the existing evidence and
its significance for the tunneling/dynamics nexus (Knapp, Meyer, and Klinman,
Ch. 10), and articles by Huskey (Ch. 11) on the importance of multiple-isotope
labeling for characterization of tunneling phenomena, by Kohen on kinetic iso-
tope effects (Ch.12) and by Basran, Hothi, Masgrau, Sutcliffe, and Scrutton on the
opportunities afforded by flavoprotein systems (Ch. 13). This part is closed by arti-
cles on two important experimental approaches, isotope exchange with solvent as
a probe of protein motion (Lee, Croy, Resing, and Ahn, Ch. 14) and resonance
Raman spectroscopy as a probe of active-site dynamical properties (Callender and
Deng, Ch. 15). Part IV brings into focus several central examples of important
enzyme classes: thiamin-dependent enzymes (Ch. 16 by H�bner, Golbik, and
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Preface to Volumes 3 and 4

Tittmann), dihydrofolate reductase (Ch. 17 by Benkovic and Hammes-Schiffer),
hydrolases (Ch. 18 by Stein), and vitamin B12 enzymes (Ch. 19 by Banerjee,
Truhlar, Dybala-Defratyka, and Paneth). The volume is the closed by a one-
chapter Part V on proton conduction in biology, in which Gutman and Nachliel
(Ch. 20) treat the subject of proton conductance at protein surfaces and interfacial
regions.
JPK acknowledges the support of grant MCB 0446395 from the US National

Science Foundation and of grant GM 025765 from the US National Institutes of
Health.

Berkeley, California, USA, September 2006 Judith P. Klinman
Lawrence, Kansas, USA, September 2006 Richard L. Schowen
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