
DOI: 10.1007/s10909-006-9211-y
Journal of Low Temperature Physics, Vol. 143, Nos. 3/4, May 2006 (© 2006)

2H-Solid State NMR Studies of Tunneling Phenomena
and Isotope Effects in Transition Metal Dihydrides

Gerd Buntkowsky1 and Hans-Heinrich Limbach2

1 Department of Physical Chemistry, FSU Jena, Helmholtzweg 4, Jena, D-07743, Germany
E-mail: gerd.buntkowsky@uni-jena.de

2 Department of Physical Chemistry, FU Berlin, Takustr. 3, D-14195, Berlin, Germany

(Received March 24, 2005; revised October 10, 2005)

In many transition metal dihydrides and dihydrogen complexes the hydrogens
are relatively weakly bound and exhibit a fairly high mobility, in particular
with respect to their mutual exchange. Part of this high mobility is due to
the exchange symmetry of the two hydrogens, which causes an energy split-
ting into even and odd spatial energy eigenfunctions, resulting in the typical
coherent tunneling of a two-level system. Owing to the quantum mechanical
symmetry selection principles the eigenfunctions are connected to the possible
nuclear spin states of the system. If the tunneling frequency is in the proper
frequency window it is thus possible to observe these tunneling transitions by
NMR at very low temperatures, where no thermally induced exchange reac-
tions overshadow the tunneling. The first part of this review gives an intro-
duction into the interplay of chemical kinetics and tunneling phenomena in
general, rotational tunneling of dihydrogen in a two-fold potential in partic-
ular and the Bell tunnel model, followed by a summary of solid state NMR
techniques for the observation of these tunnel processes. Then a discussion of
the effects of these processes on the 2H NMR line shape is given. The second
part of the review reports results of a 2H-solid state NMR spectroscopy and
T1 relaxatiometry study of trans-[Ru(D2)Cl(PPh2CH2CH2PPh2)2]PF6, in
the temperature regime from 5.4 to 320 K. In the Ru-D2 sample coherent
tunneling and incoherent exchange processes on the time scale of the quad-
rupolar interaction are observed. From the spectra and T1-data the height of
the tunneling barrier is determined. Next results of 2H-spin–lattice relaxa-
tion measurements for a selectively η2−D2 labeled isotopomer of the com-
plex W(PCy3)2(CO)3)(η

2−D2) are presented and discussed. The relaxation
measurements are analyzed in terms of a simple one dimensional Bell tunnel
model and comparison to incoherent neutron scattering (INS) data from the
H2 complex. The comparison reveals a strong isotope effect of 2× 103 for
the exchange rates of the deuterons versus hydrons.
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1. INTRODUCTION

Non-classical transition metal hydrides with η2-bonded dihydrogen
ligands have very interesting physical, spectroscopic and chemical
properties and are attracting much experimental and theoretical inter-
est.1–21 Following the pioneering work of Kubas et al.22,23 a whole series
of transition metal polyhydrides with hydrogen distances varying between
0.8 and 1.7 Å were synthesized.20,24–28 Understanding their chemistry has
led to a better understanding of catalysis since they may be catalytic
precursors or stable models for short lived intermediate steps in cataly-
sis12,29–31 and are of current interest in organometallic chemistry.32–35

In these compounds the hydrogen atoms are not fixed in space as in
conventional hydrogen bonds, but exhibit a rather high mobility. In par-
ticular they can exchange their positions, either at higher temperatures due
to conventional chemical exchange or at low temperatures due to quantum
mechanical tunneling. The mutual exchange of the hydrons (i.e. 1H, 2H or
3H) is equivalent to a hindered 180◦ rotation around the axis intersecting
the M-H2 angle.36–40 The rotational barrier is caused mainly by the chem-
ical structure involving the binding of the hydrons to the metal, effects of
the ligands and sometimes also by crystal effects from neighboring mole-
cules. The two-fold symmetry of the barrier causes a splitting of the energy
eigenstates into states with even and odd symmetry (see Fig. 1). For iden-
tical hydrogen isotopes, the quantum mechanical symmetry principles have
to be fulfilled, leading for spin 1/2 particle to the formation of para-states
with anti parallel and ortho-states with parallel nuclear spins. For isotope
mixtures like HD, no such symmetry principles exist. The height of the
barrier determines the energy difference between the lowest even and odd
symmetry, the so-called tunnel splitting, which can be expressed as a tun-
nel frequency νt. This tunnel splitting depends very strongly on the hin-
dering potential, varying from 1012 Hz for dihydrogen gas to a few Hz as
the depth of the potential is increased. Due to this large range of tunnel
frequencies no single spectroscopic technique is able to cover the whole
dynamic range. While fast coherent tunneling in the frequency range of
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Fig. 1. Sketch of a hydrogen molecule binding to a transition metal: When the H2 or D2

molecule is bound to a transition metal, different states are passed, ranging from the free
hydrogen molecule over various dihydrogen states to the strongly bound dihydride. These
states can be characterized by their RHH or RMH distance as reaction coordinate.

GHz to THz were studied by incoherent neutron scattering (INS),16,41 rel-
atively slow tunneling processes in the frequency range of (Hz to kHz)
are investigated by 1H-liquid state NMR spectroscopy (see for exam-
ple Refs. 16,42–48 and many others) or 2H-liquid state NMR.49 In these
1H-liquid state NMR studies the tunnel frequency is usually termed
“quantum exchange coupling”, due to the fact that the effect of the tun-
neling on the 1H-liquid state NMR spectra is equivalent to the effect of
an indirect spin coupling (J -coupling).

Superimposed on the coherent exchange are incoherent exchange pro-
cesses, which were also observed in the NMR spectra of these hydrides.
In the case of a HD pair, these incoherent processes correspond to H/D
scrambling between the two different molecular sites in which the pair is
located. In contrast to the quantum exchange, the incoherent exchange
leads to a magnetic equivalence of the coupled hydrogen nuclei, i.e., to line
broadening and coalescence. This process also leads to characteristic line
shape changes in INS spectra16 and affects the results of para-H2 induced
nuclear spin polarization experiments.50 These line shape changes can be
described quantitatively in terms of the quantum-mechanical density matrix
formalism developed by Alexander51 and Binsch52,53 where only the nuclear
spin degrees of freedom are treated quantum-mechanically and the spatial
degrees of freedom (bath coordinates) are treated via phenomenological rate
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constants. Theoretical interpretations of these rate constants are given by
Szymanski54,55 and Scheurer et al.56,57 The advantage of the Alexander–
Binsch formalism is that it is directly comparable to the NMR experiment,
because NMR measures the projection of the molecular system onto the
spin system. Thus a more detailed theory in the future only needs to repro-
duce these rate constants, but not the NMR spectra from which these con-
stants were extracted. Finally we wish to note that field cycling NMR studies
are an alternative way for the study of these tunnel processes,58–66 which are
however beyond the scope of this review.

The dynamic range of NMR spectroscopy for the study of these tun-
nel processes is limited by the size of the typical frequency differences of
the NMR method used. For the line shape analysis of 1H NMR spectra
this means that for a typical spectrometer a range of less than ≈10 kHz is
accessible in liquids. In principle this range could be increased by 1H-solid
state NMR measurements. In practice however, to the best of our knowl-
edge, the strong homonuclear dipolar interactions of the protons have
rendered all such attempts unsuccessful. Pairs of deuterons are the only
other stable nuclei, where these effects can be observed. Since the chem-
ical shift range of deuterons is limited to ≈ 1.4 kHz only very slow tun-
nel processes are in principle directly observable in 2H NMR spectroscopy.
In liquids faster tunnel processes could only be observable via relaxation
measurements. The situation is different in the solid state. Since deute-
rons are quadrupolar nuclei, they exhibit electric quadrupolar interactions
which are typically on the order of 100 kHz in the solid state. For non-
oriented samples they give rise to the well-known line shape features in
solid state 2H NMR spectra.67 The quadrupolar interaction reflects the
symmetry of the electric field gradient tensor at the position of the nucleus
studied and is a very efficient measure of its electronic binding character-
istics. Changes in the orientation of the quadrupolar tensor with respect
to the external magnetic field are a very sensitive probe for any type of
nuclear motion inside the sample. Due to this fact, besides numerous stud-
ies of incoherent motions (see for example Refs. 68,69 or the text book70),
there are also several studies where coherent 2H motions were observed in
methyl groups70–74 and in fact methyl group tunneling seems to be quite
a common phenomenon at low temperatures75–80 as is ammonium tunnel-
ing.81–83 In solid dideuterium systems, however, until now only one exam-
ple exists where coherent rotational tunneling was observed in the solid
state.39 The main reason for this is that it is no trivial task to find a suit-
able system for the study of tunneling by 2H NMR, because not only must
the height of the rotational barrier must be in the experimentally acces-
sible range, it is also necessary that a stable selective deuteration of the
η2-bound hydrogen positions can be achieved.
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In the present review we present results from 2H low temperature
solid state NMR spectroscopy of solid η2-bound transition metal dihydro-
gen complexes. These transition metal complexes are model compounds
for the various transient states a hydrogen molecule passes through in a
catalytic or enzymatic reaction. In the course of this reaction the inter-
mediate states are in general not accessible by NMR spectroscopy, due to
their short lived nature. In the η2-bound transition metal complex, how-
ever, the dihydrogen complex state is “frozen”, i.e. the distances between
the hydrogen and the metal and between the two hydrogen atoms are fixed
and it is possible to study the structure and dynamics in this state with
NMR spectroscopy. The characterization of the structure and dynamics of
these tunneling systems is a very interesting spectroscopic task.

This review is divided as follows: after this introduction, a short sur-
vey of quantum mechanical tunneling is given. Then the effects of tunnel-
ing on chemical kinetics are summarized. Finally, isotope effects on kinetic
processes are discussed. The next section, which is written in the style of a
short solid state NMR textbook, summarizes the mathematical and tech-
nical tools necessary for understanding the results parts of the work. After
the introduction of the basic spin Hamiltonians and the dynamics of spin-
wave functions in Hilbert space, the orientation dependence of the spin
interactions are discussed, followed by a short introduction to magic angle
spinning (MAS) and simple line shape analysis of powder spectra of non-
oriented samples. The final part of this section gives a Liouville space rep-
resentation of the description of dynamic processes and chemical kinetics,
followed by an Alexander–Binsch type representation of the NMR theory
of a coupled deuterium pair under the influence of coherent tunneling and
incoherent exchange and numerical results of this theory.

Next the experimental section follows. First an overview of the inves-
tigated samples is given. Then the studies of the rotational dynamics of
η2-bound transition metal dideuterides by means of low temperature 2H-
solid state NMR spectroscopy and relaxometry are reported. Two different
systems are investigated in this part: a Ru-D2 complex with a relatively
high rotational barrier and a W-D2 complex with a lower rotational bar-
rier. In the Ru-D2 system experimental evidence for coherent D2 tunnel-
ing is found. The tunnel splitting and height of the tunnel barrier are
elucidated and the strongly non-classical dynamics of the dideuteron pair
is analyzed in detail in the temperature range from 5.2 up to 300 K.
In the W-D2 system also a non-classical dynamical behavior of the deu-
teron exchange is observed in the spin–lattice relaxation data. This again
indicates a quantum mechanical tunneling of the deuterons. From the tem-
perature dependence of the rates the height of the rotational barrier is
estimated. The comparison of the resulting data to INS data obtained
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Fig. 2. Sketch of the energy eigenstates of a dihydrogen Ha–Hb system in a two fold rota-
tional potential and symbolic representation of the symmetry adapted spin eigenfunctions.
The spatial eigenstates are labeled Ak and according to the irreducible representation of the
C2 group. The spin functions are labeled as g (gerade) for the even and u (ungerade) for
the odd linear combinations. The tunnel splitting is the energy difference between adjacent
levels Jk = E(Bk)− E(Ak). For a pair of identical hydrogen isotopes the whole wave func-
tion has to be either antisymmetric (1H–1H, fermionic system) or symmetric (2H–2H, boson-
ic system). Thus for an 1H–1H pair, the spatial Ak and Bk functions couple to the u and g
spin functions, respectively, and for an 2H–2H pair, the spatial Ak and Bk functions couple
to the g and u spin functions, respectively. Upon transitions between the dihydride (leftmost
potential) to the strongly and weakly bound dihydrogen states (center and right potential) the
depth of the hindering potential decreases and the tunnel splitting increases.

on the protonated complex reveals an unexpectedly strong 1H–2H isotope
effect (Fig. 2).

2. TUNNELING AND CHEMICAL KINETICS

This section gives an introduction to the effects of quantum mechan-
ical tunneling on chemical reactions. The first part describes the basic
properties of coherent rotational tunneling, the next section reviews inco-
herent tunneling and the Bell tunnel model and the last section discusses
briefly the appearance of isotope effects in tunneling systems.

