Counteranion-dependent mechanisms of intramolecular proton transfer in aprotic solution†

Stepan B. Lesnichin,ab Peter M. Tolstoy,ab Hans-Heinrich Limbachb and Ilja G. Shenderovichasab

Received 19th March 2010, Accepted 28th April 2010
DOI: 10.1039/c004499g

Using the freon mixture CDF₃/CDCIF₂ as solvent we have been able to measure the ¹H and ¹⁵N NMR spectra of the doubly ¹⁵N labeled 2,2′-bipyridinium cation (BpyH⁺) at temperatures down to 115 K. The obtained NMR parameters strongly depend on the type of counteranions indicating the formation of ion pairs. In the case of the bulky poorly coordinating tetrakis[3,5-bis(trifluoromethyl)phenyl]-borate as the counteranion a strong intramolecular NHN hydrogen bond was observed in BpyH⁺ exhibiting a degenerate intramolecular proton transfer which is of the order of 10⁶ s⁻¹ even at 120 K. By contrast, the weak hydrogen bond acceptor tetrafluoroborate favors a weak intermolecular FHN interaction and quenches the intramolecular proton transfer. The intramolecular proton transfer requires in this case a dissociation of the ion pair which is hindered by the Coulomb interaction. A slow intramolecular proton transfer was observed in the case of dichloroacetate which forms a strong intermolecular OHN hydrogen bond to BpyH⁺. The mechanism of this transfer presumably involves a preliminary intermolecular proton transfer from nitrogen towards oxygen followed by a hydrogen bond switch to the neighboring nitrogen to which the proton is then transferred.

Introduction

Proton transport is a part of many biological processes. Although only a single elementary particle is displaced, the process can take place via many different reaction mechanisms that depend both on the reacting molecules and the medium. The understanding of the nature of proton transfer in biological systems requires the identification of the possible mechanisms using small, well-defined molecular systems.

NMR spectroscopy using ¹⁵N as a nuclear probe can cover a dynamic range of various proton transfers from and to nitrogen from the millisecond to the nanosecond timescale. Some characteristic examples are depicted in Scheme 1. Resonance-assisted transfers are possible in neutral molecules such as N,N'-diphenyl-6-aminofulvene-1-aldimine (Scheme 1a). Generally, there are little liquid–solid state effects on the reaction dynamics in such systems. When proton transfer in neutral molecules involves zwitterionic intermediates or transition states, the influence of the environment can become important.

NMR spectroscopy using ¹⁵N as a nuclear probe can cover a dynamic range of various proton transfers from and to nitrogen from the millisecond to the nanosecond timescale. Some characteristic examples are depicted in Scheme 1. Resonance-assisted transfers are possible in neutral molecules such as N,N'-diphenyl-6-aminofulvene-1-aldimine (Scheme 1a). Generally, there are little liquid–solid state effects on the reaction dynamics in such systems. When proton transfer in neutral molecules involves zwitterionic intermediates or transition states, the influence of the environment can become important.

An example is the base-catalyzed tautomerism of diaryl-triazenes (Scheme 1b). Although stronger effects are expected in charged systems, the migrating proton can be well shielded from the counterion. Porphyrin anion (Scheme 1c) exhibits no dependence on the environment. In other systems the proton localization can be effected by counterions or solvent molecules.

An example is the homoconjugated cation of 2,4,6-trimethylpyridine (Scheme 1d). In this case the potential surface of the bridging proton has two minima separated by a low barrier through/above which the proton transfer process can occur. In the crystalline state the geometries of hydrogen bonds in homoconjugated ions depend on specific interactions between cation and anion. Here the proton transfer would require a reorganization of the crystal structure. In contrast, in aprotic solvents a fast dynamic equilibrium (Scheme 1d) has been observed even at temperature down to 100 K. The driving forces initiating proton jumps are fluctuations of the counterion positions and/or of the external electric field produced by solvent molecules. The same effects have been observed for the intramolecular NHN hydrogen bonds of protonated sponges of the 1,8-N,N'-diaminonaphthalene type (Scheme 1e).

However, in the listed charged systems the hydrogen bonds are sterically hindered. Thus, they are not suitable to inspect characteristic features of their interactions with a certain counterion.

Therefore, we have performed low-temperature NMR experiments on the monoprotonated cation 2,2′-bipyridinium (BpyH⁺) (Scheme 2). In contrast to the homoconjugated pyridine cations and protonated sponges the interaction of the mobile proton of BpyH⁺ with the anion is not affected by the molecular structure of the cation. Here, the effect of cation–anion interactions on the intramolecular tautomeration according to Scheme 2b can be studied using the doubly ¹⁵N labeled compound. Naturally, a cis-conformation is required for the formation of an intramolecular NHN hydrogen bond. Indeed, X-ray structure analysis indicates that BpyH⁺ ClO₄⁻ crystallizes in the cis-conformation, exhibiting a non-linear NHN-hydrogen bond where the proton is localized in an asymmetric position close to one of the two nitrogen atoms.

