NMR Study of Solvation Effects on the Geometry of Proton-Bound Homodimers of Increasing Size

Andrei A. Gurinov,^{§,‡} Gleb S. Denisov,[⊥] Alexandra O. Borissova, ^{||} Alexander S. Goloveshkin, ^{||} Julian Greindl, [†] Hans-Heinrich Limbach, [§] and Ilya G. Shenderovich, ^{§,†,*}

Table S1. The proton affinities of selected bases at $\epsilon = 108.94$ at the 311++g(3df,2p) level.

Base	DFT functional and the Polarizable Continuum Model				
	B ₃ LYP, PCM-SMD	B ₉₇ D ₃ , PCM	B ₉₇ D ₃ , PCM-SMD		
pyridine	605	617	723		
4-chloro-pyridine	595	607	714		
quinoline	607	620	727		
acridine	614	628	736		

Table S2. The N...N distance in the proton-bound homodimer of pyridine calculated in the gas phase and polar solvents at different approximations.

DFT Functional	Basis set	Solvation model, ε	NN, Å
B ₃ LYP	6-31g	Gas phase	2.608735
B ₃ LYP	6-31g	PCM, ε = 108.94	2.650268
B ₃ LYP	6-31g(d,p)	Gas phase	2.663657
B ₃ LYP	6-31g(d,p)	PCM, ε = 1.43	2.673460
B ₃ LYP	6-31g(d,p)	PCM, ε = 108.94	2.711993
B ₃ LYP	6-31g(d,p)	PCM-SMD, ε = 108.94	2.734824

[§]Institute of Chemistry and Biochemistry, Free University Berlin, Takustrasse 3, 14195 Berlin, Germany.

[‡]The Imaging and Characterization Core Lab, King Abdullah University of Science and Technology, Al-Khawarizimi Bldg 01, Thuwal 23955-6900, Saudi Arabia.

¹Institute of Physics, St. Petersburg State University, Ulyanovskaya str. 1, 198504 St. Petersburg, Russian Federation.

A. N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences, 119991, Vavilov Str., 28, Moscow, Russia.

[†] Institute of Organic Chemistry, University of Regensburg, Universitaetstrasse 31, 93053 Regensburg, Germany

B97D3	6-31g(d,p)	Gas phase	2.633379
B97D3	6-31g(d,p)	PCM, ε = 108.94	2.734824
B ₃ LYP	6-311++g(d,p)	Gas phase	2.687368
B ₃ LYP	6-311++g(d,p)	PCM, ε = 108.94	2.739689
B ₃ LYP	6-311++g(3df,2p)	Gas phase	2.692473
B ₃ LYP	6-311++g(3df,2p)	PCM, ε = 108.94	2.747587
B ₃ LYP	6-311++g(3df,2p)	PCM-SMD, ε = 108.94	2.767025

Table S3. The N...N distance in the proton-bound complexes calculated in the gas phase and the PCM approximation at ϵ = 108.94.

Complex	DFT Functional	Basis set	Solvation model, ε	Distance, Å
pyridinephenol	B ₃ LYP	6-311++G(3df,2p)	Gas phase	NO=2.833347
NH-O			PCM, ε = 108.94	NO=2.754762
pyridineN-phenylaniline	B ₃ LYP	6-31	Gas phase	NN=3.048903
NH-N			PCM, ε = 108.94	NN=2.990875
[H ₃ NHNH ₃]+	B ₃ LYP	6-31	Gas phase	NN=2.611854
NHN			PCM, ε = 108.94	NN=2.593117
[pyridine-HN,N-diphenylaniline]+	B ₃ LYP	6-31	Gas phase	NN=2.721726
N-HN			PCM, ε = 108.94	NN=3.119706
[(CH ₃) ₃ N-HN(CH ₃) ₃] ⁺	B ₃ LYP	6-31	Gas phase	NN=2.673737
N-HN			PCM, ε = 108.94	NN=2.715264
[(CH ₃)(CN) ₂ N-HN(CN) ₂ (CH ₃)] ⁺	B ₃ LYP	6-31	Gas phase	NN=2.799408
N-HN			PCM, ε = 108.94	NN=3.336273

XRD Measurements

1. Structure of protonated dimer of acridine tetrakis[3,5-bis(trifluoromethyl)phenyl]-borate ([BArF]⁻) with toluene solvent molecule.