2.1. Coherent Rotational Tunneling

In different parts of science there are several incongruent definitions
of coherent and incoherent tunneling or exchange, mainly out of histor-
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ical or practical reasons. In the following the definition most amenable
to NMR spectroscopy is used, i.e.: an exchange process of a particle is
called coherent, if the motion is related to a splitting of energy levels and
the probability of finding the particle in a given state changes periodi-
cally (modulo some phase relaxation time) as a function of time; if how-
ever external bath degrees of freedom are involved in the dynamics of the
system or the probability is describable as a rate process approaching an
equilibrium, the process is called incoherent.

Coherent rotational tunneling is similar to the quantum mechanical
tunneling of a particle in a symmetric double minimum potential. The sym-
metry of the potential causes a splitting of the ground state into a doublet,
where the energy levels are separated by the tunnel frequency.84 Since the
exchange of the two hydrogen isotopes is a symmetry operation, the corre-
sponding hindering potential possesses an exact two-fold symmetry.

The basic principles of the coherent rotational tunneling in transi-
tion metal dihydrides can be most easily discussed using the model of a
one dimensional hindered quantum mechanical rotor. In this model it is
assumed that the distance between the two hydrons, as well as their dis-
tance from the metal, does not change. In this case the angular position,
described via an angle ϕ, is used as a degree of freedom. The correspond-
ing Schrödinger equation of a rigid rotor in a harmonic twofold potential
is expressed as (2V0 describes the depth of the hindering potential):

− �
2

2mr2

d2

dϕ2
|�〉−V0(1− cos 2ϕ)|�〉=E|�〉 (1)

This is a Matthieu type differential equation. It has well known solutions
with the following properties: Due to the C2 symmetry of the problem, the
resulting eigenstates have either even or odd symmetry and the whole Hil-
bert space splits up into an odd and an even subspace. The corresponding
eigenfunctions can be easily calculated numerically by expanding Eq. (1)
into a matrix eigenvalue problem using appropriately normalized sine (for
the odd subspace) and cosine functions (for the even subspace) as base func-
tions. The resulting eigenfunctions in these two sets are cosine type functions
Cn(ϕ), which are a superposition of the cosine functions and sine type func-
tions Sn(ϕ), which are a superposition of the sine functions (Fig. 3). The
ground state wave function is always a cosine type state with even symmetry
and the first excited state is always a sine type function with odd symmetry.

The energy differences between different Cn(ϕ) or Sn(ϕ) depends
strongly on the depth of the potential 2V0 and varies between zero and
the order of typical rotational µ-wave or IR transitions (Fig. 4). At tem-
peratures in the range of 10 K only the lowest pair of eigenstates is ther-
mally populated. If both hydrons are identical (i.e. both are 1H or 2H),
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Fig. 3. Sketch of eigenstates and energy eigenvalues of the Schrödinger equation of a rigid
D2 rotor in a harmonic twofold potential for two different depths of the potential barrier.
Upper panel: V0 = 107 MHz, J0 = 6.4 × 103 MHz, lower panel: V0 = 108 MHz, J0 = 60 Hz.
Left: Potential energy curve V (φ), middle panel: Cosine type eigenfunctions Cn(φ), right
panels: Sine type eigenfunctions Sn(φ). The energy shift between cosine and sine functions is
increased artificially to demonstrate the differences in Jn between energy levels of same n.

the Pauli exclusion principle has to be fulfilled. The implications are dis-
cussed in detail in Ref. 85. From this it follows, that the spatial states are
connected to spin states in such a way that the whole wave function is
either anti-symmetric (for 1H) or symmetric (for 2H). Due to this cor-
relation of spin and spatial state, the energy difference �E between the
lowest two spatial eigenstates can be seen as an exchange coupling J0 in
NMR spectroscopy, similar to the Dirac exchange interaction of electronic
spins. As a result a spin tunnel Hamiltonian, which describes the splitting
between adjacent states of different symmetry, can be defined. If the tun-
nel splitting is of the magnitude of interactions in the NMR spectrum, it
is directly visible in the NMR spectrum.

If several pairs of tunnel levels are thermally populated, the thermal
average of the different pairs of tunnel levels has to be calculated. As long
as only a few levels far below the barrier are contributing, the values of
the various tunnel frequencies Jn=νtn will be small compared to the ther-
mal exchange rates between the level pairs and the averaging can be done
by summing up the individual values of νtn, times their thermal popula-
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Fig. 4. Tunnel frequency and HH/DD isotope effect as a function of the barrier height 2V0

for a proton pair HH and a deuteron pair DD with RDD=1 Å.

tion. This averaging can be approximated using the population of one of
the connected levels.

νt=
∑

n

νtn exp
(
−En

kT

)
(2)

The situation becomes more difficult if the values of vt are compara-
ble or greater than the thermal population rates or decay rates. In this
regime, a transition from coherent to incoherent exchange will take place,
as described in more detail in Ref. 16. There it is shown that it is possi-
ble, despite the large range of tunnel frequencies, varying between Hz and
THz, to describe the whole dynamic by a single theory: Depending on
the size of the tunnel frequency the two hydrons will exhibit strong differ-
ences in their dynamic behavior. For a low barrier height, a large tun-
nel frequency is observed. The dihydrogen pair will be at least partially
delocalized and acts more or less like a one-dimensional free quantum
mechanical rotor, similar to p-H2 and o-H2, allowing coherent (i.e. strictly
periodic) exchange processes of the individual hydrons with the tunnel fre-
quency νt. For high potential barriers the tunnel splitting goes to zero, no
coherent exchange processes take place and each hydron is located in a
single potential minimum and the dihydrogen pair is fixed. In this situ-
ation for an exchange of the two hydrons to occur a coupling to exter-
nal degrees of freedom is necessary. In this scenario the exchange of the
two hydrogen atoms is describable as a thermally activated rate process.
Compared to the previous coherent exchange, the thermally activated rate
process corresponds to an incoherent exchange of the two hydrons, which
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Fig. 5. Tunneling through a energy barrier: While the particle m with energy W <V0 is clas-
sical reflected at a, quantum mechanics allows a tunneling through the barrier from a to b.

leads to an exponential decaying curve for the probability of finding one
hydron at its initial position.

2.2. Incoherent Tunneling and the Bell Model

Parallel to the coherent tunneling due to the splitting of energy lev-
els as discussed in the previous subsection, there is a second type of tun-
nel processes, describing the classical forbidden penetration of a barrier
(Fig. 5).

The probability of penetrating the barrier depends on the energy of
the incident particle and the width, shape and height of the potential bar-
rier. For most potentials only approximate solutions (for example WKB
approximation84) or numerical calculations of the transition probability
are possible. Analytically solvable exceptions include rectangular poten-
tial steps and parabolic potentials. While the former give only very crude
approximations of a real world system, the latter, also known as the Bell
tunneling model, gives reasonably good results, when compared to experi-
mentally determined rate constants.

This subsection gives a short review of the Bell tunnel model,86 which
is employed later for describing the temperature dependence of the inco-
herent exchange processes in the Ru-D2 sample. The basic idea of the
model is to describe the potential barrier as an inverted parabola and use
the known solution of the quantum mechanical harmonic oscillator for
calculation of the transition probability.

Figure 6a displays the potential and ground state of the harmonic
oscillator according to the Schrödinger equation

[
d2

dx2
+ 2m

�2

(
E− 1

2
mω2

0x
2
)]
|�〉=0 (3)
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Fig. 6. The Bell Tunnel Model: (a) Quantum mechanical harmonic oscillator with its ground
state wave function; (b) Inverted harmonic oscillator potential. (c) a stream of particles with
a Boltzmann distribution of energies hits the barrier. Classical only those particles with W >

V0 can pass the barrier. Quantum mechanically also particles with W < V0 may pass the
barrier. (d) Comparison of classical Arrhenius rate and quantum mechanical corrected rate.
While classically the rate goes to zero for T → 0, quantum mechanically a finite plateau is
approached.

where the width 2a of potential barrier at the ground state energy level is
defined through:

E0= 1
2

�ω0=:
1
2
mω2

0a
2 (4)

Solving for ν0=ω0/(2π) expresses the oscillation frequency via the ground
state energy E0 and the width of the potential at E0:

ν0= 1
πa

√
E0

2m
(5)

If the oscillator potential is inverted as shown in Fig. 6b,

[
d2

dx2
+ 2m

�2

(
E+ 1

2
mω2

0x
2
)]
|�〉=0 (6)
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and the previous solution can be reused by introducing the imaginary
tunnel frequency νt,

νt= 1
πa

√
E0

2m
(7)

which gives the following probability for transition through the barrier:

G(W)=
[

1+ exp
(

V0−W

hνt

)]−1

(8)

In typical chemical reactions a large number of particles N0 are involved.
This situation can be modeled as a stream J = dN/dt of particles hitting
the barrier, as sketched in Fig. 6c. If the energy distribution of the particle
is described as Boltzmann distribution (dN : number of particles in energy
interval [W,W +dW ])

dN = N0 ·p(W)dW

= N0 · 1
kT

exp
(
−W

kT

)
dW (9)

The stream, i.e. the number of particles per second, which pass the
energy barrier, is given as (p(W): probability of energy W; T(W): transi-
tion probability at energy W ):

J =J0

∫ ∞

0
p(W)T (W)dW (10)

Classically only those particles with energy W >V0 may pass the bar-
rier,

T (W)=
{

0 W ≤V0

1 V0 <W
(11)

and the classical rate Jc is:

Jc= J0

kT

∫ ∞

V0

exp
(
−W

kT

)
dW (12)

which after integration yields the Arrhenius law:

Jc=J0 exp
(
− V0

kT

)
(13)
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Quantum mechanically the transition rate JQM of the Bell model is
calculated by inserting Eq. (8) into Eq. (10).

JQM = J0

kT

∫ ∞

0
exp

(
−W

kT

)
G(W)dW (14)

= J0

kT

∫ ∞

0
exp

(
−W

kT

)[
1+ exp

(
V0−W

hvt

)]−1

dW

The tunnel correction finally is defined as the ratio of quantum
mechanical to classical rate:

Qt=
JQM

Jc
= exp(V0/kT )

kT

∫ ∞

0
exp

(
−W

kT

)
G(W)dW (15)

For the numerical evaluation, Eq. (15) can be approximated by
replacing the integration with a discrete sum over a set of energy levels.
The result of such an evaluation is displayed in Fig. 6d, which compares
the classical Arrhenius rate with the quantum mechanical rates calculated
from Eq. (14). It is evident that at low temperatures the transition rate
reaches a plateau value. This plateau is determined by the tunnel proba-
bility at low temperatures. It does not coincide with the tunnel frequency
of the coherent tunneling.

2.3. Isotope Effects on Coherent and Incoherent Exchange Processes

This subsection describes the two most important isotope effects on
tunneling rates. The first effect results from the mass of the isotope, which
stems from the fact that the kinetic energy term in the Schrödinger equa-
tion depends on the mass. In the case of coherent tunneling the isotope
effect on the tunnel splitting is already included in Fig. 4.

There is a similar mass dependent isotope effect on the incoherent
tunnel rate in the Bell model due to the mass dependence of the tunnel
frequency νt (Eq. (7)). As an example Fig. 7 compares the temperature
dependent exchange rates of the various combinations of hydrogen iso-
topes.

The second isotope effect finally is due to the difference in the zero
point energy �E of different isotopes, caused by their different masses,
which results in different barrier heights of the tunneling barrier (see
Fig. 7).

3. SOLID STATE NMR STUDIES OF THE TUNNELING KINETICS

This section gives a summary of the necessary theoretical solid state
NMR background of the experiments. The section is divided into several
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parts: first the static NMR interactions, describable by time independent
interaction Hamiltonians are introduced, followed by dynamic interactions
due to coherent particle exchange. Next the quantum mechanical Hil-
bert space description of NMR spectroscopy in terms of the solution of
the time dependent Schrödinger equation is summarized and finally the
full quantum mechanical Liouville formalism of NMR theory, used for
the description of the simultaneous presence of coherent and incoherent
exchange processes, is supplied. Nuclear Magnetic Resonance (NMR)87,88

is a spectroscopic technique which covers a very large range of appli-
cation areas, due to the multitude of different NMR techniques which
are available today. Roughly three principal NMR domains can be distin-
guished, namely liquid state NMR spectroscopy,89 spatially resolved NMR
techniques90–92 and solid state NMR spectroscopy.70,93 While the main
application of liquid state NMR spectroscopy refers to the area of chem-
ical and biochemical analysis of liquid or soluble compounds, spatially
resolved NMR techniques are primarily employed for medical and tech-
nical applications. Solid state NMR spectroscopy is devoted to the chem-
ical analysis of insoluble compounds, to the study of electronic structures
in conducting systems, and generally to the characterization and investiga-
tion of structural and dynamic properties of solid systems.

