SUPPLEMENTARY MATERIAL

Synthesis of ¹⁵N labelled 3,5-dimethylpyridine

Mario Schubert, Hans-Heinrich Limbach, José Elguero

Content:

Supplementary Table 1	page 2
¹ H spectrum of 2-ethoxy-3,4-dihydro-3,5-dimethyl-2 <i>H</i> -pyrane 13	page 3
¹³ C spectrum of 2-ethoxy-3,4-dihydro-3,5-dimethyl-2 <i>H</i> -pyrane 13	page 4
¹ H spectrum of 3,5-dimethylpyridine 3	page 5
¹³ C spectrum of 3,5-dimethylpyridine 3	page 6
¹⁵ N spectrum of 3,5-dimethylpyridine 3	page 7

Supplementary Table 1: Comparison of ¹⁵N chemical shifts of pyridine derivatives measured in CDCl₃ at 298 K and referenced to external CH₃NO₂.

pyridine	2-picoline	3-picoline	4-picoline	2,3-lutidine	2,4-lutidine	2,6-lutidine	3,5-lutidine	2,4,6-collidine	References
							-69.7 ppm		This work
							-69.8 ppm ^a		(1)
-70.1 ppm ^b	-71.6 ppm ^b	-75.8 ppm ^b	-84.1 ppm ^b			-72.2 ppm ^b			(2)
				-71.4 ppm ^c	-80.0 ppm ^c	-72.0 ppm ^c	-71.0 ppm ^c	-80.1 ppm ^c	(3)
-67.7 ppm ^d	-68.8 ppm ^d	-68.4 ppm ^d	-76.7 ppm ^d						(4)

^{a 15}N measurements at natural abundance in different solvents, among them CDCl₃; data were measured at 302 K and referenced to external CH₃NO₂

^b Dodalik et al. reported ¹⁵N data in CDCl₃ as well as DMSO-d₆ at 300K, at natural abundance, referenced to external liquid NH₃; for this table we calculated the chemical

shifts referenced to external CH₃NO₂ by subtracting 381.7 ppm according to Marek and Lycka 2002 (5) and Pazderski et al. 2009 (6).

^c data measured with CDCl₃ at 303 K, at natural abundance, referenced to external CH₃NO₂

^d data measured at with CDCl₃ at 298 K, at natural abundance, referenced to external CH₃NO₂

References:

- 1. Holzer W & von Philipsborn W (1989) Inter-Molecular and Intra-Molecular Hydrogen-Bonding Effects on Geminal N-15, H-1 Spin Coupling and N-15 Chemical-Shifts in Pyridine-Derivatives. *Magn Reson Chem* 27(6):511-514.
- 2. Dokalik A, Kalchhauser H, Mikenda W, & Schweng G (1999) NMR spectra of nitrogen-containing compounds. Correlations between experimental and GIAO calculated data. *Magn Reson Chem* 37(12):895-902.
- 3. Pazderski L, Pawlak T, Sitkowski J, Kozerski L, & Szlyk E (2010) Structural correlations for H-1, C-13 and N-15 NMR coordination shifts in Au(III), Pd(II) and Pt(II) chloride complexes with lutidines and collidine. *Magn Reson Chem* 48(6):417-426.
- 4. Jazwinski J & Duddeck H (2003) Pyridine and aminide derivatives as ligands in 1 : 1 Rh-2[tfa](4) adducts: H-1, C-13 and N-15 NMR study. *Magn Reson Chem* 41(11):921-926.
- 5. Marek R & Lycka A (2002) N-15 NMR spectroscopy in structural analysis. *Curr Org Chem* 6(1):35-66.
- 6. Pazderski L, *et al.* (2009) Experimental and quantum-chemical studies of H-1, C-13 and N-15 NMR coordination shifts in Au(III), Pd(II) and Pt(II) chloride complexes with picolines. *Magn Reson Chem* 47(3):228-238.

¹⁵N-labeled 3,5-Dimethylpyridine in CDCl₃

Current NAME	Data MAH	Pai RIO	rameters 13C orig	
EXPNO			1	
PROCNO			\perp	
F2 - Pro	cess:	ing	paramete	ers
SI			16384	
SF		67	.9249666	MHz
WDW			no	
SSB	0			
LB			2.00	Ηz
GB	0			
PC			4.00	

¹³C (ppm)

 $^{\rm 15}\rm{N}\mathchar`labeled$ 3,5-Dimethylpyridine in \rm{CDCl}_3

¹⁵N

Current NAME	ma lut 15N 2018
EXPNO	1
PROCNO	1
F2 - Pr	ocessing parameters
SI	32768
SF	50.6976064 MHz
WDW	no
SSB	0
LB	0 Hz
GB	0
PC	1.00

all sea for a balantifer charge an part for particular for a second second	allan kalina bilan da sana kadalar Punjan panén kara pana bara t	dang penduk yang dan terti dapan pelangkan perteksi perteksi perteksi perteksi perteksi perteksi perteksi perte Pener perteksi perteks	lla carana ka kaya mada ka mandikan sha ya na Afa tayaying ta sa di karana ka ka fijina ka ya sa	etillinetinetilisette tentitionen tillinetietten Minimetrietilisette tentitionen tillinetietten Minimetrietilisette	ette ole deptate de paquil di admini pripette mentre se stitue da mente p	anten anna di da daga dina maladi di ana dagaan 19 miliona di anga dina diga dina maladi di anga di anga di ang 19 miliona di anga dina dina dina di anga di ang	niki mala sina panaka na mala na pana na pa mahapaten panaka na panaka p	uliyan karana karan k Menya menya menya karan kar	terniterinder det forfolgeneren Urgenogeneren er folgeneren	
-60	-80	-100	-120	-140	-160	-180	-200	-220	-240	 Referenced to CH ₃ NO ₂
320	300	280	260	240	220	200	180	160	140	— Referenced to NH ₃ (liquid)
				15	N (ppm)					