Crystal Data: C₇₂H₄₇BF₂₄N₂ (M=1406.93 g/mol): monoclinic, space group C2/c (no. 15), a = 24.307(4) Å, b = 18.043(3) Å, c = 19.611(4) Å, β = 133.202(3)°, V = 6269.3(19) ų, Z = 4, T = 100 K, μ(MoKα) = 0.136 mm⁻¹, Dcalc = 1.491 g/cm³, 19268 reflections measured (3.08° \le 2Θ \le 56.56°), 7703 unique (R_{int} = 0.0371, R_{sigma} = 0.0515) which were used in all calculations. The final R_1 was 0.0584 (\ge 2sigma(I)) and wR_2 was 0.1708 (all data).

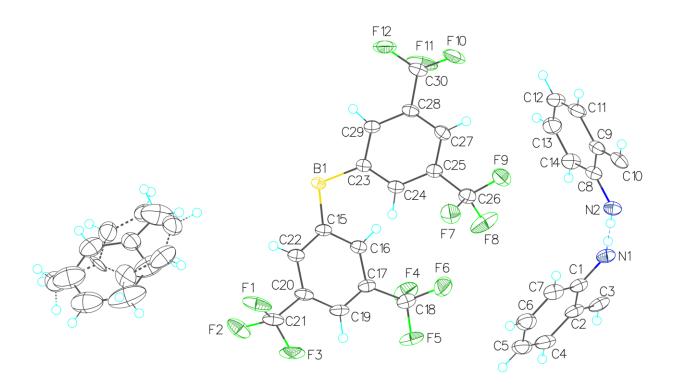


Figure S1. Structure of independent part of the unit cell of salt with toluene solvent molecule. Atoms are represented by thermal displacement ellipsoids ($\rho = 50\%$).

2. Structure of protonated acridine tetrakis[3,5-bis(trifluoromethyl)phenyl]-borate ([BArF]⁻) with CHCl₃ solvent molecule.

Crystal Data: C₆₀H₃₃BCl₆F₂₄N₂ (M=1461.39 g/mol): monoclinic, space group C2/c (no. 15), a = 23.4747(14) Å, b = 18.1680(10) Å, c = 17.2650(18) Å, β = 124.4790(10)°, V = 6069.8(8) Å³, Z = 4, T = 100 K, μ (MoKα) = 0.399 mm⁻¹, Dcalc = 1.599 g/cm³, 19909 reflections measured (3.08° ≤ 2Θ ≤ 58°), 8066 unique (R_{int} = 0.0231, R_{sigma} = 0.0313) which were used in all calculations. The final R_1 was 0.0699 (>2sigma(I)) and wR_2 was 0.2147 (all data).

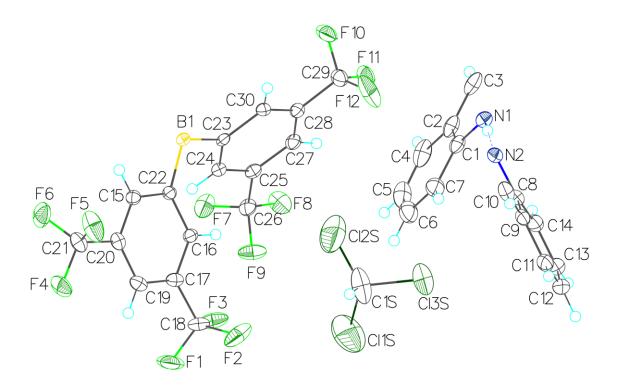


Figure S2. Structure of independent part of the unit cell of salt with CHCl₃ solvent molecule. Atoms are represented by thermal displacement ellipsoids ($\rho = 50\%$).