Solid state NMR spectroscopy allows structural and dynamical stud-
ies of molecular conformations in solid environments. As far as the
dynamic properties of solid systems are concerned, NMR can cover a very
large dynamical range: It is possible to study processes on a time scale of
10−12 s (indirect detection of a reaction kinetics) to processes on a time
scale of 107 s (slow dynamic processes like conformational changes of a
molecule or slow chemical reactions) and observe directly or indirectly
molecular structures and their transformations on these time scales.
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3.1. Spin-Hamiltonians

The basic principles of solid state NMR spectroscopy can be most
easily understood by discussing the relevant NMR interactions. Since the
energies associated with the spin degrees of freedom are well decoupled
from the spatial degrees of freedom, it is sufficient to treat the spin quan-
tum mechanically and use a classic description for the spatial degrees of
freedom by introducing the spin-Hamiltonian. Thus all motions except
the coherent tunneling are treated classically. In contrast to most other
types of spectroscopy NMR has the unique feature, that the full quantum
mechanical interaction Hamilton operators (Hamiltonians) of the spin sys-
tem are usually known. As usual all energies are measured in units of the
angular velocity (rad/s), i.e. all energies are divided by �.

3.1.1. The Zeeman Interaction

The dominating interaction in a conventional NMR-experiment is the
Zeeman interaction between a nuclear spin and an external magnetic field
�B. In most NMR experiments the magnetic field �B consists of a constant
homogeneous field �B0= (0,0,B0), which by convention is chosen to deter-
mine the z-direction of the laboratory frame and a transversal time depen-
dent field �B1= (B1x(t),B1y(t),0). The corresponding Hamiltonians of the
Zeeman interaction are Ĥ0 and Ĥ1 respectively, where γ is the gyromag-
netic ratio of the spin, i.e.

Ĥ0=−γB0Îz (16)

and

Ĥ1=−γ (B1x(t)Îx +B1y(t)Îy). (17)

3.1.2. The Local Interactions

Apart from the global Zeeman interaction Ĥ0, which is merely an
adjustable experimental parameter, there are the interactions caused by
local fields. They are the interesting contributions to the spin Hamil-
ton operator, because only they contain non-trivial information about
the system. For organic solids essentially the following contributions are
of importance: the dipolar interaction with other nuclear spins ĤD, the
screening of the external magnetic field by the electron cloud, i.e. the
chemical shift Hamiltonian ĤCS, the interaction of a nuclear quadrupo-
lar moment with an electric field gradient, i.e. the quadrupolar interac-
tion ĤQ, the exchange or tunnel interaction ĤX and finally the indirect
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spin–spin-interaction, i.e. the J -coupling ĤJ . In addition to these inter-
actions there are several others (for example Knight-Shift, Paramagnetic
Shift), which are, however, of no importance in the present context. All
these local interactions add to the Zeeman interaction to form the total
spin Hamiltonian of the system.

Ĥ = Ĥ0+ Ĥ1+ ĤD+ ĤCS+HQ+ ĤX+HJ (18)

3.1.3. The High Field Approximation

In most NMR experiments on organic systems the nuclear Zeeman
interaction with the static external magnetic field �B0 is much stronger than
all other interactions of the nuclear spins. As a result of these differences
in the size, it is usually possible to treat these interactions in first order
perturbation theory, i.e. use only those terms which commute with the
Zeeman Hamiltonian, the so called secular terms. This approximation is
called the high field approximation. While the single particle interactions
like CSA or quadrupolar interaction have a unique form, for bilinear
interactions, one has to distinguish between a homonuclear and a hetero-
nuclear case, due to the permutation symmetry of identical particles.

3.1.4. The Magnetic Dipolar Interaction

The magnetic dipolar interaction is a result of the classical interaction
of two magnetic dipoles (�rjk is the distance vector of the two interacting
magnetic moments). Its Hamilton operator is:87

ĤD = µ0

4π
�

∑

j<k

γjγk

3( �Ij �rjk/rjk)( �Ik�rjk/rjk)− �Ij
�Ik

r3
jk

(19)

=
∑

j<k

�Ij Djk
�Ij

Here the dipolar interaction tensors Djk are introduced as a short
hand notation of the geometry dependent expression inside the double
sum. The secular part of the dipolar Hamiltonian is:

ĤD=
{

D122 �I1z
�I2z heteronuclear

D12(3 �I1z
�I2z− �I1 �I2) homonuclear

(20)



72 G. Buntkowsky and H.-H. Limbach

3.1.5. The Chemical Shift

The next contribution to the local interactions is the chemical shift
interaction, which is a result of the interaction of the �B0-field with the
electron cloud surrounding the nucleus.87 In a semi classical description
two different effects are observed: On one hand the external �B0-field
causes a partial orientation, i.e. a polarization, of the orbital magnetic
moments of the electron (paramagnetic contribution). On the other hand
the external �B0-field induces ring currents in the electron cloud, which pro-
duce, according to the Lenz rule, a field opposite to the �B0-field (diamag-
netic contribution). Employing the chemical shift tensor σ the chemical
shift Hamiltonian is

ĤCS=γ �̂Iσ �B0. (21)

The secular part of the chemical shift Hamiltonian is:

ĤCS=γ σzzB0Îz. (22)

3.1.6. The Quadrupolar Interaction

Nuclei with I >1/2 (for example deuterons) exhibit the nuclear quad-
rupolar interaction as an additional interaction. The quadrupolar inter-
action describes the coupling of an electric nuclear quadrupolar moment,
i.e. a non-spherical charge distribution inside the nucleus, to an electric
field gradient. The quadrupolar interaction is described via the so called
quadrupolar tensor Q. The quadrupolar tensor of NMR is proportional
to the electric field gradient tensor V. Due to the fact that the electric field
and thus the field gradients are mainly determined by bond directions and
charge distributions of electrons, the quadrupolar tensor is a very sensitive
tool for structural and dynamical studies. The Hamiltonian of the quadru-
polar interaction is:

ĤQ = �̂IQ �̂I (23)

= eQ

2I (2I −1)�
�̂IV �̂I

In this relation V denotes the electric field gradient tensor, i.e. the
partial derivatives of an inhomogeneous electric field:

Vkl= ∂Ek

∂xl

= ∂2φ

∂xk∂xl

k, l=x, y, z (24)
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The secular part of the quadrupolar Hamiltonian is:

ĤQ= eQ

2I (2I −1)�
Vzz

(
3Î 2

z − �̂I 2
)

(25)

3.1.7. The J Coupling

The next interaction is the so called indirect or spin–spin coupling,
which is a collection of several interactions which all have the same struc-
ture. In particular there is the interaction of the two nuclear spins via spin
paired electrons and the exchange interaction of two spin 1/2 nuclei. The
J -coupling is also described by a tensor, but in contrast to the dipolar
interaction this tensor is not traceless, resulting in a non-vanishing cou-
pling also in isotropic media.

Ĥj = �̂I 1J12 �̂I 2 (26)

The secular part of the J -coupling Hamiltonian is:

ĤJ =




J12Î1zÎ2z heteronuclear

J12 �̂I 1 �̂I 2 homonuclear
(27)

3.1.8. Exchange Interactions of a Spin

The quantum mechanical exchange interaction is the spin Hamiltonian
associated with the tunneling of the spins. A general expression for the
exchange interaction, valid for all spins, can be written with the help
of a permutation operator P̂

(
�̂I 1, �̂I 2

)
, which exchanges the coordinates

of the two spins. In the direct product base |µ,v〉 = |µ〉 ⊗ |v〉, where ⊗
denotes the tensor or direct product of two vector spaces (see for example
Refs. 84,89), the matrix elements of the permutation operator are given as:

P̂
(
�̂I 1, �̂I 2

)
|µ,v〉= |v,µ〉 (28)

Alternatively if symmetry adapted base functions |λ〉 are employed,
the permutation operator is diagonal with diagonal elements +1 if the
state has even and −1 if the state has odd symmetry.

P̂
(
�̂I 1, �̂I 2

)
|λ〉=±|λ〉 (29)

The exchange Hamiltonian is given as

Ĥx=X12P̂
(
�̂I 1, �̂I 2

)
, (30)
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where X12 is the exchange frequency, which is also called tunnel frequency
vt or tunnel splitting. Since the permutation Hamiltonian commutes with
the Zeeman–Hamiltonian, the secular part of the exchange interaction is
identical to (30).

For analytical calculations or larger spin systems, it is advantageous
to have a base-independent definition of the permutation operator in
terms of spin operators.
Exchange Interactions of Spin I = 1/2: For a spin I = 1/2 the quantum
mechanical exchange interaction was already given by Dirac in the form

ĤX=X
1
2

(
1+4 �̂I 1, �̂I 2

)
(31)

where the operator in parentheses is a permutation operator, which
exchanges the coordinates of the two spins. From the NMR point of view,
the eigenfunctions of this Hamiltonian are identical to the eigenfunctions
of the normal homonuclear spin–spin interaction and the energy eigen-
values are shifted by a constant offset of X/2, since

ĤX = X

2
+2X �̂I 1, �̂I 2 (32)

= X

2
+JX �̂I 1, �̂I 2

Thus for spin I =1/2 nuclei, the quantum mechanical exchange inter-
action is formally equivalent to an indirect spin–spin interaction. Accord-
ingly the exchange of spin-1/2 particle is usually treated like a J -coupling
(quantum exchange coupling), employing the more simple Hamiltonian

Ĥ ′X=JX �̂I 1, �̂I 2 (33)

Exchange Interactions of Spin I = 1: In the case of a spin 1 particle
the exchange interaction is no longer given by the simple Dirac exchange
operator. To achieve a base independent representation we define the fol-
lowing set of normalized single spin operators:

B1= 1√
2
Sx B2= 1√

2
Sy

B3= 1√
2
Sz B4= 1√

2
E

B5= 1√
2

√
6
(
S2

z − 2
3

)
B6= 1√

2

(
S2

y −S2
x

)

B7= 1√
2

(
SxSy +SySx

)
B8= 1√

2
(SxSz+SzSx)

B9= 1√
2

(
SySz+SzSy

)

(34)
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Employing these base operators the permutation operator of a homo
nuclear spin 1 pair is given by

P̂
(
�̂I 1, �̂I 2

)
=
∑

k

Bk⊗Bk, (35)

which can be shown by inspection.

3.2. Spin Dynamics in Hilbert Space

3.2.1. Wave Functions

Finally some facts about the dynamics of a wave function in Hilbert
space, which are used several times in this review for analytic and numeri-
cal calculations, should be mentioned. Starting point is the time dependent
Schrödinger equation of a single particle, which describes the changes of
the particle wave function |�(t)〉 under the influence of a time dependent
Hamiltonian Ĥ (t):

d

dt
|�(t)〉=−iĤ (t)|�(t)〉 (36)

Two different cases can be distinguished: (i) Ĥ does not depend
explicitly on time: Examples of this situation are all static NMR experi-
ments; (ii) Ĥ (t) depends explicitly on time. Examples of this situation are
all MAS experiments and multi-pulse experiments. In the first situation the
Schrödinger equation can be solved by the following unitary propagator:

Û (t, t0)= exp(−iĤ (t− t0)) (37)

and the time dependent wave function is given as:

|�(t)〉= Û (t, t0)|�(t0)〉 (38)

The second situation is more difficult. Two different cases have to be
analyzed:

(1) The Hamiltonian is self commuting, i.e.: [Ĥ (t1), Ĥ (t2)]= 0 for all
times t1, t2.

(2) The Hamiltonian is not self commuting, i.e. [Ĥ (t1), Ĥ (t2)] �= 0 at
least for some times t1, t2.

In the first case the kinetic equation can be solved with the help of the
following unitary propagator:

Û (t, t0)= exp
(
−i

∫ t

t0

Ĥ (τ )dτ

)
(39)
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The second case needs a more elaborate treatment: The basic idea is
to divide the time dependence of the Hamiltonian into a set of finite (or in
the limit infinitely narrow) intervals t0, t1, t2, t3, . . . tn, such that the Ham-
iltonians are self commuting in these intervals. Then for each interval a
propagator can be calculated and applied to the wave function, according
to the previous case. Alternatively it is possible to calculate the total prop-
agator as the time ordered product of the individual propagators,

Û (tn, t0)= Û (tn, tn−1)Û(tn−1, tn−2) . . . Û (t2, t1)Û(t1, t0) (40)

which can be written in a short hand style with the aid of the Dyson time
ordering operator T̂ :

Û (t, t0)= T̂ exp
(
−i

∫ t

t0

Ĥ (τ )dτ

)
(41)

3.2.2. Density Operator

In most NMR experiments systems of huge numbers of individual
spins are under investigation and only statistically averaged information
about a system is available. A tool for the description of the dynamics of
these systems is the density operator ρ̂, also called density matrix or statis-
tical operator, which contains all information extractable from the system.
Using ρ̂ the expectation value of a physical observable 〈Â〉 is given as:

〈Â〉=T r[Â · ρ̂] (42)

The equation of motion of ρ̂ under the influence of the Hamiltonian
Ĥ is:

d

dt
ρ̂=−i[Ĥ , ρ̂] (43)

This equation can be solved by the same propagators Û (t, t0)

(Eq. (39) or Eq. (41)) as the Schrödinger equation of the wave function
(Eq. (36)):

ρ̂(t)= Û (t, t0) · ρ̂(t0) · Û−1(t, t0) (44)
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3.3. Orientation Dependence of Solid State NMR Interactions

Most NMR interactions possess an orientation dependence and are
described with interaction tensors T, i.e. real symmetric 3×3 matrices.

T=



T11 T12 T13
T21 T22 T23
T31 T32 T33



 (45)

In high field approximation, if the �B0-field points into the z-direction,
only the Tzz-component of these tensors contributes to the spectrum:

Tzz= �ezT�ez (46)

There is a close relationship between the orientation of these tensors
and molecular structures. This implies that different orientations of, for
example, a molecule with respect to the �B0-field, correspond in general to
different values of Tzz. For many calculations it is convenient to keep the
orientation of the tensor fixed and vary the direction of the external field.
Expressing the magnetic field in polar coordinates employing polar angles
α and β, the unity vector �b in the direction of the �B0-field is

�b=
�B0

B0
=



cosα sin β

sin α sin β

cosβ



 , (47)

which results in the following expression for the secular component of the
tensor:

Tzz(α,β)= �bT�b (48)

If only a single interaction tensor is present, it is always possible to
choose the principle axis system (PAS) of T as the coordinate system,
resulting in the following expression:

Tzz(α,β)=T11 cos2 α sin2 β+T22 sin2 α sin2 β+T33 cos2 β (49)

It is convenient to express this equation in a bit different fashion,
which is more adapted to the intrinsic symmetry of the tensor, by intro-
ducing as new variables the trace of the tensor Tiso as its isotropic (spheri-
cal symmetric) component, the anisotropy parameter δ, which is a measure
of the deviation from spherical symmetry and the asymmetry parameter η,
which describes the relative deviation from axial symmetry:
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Tiso =
1
3
(T11+T22+T33)

δ = T33Tiso

η = T22−T11

T33−Tiso
(50)

Employing these variables Eq. (49) simplifies to:

Tzz(α,β)=Tiso+
1
2
δ(3 cos2 β−1−η sin2 β cos2 α) (51)

If single crystals of the sample material are available, the orientation
dependence of the NMR transition frequencies can be exploited for deter-
mining both principle axes and values of the interaction tensor by record-
ing sets of NMR spectra by rotating the external field in different crystal
planes.

Since in this situation a geometric reference frame is already spanned
by the rotation axis and the direction of the �B0-field, there is no more
rotational freedom around the �B0-field and consequently a generalized
set of polar angles is necessary for characterizing the mutual orienta-
tion of external field, rotation axis and sample, the so-called Euler angles
(α,β, γ ). With the aid of these three angles it is possible to fully deter-
mine the mutual orientation of two different three dimensional coordi-
nate systems. There exist several equivalent definitions of these angles. In
the following the definition most common in NMR spectroscopy94 is used
(Rk(φ): rotation around axis k=x, y, z with angle φ):

R(α,β, γ )=Rz(γ )Ry(β)Rz(α) (52)

This rotation can be described as the real 3×3 matrix:

R(α,β, γ )

=



cosα cosβ cosγ − sin α sin γ sin α cosβ cosγ + cosα sin γ − sin β cosγ

− cosα cosβ sin γ − sin α cosγ − sin α cosβ sin γ + cosα cosγ sin β sin γ

cosα sin β sin α sin β cosβ





(53)

The representations of the tensor in the crystal frame and in the PAS
frame are related via a rotation ( αPas, βPas, γPas: Euler angles which trans-
fer the PAS frame into the crystal frame):
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T =



Txx Txy Txz

Tyx Tyy Tyz

Tzx Tzy Tzz





= R(αPas, βPas, γPas)




T11 0 0
0 T22 0
0 0 T33



R−1(αPas, βPas, γPas) (54)

3.3.1. Powder Spectra

Only for few materials single crystals of suitable size for NMR studies
are available. Most organic materials, however, exist only as polycrys-
talline or amorphous powder samples, where a statistical distribution of
molecular and thus tensor orientations exists, causing a corresponding dis-
tribution of resonance frequencies. The NMR signal is the sum of the
contributions of all different orientations present in the sample. If all
molecular orientations have equal probability (non-oriented powder sam-
ple), this is simply the integral over all possible orientations. The region
of the integral depends on the type of problem: in the case of an axial
symmetric problem for example, because the direction of the �B0-field is
the only unique direction and therefore the two polar angles describing
the direction of the �B0-field in the tensor frame are sufficient to determine
the orientation, it is possible to integrate over the surface of a unit sphere
employing the polar angles ϑ and φ. In this case the FID is given as:

M+(t) = 1
4π

∫ 2π

0

∫ π

0
M+(t, φ,ϑ) sin ϑ dϑ dφ

= 1
4π

∫ 2π

0

∫ π

0
T r[Î +ρ(t, φ,ϑ)] sin ϑ dϑ dφ. (55)

The NMR spectrum is simply the Fourier transform of this time sig-
nal. For some special cases (pure chemical shielding, quadrupolar or het-
eronuclear dipolar interaction) an analytic solution of this double integral
in terms of elliptic integrals exists (see Ref. 88). However, in most cases a
numerical evaluation of the integral has to be performed.

In the case of no axial symmetry with respect to the �B0-field, as for
example in many MAS experiments, where the coordinate frame is fully
determined by the rotation axis and the direction of the �B0-field, in gen-
eral a full integration over all three Euler angles has to be performed.

M+(t)= 1
8π2

∫ 2π

0

∫ π

0

∫ 2π

0
M+(t, α, β, γ ) sin β dα dβ dγ (56)
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3.3.2. 2H MAS-NMR Distance Measurements of Dipolar Coupled
Deuteron Pairs

While solid state NMR techniques are well suited to determine dis-
tances of heteronuclear spin pairs like 15N–13C95 or homonuclear pairs
like 13C–13C,96 they are exceedingly difficult to apply to η2-bound transi-
tion metal complexes, due to presence of hydrogens on the other ligands
of many dihydrogen complexes. Therefore only few examples of a success-
ful application of solid state 1H NMR to determine H–H distances in this
class of compounds are known.45,97,98

If one is interested in the D–D distance between a homonuclear pair
of deuterons the situation becomes even more difficult, since in this sit-
uation the strong quadrupolar interaction and the relatively weak homo-
nuclear dipolar coupling, due to the low gyromagnetic ratio of the 2H
nucleus and the comparatively large distances, render it often unfeasible
to extract the distance information from the static 2H NMR spectra. For-
tunately the η2-bonded dideuterium complexes are exceptions of this for
the following two reasons: first many of them have short D–D distances
with correspondingly strong dipolar couplings and second, the quadrupo-
lar couplings are relatively weak, typically in the range 50–100 kHz, due
in part to the high mobility of the hydrons found in these compounds. In
this section, a MAS technique is described, which can solve this problem.
A detailed analysis of this technique, which is rather elaborate, is found
in Facey et al.99 Here, only the results obtained on the labeled Osmium
complex Os(D2)(Cl)2(CO)(PiPr3)2 are presented as an example of this
MAS-technique.

Figure 8a displays the slow spinning (4000 Hz) 2H MAS NMR spec-
trum of the Os-D2 complex at 30.7 MHz. A striking feature of the MAS
spectrum is the broadening of the base of the individual side bands. The
enlargement shows that the line shape of the individual side bands resem-
bles a typical Pake line shape with additional spectral intensity in the cen-
ter of the side band. On closer inspection of the line shape of these side
bands it is evident that there is some variation in the actual width and
form of the line shape as a function of the side band order. A detailed
numerical and theoretical discussion given in Ref. 99 shows that these Pake
like side band patterns are the result of an interference effect between the
2H-homonuclear dipolar and 2H-quadrupolar interaction.

For the numerical analysis of the D–D distance, the individual side-
bands are collapsed onto a single line and this line is fitted by a numerical
simulation. The best fit (Fig. 8b) was obtained for a dipolar coupling of
D=3.2±0.2 kHz, corresponding to a DD-distance of 0.96±0.02 Å and an
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Fig. 8. (a) 2H-MAS-NMR spectrum of OS-D2 complex obtained at 4000 Hz spinning
speed and enlargement of the central two side bands (dashed rectangle). The spinning side
bands clearly exhibit a Pake like shape. (b) Comparison of the collapsed experimental side
band spectrum and the fitted average Hamiltonian spectrum (νROT = 4000 Hz, 2β = 0◦,
D=3.2 kHz).

angle of 2β = 0◦ for the mutual orientation of the tensors. The resulting
angle shows that the two deuterons are in fast exchange.

It is interesting to compare the D–D distance obtained from the AVH
spectrum to the distance obtained from the H–H isotopomer. In solu-
tion an H–H distance of between 0.9 and 1.1 Å was estimated from the
minimum T1 of the H2 complex, with the 1.1 Å value considered to be
more likely on the basis of the small 1J (HD) value of the HD isotopom-
er.100,101 Thus the D–D distance is comparable to the H–H distance but
slightly shorter. While part of this shortening could be the result of the
DD stretching vibration, which, due to the < r−3 > averaging of NMR,
favors shorter distances it is also an indication of an isotope effect on the
distance, possibly due to a shift of the average deuteron positions in the
anharmonic potential.

3.4. Chemical Kinetics and Liouville Space

This section summarizes the basic formalism for the description of
chemical dynamics and exchange processes in two-site systems. Readers
interested in a more extensive coverage of the field are referred to the
recent review article by Bain.102 The description given here is restricted
to first order kinetics. The basic idea of this formalism is that the time
scale of a chemical reaction or an exchange process is fast compared to
the NMR time scale. Under this assumption the chemical reaction leads
to a fluctuating time dependence of the spin-Hamiltonian and it is permis-
sible to treat the reaction as an instantaneous exchange between different
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molecular configurations, described by different static Hamiltonians, with-
out having to take into account the actual reaction coordinates or path-
way.

The description of chemical exchange processes is most easily done in
a composite Liouville space, which is the tensorial sum of Liouville spaces
corresponding to the individual Hamiltonians, i.e. to a single molecular
configuration, which in the following is called a site. For the case of
mutual exchange of protons the resulting theory is a generalized version of
the original Alexander–Binsch51,52 theory for the calculation of exchange
broadened 1H-liquid state NMR spectra. From the NMR point of view
two cases have to be distinguished:

(1) Chemical exchange between sites with different chemical shielding,
quadrupolar interactions or heteronuclear dipolar interactions. In
this situation all Hamiltonians are diagonal in the same base set
and it is possible to simply solve the equation of motion of the var-
ious single spin operators Îx or Î+, i.e. in a small subspace of the
composite Liouville space, resulting in a relatively small set of cou-
pled linear differential equations.

(2) Chemical exchange in the presence of homonuclear couplings
or more general non-diagonal Hamiltonians. In most cases it is
impossible to find a single base, which simultaneously renders all
Hamiltonians to be diagonal.

As a model, which covers most features of exchange processes, the
equations of motion of a single spin, exchanging between two sites with
different resonance frequencies (for example different isotropic chemical
shielding in a liquid or different chemical shielding anisotropy due to a
reorientation jump in a solid) with reaction rates k12 and k21 respectively,
are discussed. The two sites are characterized by their individual site Ham-
iltonians:

Ĥ1 = ω1Î1z

Ĥ2 = ω2Î2z (57)

First two limiting cases can be distinguished: (i) the reaction rates are
zero, (k12=k21=0). In this case the resulting spectrum is just the superpo-
sition of two lines, observed at resonance frequencies ω1 and ω2. (ii) the
exchange is much faster than the frequency difference, i.e.: (|k12 − k21| ∼
|ω1−ω2|). In this situation the fast exchange leads to a weighted average
of the two Hamiltonians (ω̄: weighted average frequency):
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ˆ̄H = k12

k12+k21
Ĥ1+ k12

k21+k12
Ĥ2

= ωÎz (58)

If neither of these two conditions is fulfilled the equation of motion
of the density matrix has to be solved:

d

dt
|ρ1) = − ˆ̂W 1|ρ1)−k12|ρ1)+k21|ρ2)

d

dt
|ρ2) = − ˆ̂W 1|ρ1)−k21|ρ2)+k12|ρ1) (59)

Here |ρ1) and |ρ2) denote the density matrices in the two subspaces of

Liouville space and ˆ̂Wn= ˆ̂Ln+ ˆ̂Rn (with n=1,2) is a superoperator which

describes the coherent dynamics ˆ̂Ln and the relaxation ˆ̂Rn in the two sites.

For simplicity it is assumed that the relaxation superoperators ˆ̂Rn are sim-
ply Bloch type operators, i.e. diagonal with two characteristic relaxation

times T1 and T2. The subspace Liouville operators ˆ̂Ln can be constructed
from the site Hamiltonians:

ˆ̂
Ln= Ĥn⊗ Ên− Ên⊗ Ĥn (60)

The exchange superoperator ˆ̂K, which connects the two subspaces of
composite Liouville space is given as the direct product of the reaction

matrix and the identity operators ˆ̂En in the subspaces:

ˆ̂
K=

(−k12 k21
k12 −k21

)
⊗ ˆ̂En (61)

In composite Liouville space the density operator and the Liouville
and relaxation superoperators are the direct sums of their counterparts in
the subspaces:

|ρ) = |ρ1
)⊕|ρ2

)

ˆ̂
L = ˆ̂L1⊕ ˆ̂L2
ˆ̂
R = ˆ̂R1⊕ ˆ̂R2
ˆ̂
W = ˆ̂W 1⊕ ˆ̂W 2

(62)

The coupled differential equations Eq. (59) become a single equation
in composite Liouville space

d

dt
|ρ)= (− ˆ̂W + ˆ̂K)|ρ)=:− ˆ̂M|ρ). (63)
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where for brevity ˆ̂M2 is introduced as the “dynamical superoperator”. If
ˆ̂
M2 does not explicitly depend on time, the solution of Eq. (63) is

|ρ(t)
)= exp

(− ˆ̂Mt)|ρ(0)
)
. (64)

If the system is treated at finite temperature, the equilibrium density
matrix will be different from zero, and the Liouville–von Neumann equa-
tion is obtained as the kinetic equation of the density matrix

d

dt
|ρ)=− ˆ̂M |ρ−ρ∞

)
, (65)

with the solution

|ρ(t)
)= exp(− ˆ̂Mt)|ρ(0)−ρ∞

)+ |ρ∞
)
. (66)

3.4.1. Incoherent Exchange in the Presence of Diagonal Hamiltonians

If the site-Hamiltonians are diagonal in the Zeeman base, only a
small subspace of the Liouville space, which is spanned by the operators
Î1+ and Î2+, contributes to the NMR FID or spectrum. Choosing these
operators as base operators of this subspace, the FID (the time evolution
of the magnetization M+(t)) is

M+(t)=
(

1
1

)
exp

((−k12− r1− iω1 k21
k12 −k21− r2− iω2

)
t

)(
p1
p2

)
, (67)

where p1 and p2 are the respective initial populations of site 1 and site
2. For a quantitative evaluation, it is most convenient to diagonalize the
2×2 matrix and transform the equation into the eigenbase of the matrix:

M+(t)=
(

1
1

)
S · exp

(
λ1t 0
0 λ2t

)
·S−1 ·

(
p1
p2

)
(68)

Evaluating the scalar products gives the FID:

M+(t) = (S−1
11 +S−1

21 )+ (S11p1+S12p2) exp(λ1t)

+(S−1
12 +S−1

22 )(S21p1+S22p2) exp(λ2t)

= c1 exp(λ1t)+ c2 exp(λ2t) (69)

Fourier transforming yields the spectrum, a superposition of two
complex Lorentzian lines:

M+(ω)= c1
1

−λ1+ iω
+ c2

1
−λ2+ iω

(70)
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It is possible to immediately generalize these results to describe larger
exchanging systems, provided that the Hamiltonians of the individual sites
have the Zeeman base as a common eigenbase.89

3.4.2. Incoherent Exchange in the Presence of Non-Diagonal Hamiltonians

The situation is more elaborate, if homonuclear couplings are present,
or more generally, if some or all of the involved Hamiltonians are non-
diagonal. In this situation two different cases can be distinguished: If the
Hamiltonians have a common eigenbase, i.e., if it is possible to simulta-
neously diagonalize them, the exchange problem reduces after transforma-
tion of the detection operator (Î+| and the initial density operator |ρ0) to
the previous case.

If it is not possible to simultaneously diagonalize both Hamiltonians,
as for example in the numerical and analytical simulations of para-hydro-
gen induced polarization experiments (1H-PHIP)50 and 2H exchange and
tunnel spectra, a different strategy has to be applied. If the same spin base
functions are used for both sites, the problem is describable by the same
set of coupled differential equations as Eqs. (63) and (65). However, in
general it is no longer possible to achieve a blocking of the dynamic su-
peroperator in sets of 2×2 matrices by choosing for example the Î+ oper-
ators as base operators of Hilbert space. Therefore the evaluation of the
density operator occurs in larger subspaces, making it necessary to either
evaluate the full matrix exponential or alternatively to search for suitable

subspaces, which transform ˆ̂
M into a block diagonal form.

3.4.3. NMR-Line Shape Analysis of Tunneling Systems

This section is devoted to a discussion of the analysis of NMR line
shapes and relaxation data for elucidation and interpretation of coherent
and incoherent rate constants.

As a starting point of this discussion a very basic question from
quantum mechanics, regarding indistinguishable particles has to be shortly
addressed: One of the basic postulates of quantum mechanics states that
the wave function of identical particles must be symmetric or anti-symmet-
ric. Thus in theory it is not possible to observe the motion of an indi-
vidual H-atom in an H2-system. By NMR however it is possible for all
practical purposes to follow this motion, owing to the fact that NMR does
not observe the nuclear motion of individual hydrons, but changes in the
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resonance frequencies of nuclear spin states of a large ensemble of spins
(weak measurement). These changes of frequency are interpreted as the
result of a physical exchange of the hydrons and not as the result of a spin
or magnetization exchange of the hydrons, which would lead to the same
spectrum. Thus the following discussion does not violate the basic princi-
ples of quantum mechanics.

Starting point of the description of the effect of coherent tunneling
on the 2H NMR spectra are the spin Hamiltonians in high field approx-
imation. The relevant contributions are in the first approximation the
quadrupolar interaction ĤQ and the coherent tunnel exchange interaction
ĤX:

Ĥ = ĤQ+ ĤX

= q1

(
Î 2

1z−
2
3

)
+q2

(
Î 2

2z−
2
3

)
+X12P̂

(
�̂I 1, �̂I 2

)
(71)

In these equations, q1 and q2 are the quadrupolar couplings of the
spins, X12 is the coherent tunnel frequency, P̂

(
�̂I 1, �̂I 2

)
is the permutation

operator of the two spins in spin space. If the nine Zeeman product func-
tions of the two-spin system are chosen as base functions the matrix rep-
resentation of the Hamiltonian is

Ĥ =





X12+ 2
3 Q 0 0 0 0 0 0 0 0

0 − 1
3 Q−q 0 X12 0 0 0 0 0

0 0 2
3 Q 0 0 0 X12 0 0

0 X12 0 − 1
3 Q+q 0 0 0 0 0

0 0 0 0 X12− 4
3 Q 0 0 0 0

0 0 0 0 0 − 1
3 Q+q 0 X12 0

0 0 X12 0 0 0 2
3 Q 0 0

0 0 0 0 0 X12 0 − 1
3 Q−q 0

0 0 0 0 0 0 0 0 X12+ 2
3 Q





which can be diagonalized analytically. The eigenvalues and corresponding
eigenvectors are shown in the following table
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E1,2,3=X12+ 2
3Q |1〉=++〉

|2〉= |−−〉
|3〉= 1√

2
(|+−〉+|−+〉)

E4,5=− 1
3Q−

√
X2

12+q2 |4〉= 1√
2
(cosφ|−0〉− sin φ|0−〉)

|5〉= 1√
2
(− sin φ|0+〉+ cosφ|+0〉)

E6,7=− 1
3Q+

√
X2

12+q2 |6〉= 1√
2
(cosφ|0−〉+ sin φ|−0〉)

|7〉= 1√
2
(sin φ|+0〉+ cosφ|0+〉)

E8=X12− 4
3Q |8〉= |00〉

E9=−X12+ 2
3Q |9〉= 1√

2
(−|+−〉+|−+〉)

(72)

where the angle φ is defined via tan φ= q+
√

q2+X2
12

X12
.

In contrast to the coherent exchange interaction the quadrupolar
interaction depends on the relative orientation of the magnetic field to the
quadrupolar tensor. Since both deuterons can be assumed to be chemically
equivalent, their quadrupolar tensors are related by a geometrical trans-
formation. If we assume C2ν symmetry of the M-D2 group by neglecting
possible crystal effects, one of the three principal axes of the quadrupolar
tensor will be perpendicular to the M-D2 plane, and the axis bisecting the
bond angle (2α) will be a twofold symmetry axis (C2). A coordinate sys-
tem (Fig. 9) is chosen in such a way that the z-axis bisects the bond angle
and that the y-axis is perpendicular to the bond plane. The two quadru-
polar tensors are related by a rotation R(β) with angles ±β around the
y-axis of the coordinate system. The angle β depends on the strength of
the electric field gradients caused by the metal and by the other deute-
rons. In particular in the case of a dihydride, β will be half the bond angle
(i.e. β = α). For molecular dihydrogen with a very weak interaction with
the metal or dihydrogen complexes, where the M–D bonding is negligi-
ble compared to the D–D bonding, the two quadrupolar tensors will have
their z-axis in the direction of the D–D axis, i.e. : β=π/2. For simplicity
we will call these complexes pure dihydrogen complexes.

The quadrupolar tensors in the molecular coordinate system
(Q1 and Q1) are related to the quadrupolar tensor in its principal axis sys-
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x
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ββ
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D2 D1

C2

qxx

qzz

–β

–β

qxx

qzz

β

β

z z

yqyy

qyy

α α

Fig. 9. M-H2 coordinate system used for the description of the relative spatial orientation of
the two quadrupolar tensors of deuterons D1 and D2. C2ν symmetry is assumed for the deu-
terons and therefore one of the principal axis (qyy) is parallel to y. The quadrupolar tensor
of deuteron D2 is obtained by a 180◦ rotation around the z-axis of the coordinate system.
For describing the relative orientations of the tensors it is more convenient to use the angle
between the z-axis and the qzz-component. Note that in general the bond angle 2α will not
coincide with the jumb angle 2β, i.e. 2α �=β.

tem (QPAS) via the following rotations

Q1 = R(β)Q̃PASR−1(β)

Q2 = R−1(β)Q̃PASR(β) (73)

The rotation matrix R(β) is

R(β)=



cosβ 0 − sin β

0 1 0
sin β 0 cosβ



 (74)

and the quadrupolar tensors become (qxx, qyy, qzz: principal values of the
quadrupolar interaction):

Q1,2=



qxx cos2 β+qzz sin2 β 0 ±(qxx −qzz) cosβ sin β

0 qyy 0
±(qxx −qzz) cosβ sin β 0 qxx sin2 β+qzz cos2 β



 (75)

The quadrupolar frequencies are calculated from Q1,2 employing Eq.
(48).
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In the absence of incoherent exchange processes, the whole dynam-
ics of the system can be described directly in Hilbert space and the spec-
tra can be calculated directly from Ĥ . However, as soon as incoherent
exchange mechanisms are present, this approach is no longer valid. A
method for tackling this type of problems is the generalized Alexander–
Binsch formalism.

3.4.4. Generalized Alexander–Binsch Theory and Incoherent Dynamics

In this section a formulation of simultaneous coherent (tunneling) and
incoherent exchange processes of dihydrogen and dideuterium is given,
using a density matrix formalism which is a generalized version of the
original Alexander–Binsch theory for the calculation of exchange broad-
ened NMR spectra of mutually exchanging protons. The idea behind this
theory is to treat the incoherent exchange caused by the fluctuating time
dependence of the parameters in the Hamiltonian as above and include an
additional coherent exchange spin Hamiltonian which describes the tun-
neling.

The incoherent exchange occurs between several molecular configu-
rations (denoted by capital letters A,B,. . . ) with an exchange rate which
is determined by the rate of the fluctuation. In the following, for brevity
these molecular configurations are called states.

The various dihydrogen states (n) are characterized by their basic spin

Hamiltonians Ĥn, respectively by their state Liouville superoperators ˆ̂Ln,
which are combined to the composite Liouville space. In this composite
Liouville space the solution of the Liouville–von Neumann equation Eq.
(65) has to be computed.

3.4.5. The Self Exchange Operator

In the following a derivation of the self exchange operator, i.e. the
operator of the coherent mutual exchange of two identical particles and
an analysis of its properties are given.

In the case of a mutual exchange of two equal nuclei, for example two
protons or two deuterons as in our case, permutation symmetries in the
Hamiltonian will lead to a projection of the whole Liouville space onto
a subspace, as shown below. In this case the mutual exchange of the two
nuclei corresponds to a permutation of the two nuclei which exchanges
their individual quadrupolar couplings in Eq. (71).

In this case, because of the symmetry of the problem, it follows that:
k12= k21= k. The Hamiltonian of the system consists of three parts. The
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individual Hamiltonians of the spins �̂I 1 and �̂I 2, which are most easily
described by assigning them to molecular sites m :=1,2 i.e.: Ĥm

(
�̂I 1

)
is the

Hamiltonian of spin n in site m; and a Hamiltonian Ĥ1,2

(
�̂I 1, �̂I 2

)
describ-

ing the coupling between the two spins. Due to the permutation symmetry
of the two nuclei the latter is necessarily invariant under the permutation
of the two nuclei, i.e. commutes with the permutation operator P̂

(
�̂I 1, �̂I 2

)
.

The incoherent process is then a permutation of the individual Ham-
iltonians with rate k, i.e.:





Ĥ1

(
�̂I 1

)

Ĥ2

(
�̂I 2

)





k←→




Ĥ1

(
�̂I 1

)

Ĥ2

(
�̂I 2

)




 , (76)

which can be regarded as a fluctuation between Ĥa and Ĥb with the rate
k:

Ĥa = Ĥ1

(
�̂I 1

)
+ Ĥ2

(
�̂I 2

)
+ Ĥ12

(
�̂I 1, �̂I 2

)

Ĥb = Ĥ2

(
�̂I 1

)
+ Ĥ1

(
�̂I 2

)
+ Ĥ12

(
�̂I 1, �̂I 2

)
(77)

The equations of motion for the density operator Eq. (59) reduce to:

d

dt
|ρA ) = − ˆ̂WA|ρA )−k|ρA−ρB )

d

dt
|ρB ) = − ˆ̂WB|ρB )−k|ρB−ρA ) (78)

In Liouville space, the permutation of the two nuclei is described by

a permutation superoperator ˆ̂P 12, which is constructed from the permuta-
tion operator in Hilbert space P̂

(
�̂I 1, �̂I 2

)

ˆ̂
P = P̂

(
�̂I 1, �̂I 2

)
⊗
(
�̂I 1, �̂I 2

)∗
(79)

where P̂
(
�̂I 1, �̂I 2

)∗
denotes the complex conjugate of operator P̂

(
�̂I 1, �̂I 2

)
.

Since ˆ̂P 2 is a permutation superoperator, applying it twice gives the iden-

tity ˆ̂Id.

ˆ̂
P 12
ˆ̂
P 12= ˆ̂Id i.e. ˆ̂P 12= ˆ̂P

−1

12 (80)



2H-Solid State NMR Studies 91

Employing ˆ̂P 12, the permutation symmetry of the nuclei is expressed
as:

ˆ̂
WA= ˆ̂P 12

ˆ̂
WB− ˆ̂P

−1

12 (81)

In a matrix representation the equation of motion for the density
matrix in composite Liouville space has the following form

d

dt

(
ρa
ρb

)
=
(
− ˆ̂WA−k

ˆ̂
Id k

ˆ̂
Id

k
ˆ̂
Id − ˆ̂WB−k

ˆ̂
Id

)(
ρa
ρb

)
, (82)

which can be transformed by the superoperator
( ˆ̂

Id 0

0 ˆ̂
P 12

)
(83)

into

d

dt

(
ρa
ˆ̂
P 12ρb

)
=
(
− ˆ̂WA−k

ˆ̂
Id k

ˆ̂
P 12

k
ˆ̂
P 12

ˆ̂
WA−k

ˆ̂
Id

)(
ρa
ˆ̂
P 12ρb

)
. (84)

This matrix differential equation can be block diagonalized with the
help of the symmetric ρg and asymmetric ρu linear combinations of ρA

and ˆ̂P 12ρB. The decoupled differential equations are

d

dt

(
ρg
ρu

)
= d

dt

(
ρa+ ˆ̂P 12ρb

ρa− ˆ̂P 12ρb

)

=
(
− ˆ̂WA−k(

ˆ̂
Id− ˆ̂P 12) 0

0 ˆ̂
WA−k(

ˆ̂
Id− ˆ̂P 12)

)
d

dt

(
ρa+ ˆ̂P 12ρb

ρa− ˆ̂P 12ρb

)
. (85)

These transformations are projections of the complete Liouville space
into the symmetric Lg and anti symmetric Lu subspace. Because of the
symmetry of the states, the initial condition in normal NMR experiments

will be ρA(0)= ˆ̂P 12ρB(0) and thus the anti symmetric density matrix is
zero initially (ρu(0)= 0) and hence for all times and only the symmet-
ric subspace Lg has to be considered in the time evolution of the density
matrix, which gives the following equation for ρg:

d

dt
|ρg) = − ˆ̂WA−k(

ˆ̂
Id− ˆ̂P 12)|ρg )

= −(
ˆ̂
WA+ ˆ̂K|ρg) (86)

where the self-exchange superoperator ˆ̂K is introduced:
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ˆ̂
K=−k(

ˆ̂
Id− ˆ̂P 12) (87)

This formal derivation of the self-exchange can be interpreted using
a physical picture. In the symmetric linear combination of the individual
density matrices, the two spins have lost their individuality. However, the
individual Hamiltonians are still distinct and correspond usually to differ-
ent molecular or, more generally, different spatial sites, which are charac-
terized by their NMR parameters. Thus, the labeling of the spins is done
via these sites (1, 2), and is sometimes called site labeling.

3.4.6. Physical Properties of the Self Exchange Operator

To understand the physical properties of the self exchange operator,
it is most useful to use the representation of the permutation operator
P̂
(
�̂I 1, �̂I 2

)
in a symmetry adapted base, where it is diagonal with diagonal

elements ±1 (see Eq. (29)). If µ is an index, which denotes the symmetry
of the eigenfunction the matrix representation is (δjk: Kronecker symbol):

P̂
(
�̂I 1, �̂I 2

)

jk
= (−1)µδjk where

{
µ=0 : even
µ=1 : odd (88)

A simple calculation (see Ref. 8 for details) shows that the permuta-

tion superoperator in Liouville space ˆ̂P 12 is diagonal in this base, with
matrix elements which are either +1, if states of the same symmetry µ=λ

are connected, or −1, if states of different symmetry µ �=λ are connected:

(
ˆ̂
P 12)ij,kl= δij · δkl ·

{+1 µ=λ

−1 µ �=λ
(89)

For simplicity double indices from the Hilbert space base are used as
indices for the Liouville space. In this base the self-exchange superoperator
ˆ̂
K is also diagonal with matrix elements 0, if states of the same symmetry
are connected and matrix elements −2k, if states of different symmetry are
connected:

ˆ̂
Kij,kl=−k

(
δij · δkl ·

{
0 µ=λ

2 µ �=λ

)
. (90)

This result can be interpreted using a simple physical picture: In the
symmetry adapted base, the self-exchange operator acts as a relaxation
operator for coherences created between the states of different symmetry,
which relax with the rate −2k. It is important to note that this result is

not restricted to NMR but is also valid for INS for example, where ˆ̂K cre-
ates broadening of the energy loss and energy gain transitions.
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3.4.7. Exchange Processes Monitored via2H-Spin–Lattice Relaxation

Besides affecting the shape of the 2H NMR spectra, coherent and
incoherent exchange effects can also influence the 2H-spin–lattice relax-
ation rates. Assuming that mainly the incoherent exchange and classical
over the barrier motion will contribute to the spin–lattice relaxation rate,
in particular at higher temperatures, there is a direct relation between
the characteristic time constant τc in the spectral density functions in the
relaxation model and the incoherent exchange rates k:

τc(T )= 1
2k12

(91)

The actual spin–lattice relaxation rate depends on the motional model
of the exchange process.103 In the general case, where the motional model
is not known exactly, an effective coupling rate constant KEFG can be
used.87

1
T1
=KEFGJ (τ) (92)

Several special types of motions are discussed in the literature: (a) iso-
tropic rotational diffusion104 (Eq. (93)), (b) jump motions of the deute-
rons employing the model of105,106 (note: Eq. (94) is calculated from the
single crystal value given in reference106 by integrating the relaxation over
all possible crystal orientations); (c) axial symmetric rotational diffusion104

(Eq. (95)). If J (τ) describes the spectral density function of the fluctua-
tions, the corresponding relaxation functions are

1
T1
=0.3π2q2

ccJ (τ), (93)

1
T1
= 9

160
sin2 βq2

ccJ (τ), (94)

1
T1
=0.3π2q2

cc

(
1
4
(cos2 β−1)J (τ0)+3 sin2

β cos2 βJ (τ1)+ 3
4

sin4
βJ (τ2)

)
.(95)

τ or (τ0, τ1, τ2) are correlation times of isotropic and anisotropic motions,
respectively. β is the angle between rotation axis and tensor axis (and
relates to the angle between the two tensor axes). J (τ) is the usual spectral
density function of the fluctuations

J (τ)=
(

τ

1+ω2τ 2
+ 4τ

1+4ω2τ 2

)
. (96)
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Fig. 10. T1 temperature dependence: Arrhenius and tunnel process (Bell model). The plateau
in the tunnel process is the result from the plateau in the incoherent tunnel rate calculated in
the Bell model (see Fig. 6d).

The overall differences in the shapes of the relaxation curves, cal-
culated with these models, are relatively small over large temperature
ranges. For an Arrhenius dependence of τ on the temperature, a single
T1 minimum and a parabolic dependence of log T1 on the temperature
is expected. The situation changes if τ exhibits a non-Arrhenius behavior,
for example due to tunneling. In this situation, Eq. (91) can to be used to
determine the exchange rates from the T1 rates, if the position and value
of the T1 minimum is known. Figure 10 compares, as an example, the nor-
mal Arrhenius T1 curve to a non-Arrhenius T1 curve, due to tunneling.

3.4.8. Subspace Structure of the Liouville Space

One major problem in the simulation of the influence of the inco-
herent exchange rates on the 2H NMR spectra is that, due to the size of
the Liouville operator, the necessary numerical simulation of the spectra
is very time consuming and renders it impossible to fit experimental spec-

tra in a reasonable time. Realizing that the matrix representation of the ˆ̂M
superoperator is highly sparse, we started to analyze the subspace struc-

ture of the Liouville space. We found that ˆ̂M can be transferred into a
block diagonal form, where all the evolution of the measurable magneti-
zation takes place in four two dimensional {L1,L2,L3,L6} and two four
dimensional subspaces {L4,L5} of the Liouville space, which are spanned
by the following sets of base vectors:
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L1 =
{ | 0 − − − )

| − 0 − − )

}
L2=

{ | 0 + + + )

| + 0 + + )

}

L3 =
{ | 0 0 − 0 )

| 0 0 0 − )

}
L6=

{ | + + 0 + )

| + + + 0 )

}
(97)

L4 =






| − + 0 − )

| − + − 0 )

| + − 0 − )

| + − − 0 )





L5=






| 0 + + − )

| + 0 + − )

| 0 + − + )

| + 0 − + )





(98)

The resulting two dimensional suboperators ˆ̂Mk are:

ˆ̂
M1

(−k+2πi(q1+X12) k−2πiX12
k−2πiX12 −k+2πi(q2+X12)

)
(99)

ˆ̂
M2

(−k+2πi(−q1+X12) k−2πiX12
k−2πiX12 −k+2πi(−q2+X12)

)
(100)

ˆ̂
M3

(−k+2πi(q1−X12) k−2πiX12
k−2πiX12 −k+2πi(q2−X12)

)

and

ˆ̂
M6

(−k−2πi(q1+X12) k−2πiX12
k−2πiX12 −k−2πi(q2+X12)

)
.

The four dimensional suboperators are:

ˆ̂
M4





−k−2πiq1 2πiX12 −2πiX12 k

2πiX12 −k−2πiq2 k −2πiX12
−2πiX12 k −k−2πiq1 2πiX12

k −2πiX12 2πiX12 −k−2πiq2



 (101)

and

ˆ̂
M5





−k+2πiq1 −2πiX12 2πiX12 k

−2πiX12 −k+2πiq2 k 2πiX12
2πiX12 k −k+2πiq1 −2πiX12

k 2πiX12 −2πiX12 −k+2πiq2



 . (102)
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3.5. Numerical Simulations of 2H NMR Quantum Dynamics in Transition
Metal

In the calculations the initial condition is that a 90◦ pulse was applied
to the spin system in thermal equilibrium and thus the initial density
matrix |ρ(0)

))
is given by |Fx):

|ρ0)=|Fx)=|I1x)+|I2x) (103)

In all cases a grid of 128 × 128 equally spaced polar angles was
employed for calculating the powder integrals. The calculations are per-
formed either in the full Liouville space or alternatively (simulations of
experiment) in the subspaces shown above. In the latter case the dynamic
superoperator is transformed into these subspaces and the spectra are cal-

culated by diagonalization of the ˆ̂Mk superoperators in these subspaces

and transformation of the |F+k) operators into the eigenbase of the ˆ̂Mk.
In the simulations for both deuterons, an axial symmetric quadrupolar
tensor (η=0) with qzz=70 kHz, which was estimated from the room tem-
perature spectra of the Ru-D2, was used. The spectra were calculated for
different relative orientations 2β of the two tensors, varying from 2β=0◦
to β=90◦. Since for 2β=0◦ the quadrupolar tensors of the two deuterons
are collinear, the spectra (not shown) are neither influenced by coherent
nor incoherent exchange.

3.5.1. Single Crystals

For purely incoherent exchange, the spectra exhibit the typical inco-
herent exchange scenario (not shown), which is well known from text
books:70 line broadening of the NMR lines for small exchange rates; line
coalescence at exchange rates on the order of the difference of the quad-
rupolar splitting; again line narrowing at fast exchange rates; full motional
averaging of the difference of the quadrupolar splitting in the spectrum at
very fast exchange rates.

Figure 11 shows the effects of purely coherent tunneling on the spec-
tra for three different relative orientations of the quadrupolar tensors.
The external magnetic field is chosen parallel to the principal axis cor-
responding to the z-component of the quadrupolar tensor of deuteron 1.
Only the spectra calculated with 2β=0◦ are not affected by the exchange.
This can be easily understood by realizing that in this case the system
is degenerated and both deuterons have the same quadrupolar frequency.
For all other angles the spectra exhibit a distinctively different behavior.
For small coherent exchange frequencies a splitting of the lines into dou-
blets is observed which increases with the coherent exchange frequency.
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Fig. 11. Simulation of coherent exchange (tunneling) in the 2H NMR spectra of a single
crystal for 3 different relative orientations of the two quadrupolar tensors. The external mag-
netic field is parallel to the principal axis corresponding to qzz of the first tensor. qzz =
70 kHz, η = 0, k12 = 0, 2, 32, 128, 512, and 2048, 8192 kHz. In contrast to the incoherent
exchange, the spectra exhibit a splitting instead of a broadening. The spectrum for X12� q

is identical to the fast incoherent exchange spectrum.

For coherent exchange frequencies on the order of the quadrupolar split-
ting the intensity ratio of the lines changes and typical higher order NMR
spectra are observed, where the main line intensities are at the inner tran-
sitions. Moreover, the splitting of the inner pair of lines narrows, while the
splitting of the outer lines increases with the coherent exchange frequency.
Finally, for coherent exchange frequencies much larger than the difference
of the quadrupolar coupling constants, once more a simple two-line spec-
trum is observed which is identical with the corresponding spectrum for
incoherent exchange. The differences between coherent exchange and inco-
herent exchange are most pronounced for rates on the order of the quad-
rupolar splitting. The incoherent exchange broadens the lines so strongly
that their relative amplitude compared to the amplitude of the spectra for
low or high rates is close to zero in the coalescence regime. The coherent
tunneling, however, leads to splitting of the lines into doublets, and in par-
ticular the relative amplitude of the central lines is only weakly affected by
the tunneling

Figure 12 displays the effect of the simultaneous presence of coher-
ent and incoherent exchange. While for the lowest coherent exchange
frequency the effect of incoherent exchange is immediately visible in
the spectra, for increasing coherent exchange frequency the incoherent
exchange rate has to be increased to have a visible effect on the spectra. In
particular the broadening of the lines starts for incoherent exchange rates
on the order of the coherent exchange frequency, while for incoherent
exchange rates far below the coherent frequency, the effects of the inco-



98 G. Buntkowsky and H.-H. Limbach

herent exchange are not visible. In other words, the shape of the spectra
is determined by the relative speed of coherent versus incoherent exchange.
Moreover this faster rate must be at least on the order of the difference of
the quadrupolar splitting to have an effect on the spectra.

3.5.2. Non-oriented Powder Samples

The upper part of Fig. 13 depicts the effects of incoherent exchange
of the two deuterons as a function of the rotation angle 2β for randomly
oriented powder samples. As in the case of single crystals the effect of
the incoherent exchange is most pronounced for 2β = 90◦. The exchange
first causes a smearing of the edges of the Pake pattern and then the typ-
ical formation of a narrowed Pake pattern, whose asymmetry parameter
depends on the angle between the two tensors.

The lower part of Fig. 13 displays the results of the same calcula-
tions for the case of coherent exchange of the two different deuterons.
While for small or large coherent exchange frequency these spectra are
practically indistinguishable from the spectra of incoherent exchange, there
are pronounced differences for intermediate spectra, where the coherent
exchange frequency is on the order of the quadrupolar coupling. For these
spectra, the satellite transitions, which have appeared in the single crys-
tal spectra, lead to spectral contributions outside the range of the spectra
without coherent exchange. Moreover in this intermediate range, the sin-
gularities in the spectra appear much sharper than the singularities in the
corresponding incoherent exchange spectra.

Figure 14 finally shows the calculation of powder spectra, where
both coherent and incoherent exchange are simultaneously present. Again
the relative size of the coherent tunneling frequency versus incoherent
exchange rate determines the shape of the NMR spectra. If the coher-
ent exchange frequency is small, i.e. (X12�Q), the spectra exhibit exactly
the same behavior as the spectra without coherent exchange. On the other
hand, for a fast coherent exchange (X12�Q), the effect of the incoherent
exchange on the spectra is invisible. In the intermediate regime (X12≈Q),
the spectra exhibit a rather complicated line shape, which nevertheless still
shows the sharp features of the coherent tunneling line shape. Again, for
all coherent exchange frequencies, the spectra at fast incoherent rates are
identical and only for intermediate exchange rates an effect on the spectra
is visible.

Thus there are pronounced differences between coherent and incoher-
ent exchange of two deuterons in the 2H NMR spectra of these deuterons:
The former lead to a splitting of the spectral lines and the latter lead first
to a broadening and later to a narrowing of the lines. This is the experi-
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Fig. 12. Simulation of simultaneous incoherent k12 and coherent X12 exchange (tunneling) in
single crystals: qzz=70 kHz, η=0, k12=0, 8, 32, 128, 512, and 2048 kHz. The external mag-
netic field is parallel to the principal axis corresponding to qzz of the first tensor. The second
tensor is rotated with 2β = 90◦ with respect to the first tensor. The relative size of coherent
and incoherent exchange rates determines the shape of the spectral lines.



100 G. Buntkowsky and H.-H. Limbach

a) b) c)

d) e) f)

2β = 30˚ 2β = 60˚ 2β = 90˚

2β = 30˚ 2β = 60˚ 2β = 90˚

–100 0 100

ν [kHz]
–100 0 100

ν [kHz]
–100 0 100

ν [kHz]

–100 0 100

ν [kHz]
–100 0 100

ν [kHz]
–100 0 100

ν [kHz]

Fig. 13. Comparison of the effects of coherent tunneling and incoherent exchange on the
2HNMR spectra of a non-oriented powder sample (powder spectra) for three different rela-
tive orientations of the quadrupolar tensors. Upper row: Simulation of incoherent exchange.
qzz = 70 kHz, η= 0, k12 = 0, 2, 32, 128, 512, 2048, and 8192 kHz. The incoherent exchange
mainly leads to a smearing of the edges of the Pake pattern, which for higher rates narrows
to the average spectrum. Lower row: Simulation of coherent tunneling: qzz = 70 kHz, η= 0,
X12=0, 2, 32, 128, 512, 2048, and 8192 kHz. In the intermediate range of coherent exchange
frequencies there are satellite lines, which clearly distinguish the spectra from the correspond-
ing incoherent spectra.
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Fig. 14. Simulation of simultaneous incoherent and coherent exchange (tunneling) for the
same relative orientations and parameters: 2β = 90◦, qzz = 70 kHz, η= 0, k12 = 0, 8, 32, 128,
512, and 2048 kHz as above. The relative size of coherent and incoherent exchange rates
determines the shape of the spectral lines. Note in particular that for X12 or k12 � q, the
shape of the spectra is independent on the second kind of exchange process.

mental manifestation of the result from the theoretical description that the
exchange can be interpreted as a relaxation of coherences between states
of different symmetry with respect to particle permutation.

These differences are most pronounced for coherent exchange fre-
quencies which are on the order of the quadrupolar coupling constant.
Thus by investigation of this range of intermediate tunnel splitting, it
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Fig. 15. Left: Structure of the Ru-D2 complex trans-[Ru(D2)Cl(dppe)2]PF6. Right: Structure
of the tungsten (W-D2) complex W(PCy3)2(CO)3(η

2 −D2), also known as the Kubas com-
plex.

is possible to distinguish not only between coherent and incoherent
exchange, but also to determine the size of the tunnel splitting. The actual
effect on the spectra depends strongly on the relative orientation of the
quadrupolar tensors associated with the two deuterons. If these tensors are
collinear, the spectra are neither affected by coherent nor by incoherent
exchange. If, on the other hand, the two tensors are rotated 90◦ relative
to each other, the effect is most pronounced.

4. EXPERIMENTAL EXAMPLES

4.1. Samples

Two different selectively D2 labeled transition metal complexes were
studied as model systems for the study of coherent and incoherent D2
dynamics, namely a trans-[Ru(D2)Cl(dppe)2]PF6 complex (Ru-D2) and the
Kubas (W-D2) complex W(PCy3)2(CO)3(η

2-D2).23 The main difference,
concerning their dynamic properties, is the expected height of the barrier,
which hinders the free rotation of the two deuterons.

The η2-bond complex Ru-D2 (see Fig. 15) was chosen because of
its high stability, the absence of isotope scrambling (i.e. unwanted deute-
rium incorporation into C–H bonds) and its estimated 1H–1H distance of
0.99Å,28 which is an indication for a relatively high rotational barrier with
tunnel splitting in the proper range of 2H-solid state NMR.

The protonated isotopomer W-H2 of the W-D2 complex had already
been studied by INS spectroscopy.16 In this study a relatively low tun-
neling barrier of 7 kJ/mol (73 meV) was estimated from the splitting of
the INS line. This barrier height is about a factor of 4 smaller than the
expected barrier height of the Ru-D2 sample, making the Kubas complex
an ideal sample for the search of 1H–2H isotope effects on the tunneling.
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Details of the synthesis and sample preparation are found in the original
papers.23,39,40

4.2. Coherent D2 and Incoherent Rotational D2 Tunneling in the Ru-D2
Sample

From the numerical estimations of tunnel splitting visible by NMR
shown above, it is evident that only at temperatures below ≈ 20 K there
exists a reasonable chance of observing the tunnel splitting, because at
higher temperatures the incoherent processes will determine the spectral
line shape. Therefore all experiments were performed in a helium cooled
low temperature cryostat. In this cryostat system the 2H NMR spectra and
T1 relaxation of the complex are studied. Most of these results are pub-
lished in reference.39

Figure 16 compares experimental 2H-solid echo NMR spectra and
the simulated 2H-FID-NMR spectra of the Ru-D2 complex. In the tem-
perature range between 20 and 230 K the 2H NMR line corresponds to a
typical 2H NMR quadrupolar pattern with an asymmetry of η= 0.2. The
width of the line decreases slowly with increasing temperature. At temper-
atures above 230 K an additional narrow component appears in the center
of the spectrum. Below 20 K a strong increase of the spectral line width
is observed. Moreover a satellite Pake pattern appears with its singulari-
ties at frequencies of ±60 kHz. The position of these singularities increases
weakly with the temperature. The line width of these singularities, which is
rather small at 5.4 K, increases strongly with increasing temperature until
they have disappeared at 22.8 K.

Figure 17 displays the result of the T1 measurements on the Ru-D2
complex. Due to the low sensitivity of the sample the spin–lattice relaxa-
tion rates were measured only at some selected temperatures. The lowest
T1 value (0.12± 0.02 s) was found at 97 K. At low temperatures the T1
data show strong deviations from a simple Arrhenius behavior.

In the next step the attribution of the satellite Pake pattern in the
2H NMR spectra of this Ru-D2 complex given in reference39 is summa-
rized. From the sample preparation a chemical impurity can be excluded.
Molecular polymorphism with two different conformers can be excluded
by the low temperature where the satellites exist. Chemical shielding,
J -coupling and homonuclear dipolar D–D or heteronuclear Ru-D, 31P-D
or 1H-D dipolar interactions are to weak for the size of the observed split-
ting. Thus it follows that the splitting below 20 K has to be attributed to
the proposed quantum mechanical exchange mechanism.

Using the theoretical model, the experimental spectra were simulated
assuming a superposition of a coherent and an incoherent exchange pro-
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Fig. 16. Experimental and simulated 2H NMR Spectra of the Ru-D2 complex, measured in
the temperature range from 5.4 to 230 K. At temperatures below 8.8 K, a splitting in the 2H-
NMR line shape is clearly visible (arrows). This splitting can be explained by a coherent tun-
neling of the two deuterons in the Ru-D2 sample (simulation as 2H-FID-NMR experiment).
The simulations were performed with qzz = 80± 3 kHz (i.e. qcc = 107± 4 kHz), η= 0 and a
jump angle between the two tensor orientations of 2β=90◦.

cess. The actual simulations were done by Fourier-transforming the FIDs
calculated from Eqs. 100 to 103 instead of calculating the solid echo
spectra under the influence of these interactions. The latter is numeri-
cally orders of magnitude more complex and to slow for a fitting of
the data. In principle this procedure introduces an error in the line
shape for incoherent exchange rates in the intermediate motional regime.
Tentative simulation of incoherent two-fold exchange with the parame-
ters of the experimental data show that the overall differences in the line
shape are not significant, compared to the signal/noise ratio of the spectra.
Until now no calculations of the solid echo spectra under the influence of
both coherent and incoherent exchange have been performed for reasons
of numerical effort.

From the exchange model the following data are extracted: the angle
between the tensor orientations, the coherent tunnel rate X12 and the
incoherent exchange rate k12. The coherent tunnel rate X12 varies only
weakly and the incoherent exchange rate k12 varies strongly as a function
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Fig. 17. T1 relaxation data of the Ru-D2 complex: Experimental points from line shape anal-
ysis and relaxation measurements. The solid line is calculated from the exchange rates calcu-
lated from the modified Bell model using the value of KEFG=0.3π2(60 kHz)2.

of the temperature. The quadrupolar coupling and the angle between the
principal axes of the two quadrupolar tensors were adapted from the sim-
ulations of the low temperature spectrum at 5.4 K and the high temper-
ature spectrum at 320 K, assuming that the latter corresponds to the fast
exchange limit. The best fit was obtained using an angle of 2β= (90±10)◦
between the PAS and a nearly axial symmetric (η<0.1) quadrupolar ten-
sor with qzz= (80±3) kHz.

The difference of the jump angle of 90◦ ± 10◦ to the bond angle of
34◦ is a result of the η2-dihydrogen state, where the electron density is
both between the metal and the deuterons and between the deuterons (see
Fig. 18).

Figure 19 shows an Arrhenius plot of the temperature dependence of
X12 and k12 extracted from the 2H NMR spectra and relaxation measure-
ments. The temperature dependence of X12 is very weak and nearly linear
in the temperature window between 5 and 20 K and can be approximated
as (dashed line):

X12=26.7 kHz−0.038 kHz ·K×1000/T (104)

Assuming the simple harmonic potential of Eq. (1) the height of the rota-
tional barrier can be estimated. Using the value of RHH=1 Å, a rotational
barrier of 2V0=270 meV (6.22 kcal/mol) is calculated.
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Fig. 18. Quadrupolar tensor orientations: Sketch of the electron density distribution and the
orientations of the quadrupolar tensors for a dihydride (left), η-bond (center) and a dihydro-
gen complex (right).
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Fig. 19. Arrhenius plot of the temperature dependence of the coherent tunneling and inco-
herent exchange rates in the Ru-D2 sample, extracted from Figs. 16 and 17. The solid line is
the result of a fit of the temperature dependence of the incoherent rates using a modified Bell
tunnel model (see text). The dashed line is a simple linear fit of the coherent tunnel rates.

The exchange rates from the relaxation data are obtained for KEFG=
0.3π2 (60 kHz)2 and the rate data from the spectra by line shape anal-
ysis. The incoherent rates k12 exhibit much stronger temperature depen-
dence, varying from 5×103 s−1 at 5.4 K to ca. 2.5×106 s−1 at 103 K and
ca. 1011 s−1 at 300 K. The rate data from both types of experiments over-
lap between 20 and 100 K and there is an excellent agreement between the
values. This indicates that both rates result from the same motional pro-
cess.
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The simulation of the temperature dependence was performed assum-
ing a thermally activated tunneling process, described by a Bell type of
tunneling. The high temperature rate in the tunnel model was chosen as
4× 1012 s−1, which is expected from the Eyring equation. The observed
increase of k12 at low temperatures is not obtainable by the simple one
dimensional Bell model. This shows that a complete description of the
temperature dependence of the rates needs at least a two dimensional
model, where the average RHH and/or RRuH distances are functions of the
temperature. In a simple one dimensional model, a temperature dependent
effective tunnel barrier was employed, where the effective potential is a
power law function of the temperature:

Veff (T
−1)=V (T −1

0 )+ (V (T −1
1 )−V (T −1

0 ))

(
T −1−T −1

0

T −1
1 −T −1

0

)G

(105)

The best fit of the experimental rates (solid line in Fig. 19) was found
for an exponent of G=0.7, i.e. for a relatively linear temperature variation
of the effective potential, varying between 268 meV(6.18 kcal/mol) at 5.4 K
and 129 meV (2.97 kcal/mol) at 300 K. This effective potential gives a good
reproduction of the experimental data. These rates were used to calculate
the whole T1 dependence (solid line in Fig. 17).

Comparing the values of the quadrupolar coupling constant obtained
from the line shape analysis with the KEFG=0.3π2 (60 kHz)2 value from
the relaxation data it is evident, that KEFG is in between the values
expected for rotational diffusion and jump diffusion, which can be con-
sidered as the limiting cases of the motions responsible for the relaxa-
tion. It follows that the motional process responsible for the relaxation is
somewhere in between the pure two site jump of Eq. (94) and the free
rotational diffusion of Eqs. (93) and (95). Such a mechanism could be a
combination of torsional vibrations with the jump process or four-fold dis-
tortions of the simple twofold potential of Eq. (1).

4.3. Isotope Effects on Dihydrogen-Dynamics of the Kubas Complex

This section studies isotope effects on the dihydrogen dynamics
obtained on the Kubas complex, by comparing dynamic data from 2H-
spin–lattice relaxation of the deuterated (W-D2) complex to INS data of
the protonated (W-H2) complex. Experimental details are found in Wehr-
mann et al.40 Figure 20 presents the experimental 2H NMR spectra of the
W-D2 complex, together with simulations of the spectra (see discussion
below). The 2H NMR spectrum consists mainly of two spectral compo-
nents. The major intensity is concentrated in a rather unusual Pake like
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Fig. 20. Experimental and simulated 2H NMR spectra of the W-D2 complex at different
temperatures. Simulation as a superposition of a quadrupolar pattern and a homonuclear
dipolar D–D interaction of 4 kHz, corresponding to a D–D distance of 0.89 Å.

pattern with an asymmetry factor of η=0.62 and a temperature dependent
quadrupolar interaction, which decreases slowly from a value of 55 kHz
at 50 K to a value of 40 kHz at 180 K. With the exception of this small
decrease of the quadrupolar interaction, the 2H NMR spectrum is nearly
temperature independent in the range between 50 and 300 K. In addition
to the Pake like component, a narrow component, which accounts for less
than 5% of the spectral intensity is present in the center of the spectrum
at all temperatures. Since the sealed sample is filled with a D2 atmosphere,
which is in slow exchange with the η2-bound deuterium of the complex,
we attribute this narrow component to this gaseous and/or physisorbed D2
molecules, which are highly mobile.

A detailed discussion in the original paper40 shows that the spectra
have to be attributed to a superposition of the quadrupolar and an addi-
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Fig. 21. Experimental temperature dependence of the 2H-spin–lattice relaxation in the W-D2

complex. The data exhibit deviations from the Arrhenius behavior at low temperatures. The
solid line is calculated from the exchange rates calculated from the Bell model.

tional homonuclear dipolar interaction. From the simulation the quadru-
polar coupling constant at low temperatures is qcc= 4/3 · 55 kHz= 73 kHz
and the homonuclear dipolar interaction is 4±1 kHz (corresponding to a
D–D distance of 0.89±0.1 Å). The latter value is in good agreement with
the value of 0.89 Å reported for the protonated complex in literature.98,107

Figure 21 presents the experimental results of the temperature depen-
dence of the 2H NMR spin–lattice relaxation time measurements on the
W-D2 sample together with a calculation of the relaxation times (see
below). The T1 measurements in the temperature regime from 50 K to
230 K show a strong temperature dependence of T1 with a sharp minimum
close to 110 K. At the minimum a T1 relaxation time of (0.68±0.15) sec is
found. It is evident that in the low temperature branch of the spin–lattice
relaxation curve there are deviations from a simple Arrhenius behavior,
visible in a flattening of the curve.

The interpretation of the T1 minimum shows that jump mechanism
is the most probable origin of the T1 relaxation. In this case a value of
qcc = 68 kHz is found, which agrees well with the quadrupolar coupling
constant visible in the 2H NMR spectra at low temperatures (qcc = 4/3 ·
55 kHz=73 kHz).

Employing Eqs. (92) and (96), the T1 values can be converted to
rate constants of the D–D exchange. The resulting curve (Fig. 22) shows
a deviation from a simple Arrhenius behavior at low temperatures. This
deviation is evidence for the presence of a quantum mechanical tunneling
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Fig. 22. Arrhenius plot of the temperature dependence of the incoherent exchange rates in
the W-D2 sample, extracted from the 2H-T1 data. The data are compared to data obtained
on the W-H2 complex, determined by incoherent neutron scattering (INS). The solid lines are
the results of fits of the temperature dependence of the incoherent rates using a Bell type
tunnel model. The fits reveal a strong isotope effect, which is not solely attributable to a sim-
ple mass effect. The high temperature limit of the rates was chosen as 4×1012 s−1, according
to the Eyring equation.

process at low temperatures, similar to the tunneling observed in the Ru-
D2 sample. The comparison of these rate data to the H–H exchange rates
determined from the line shape analysis16 of the INS spectra of the pro-
tonated species reveals a strong isotope effect, which increases with lower
temperatures.

Calculations with the Bell tunnel model reveal that this isotope effect
is not solely explainable by the differences of the masses of the two hydro-
gen isotopes, but that also the activation energy must have changed. This
difference in the height of the activation barrier can be caused by two rea-
sons, which are not necessarily mutually exclusive, namely isotope effects
on the M–D and D–D versus M–H and H–H distances or by differ-
ence in the zero point energy of the ground or an activated state, which
serves as the transition state for the tunneling. Since the width of the
spectra and thus the quadrupolar interaction is temperature independent
at temperatures below 150 K one can conclude that the W-D2 distance is
more or less constant at low temperatures and that the differences in the
zero point or transition state energies are the major contribution to the
isotope effect.
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5. SUMMARY AND CONCLUSION
2H NMR has been exploited for the analysis of the structure and

dynamics of η2-bound dideuterium transition metal complexes. A complete
Alexander–Binsch representation of the NMR theory of a system of two
deuterons under the influence of quadrupolar interaction, mutual incoher-
ent exchange and quantum mechanical tunneling has been developed and
analyzed analytically and numerically. It is shown that the superoperator,
which determines the dynamics of the spin system, can be transferred into
a block diagonal form, where all the evolution of the measurable mag-
netization takes place in four two-dimensional and two four-dimensional
subspaces of the Liouville space, leading to a drastic simplification of the
numerical calculation of the exchange effects. Employing a helium-cooled
low-temperature 2H NMR setup with highly sensitive 2H NMR probes, we
succeeded for the first time in the experimental observation of coherent
tunneling of a D2-pair in the solid state. The compound studied was a Ru-
D2 complex, for which a relatively high rotational barrier was expected.
The temperature dependence of the deuteron dynamics in the range of
5–300 K has been analyzed for this system by a combination of 2H line
shape analysis and T1 relaxation measurements. In a second transition
metal dideuteride, namely a W-D2 complex, we found by comparison of
2H-T1 relaxation data to INS data experimental evidence for a strong
1H–2H isotope effect on the incoherent exchange rates.

These results have strong implications for the analysis of the
2H–solid state NMR spectra of catalytic active transition metal nano par-
ticles, where similar effects are observed108 and the basic mechanism of
ortho–para conversion of para-Hydrogen on metal surfaces,109,110 since
also in these cases in the course of the initial chemisorption of the hydro-
gen, these intermediate dihydrogen states are passed.
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