† Electronic supplementary information (ESI) available: Detailed description of the synthesis of ¹⁵N labeled 2,2′-bipyridine. See DOI: 10.1039/c004499g
which are 2.75 Å apart from each other. Apparently, the interaction with the anion blocks the intramolecular proton transfer in the solid. By contrast, in the absence of specific interactions crystalline Bpy exhibits a planar trans-conformation (Scheme 2a). Theoretical calculations estimate the stabilization energy of the trans- as compared to the cis-conformer as 6 kJ mol⁻¹.10

In contrast to the solid state, the intramolecular tautomerism of BpyH⁺ could occur in the liquid state. As a result of the overview on degenerate proton transfer from and to nitrogen presented in Scheme 1, one can conceive several proton transfer mechanisms. Scheme 3a depicts the case where the counteranion does not lead to a preference of one of the tautomers. This situation is typical for polar solvents where the ion pair is dissociated or if the electrical charge of the anion is well shielded. Proton transfer requires in both cases only solvent reorganization. In Scheme 3b a hydrogen bond of medium strength is formed between cation and anion. This contact ion pair needs to dissociate before proton transfer can occur along a weak intramolecular hydrogen bond. Finally, in Scheme 3c a contact ion pair exhibiting a strong hydrogen bond is formed. Here, the proton can be first transferred to the anion followed by a hydrogen bond switch. Finally, the proton is transferred back to the acceptor.

In order to explore the different pathways we have studied BpyH⁺ in the presence of the counteranions depicted in Scheme 4. In the weakly interacting bulky tetraakis[3,5-bis(trifluoromethyl)phenyl] borate (BARF⁻) the electrical charge is well shielded. Tetrafluoroborate (BF⁴⁻) is a weak hydrogen bond acceptor exhibiting some charge delocalization. Dichloroacetate (AC⁻) represents a strong hydrogen bond acceptor, especially for protonated pyridines. The polar freon mixture CDF₃/CDClF₂ was used as solvent as it is liquid down to 100 K and allows one to observe hydrogen bonded complexes in the slow exchange regime.

This paper is organized as follows. After an experimental section the results of the low-temperature NMR experiments on BpyH⁺ in CDF₃/CDClF₂ in the presence of BARF⁻, BF⁴⁻ and AC⁻ are described and discussed.

Experimental

Materials

All chemicals were purchased from Sigma-Aldrich and used without additional purification. Deuterated solvents were purchased from Eurisotop (Germany). The deuterated freon gas mixture CDF₃/CDClF₂ for the low-temperature NMR experiments, whose composition varied between 1:2 and 1:3, was prepared from chloroform-d₁ as described recently.

Preparation of ¹⁵N labeled bipyridine. 2,2'-bi¹⁵N-pyridine was synthesized using a procedure adjusted to ¹⁵N labeled NH₄Cl as the starting material. The detailed procedure is described in the ESI.

Preparation of BpyH⁺-CHCl₂COO⁻ and BpyH⁺-BF⁴⁻. 15.4 mg of 2,2'-bi¹⁵N-pyridine and 12.9 mg of dichloroacetic
acid (or 17.6 mg 50% aqueous solution of tetrafluoroboric acid) were dissolved in 2 ml of dichloromethane and stirred over 2 h at room temperature. The solvent was removed by rotary evaporation leaving a white salt. The salt was dried overnight under vacuum.

Preparation of BpyH$^+$-BARF$^-$. 15.4 mg of 2,2'-bi-15N-pyridine and 12.9 mg of 37% HCl water solution were dissolved in 2 ml of water by stirring at room temperature. After 15 min 88.6 mg of yellowish Na$^+$ [BARF]$^-$ powder was added. The mixture was stirred over 5 h at room temperature. The white flakes of BpyH$^+$-BARF$^-$ were filtered out and washed with water. The salt was dried overnight under high vacuum.

The purity of the products and the base/acid ratio were inspected by 1H and 15N NMR.

NMR experiments

Liquid-state 1H and 15N NMR spectra were measured on a Bruker AMX 500 spectrometer (500.13 MHz for 1H, 50.68 MHz for 15N) equipped with a low-temperature probe-head enabled to perform experiments down to 100 K. A liquefied deuterated freon gas mixture CDF$_3$/CDClF$_2$ was used as a solvent. The 1H spectra were indirectly referenced to tetramethyldisilane (TMS) by setting the central component of the residual CHClF$_2$ triplet of the freon mixture to 7.18 ppm.16 The 15N spectra were indirectly referenced to bipyridine dissolved in CDF$_3$/CDClF$_2$ which resonates at 281 ppm with respect to external solid 15NH$_4$Cl and at −60 ppm with respect to external liquid nitromethane if the following relation δ(CH$_3$NO$_2$, liq.) = δ(15NH$_4$Cl, solid)−341.168 ppm18 is taken into account.

The standard 1H and 15N NMR spectra were recorded with recycle times of 3 and 5 s, respectively. Dynamic NMR 7.1 code was used for the line-shape analysis of 1H spectra.19

NMR lineshape analyses

The 1H NMR line shapes of a proton jumping from and to 15N nuclei can provide information about the proton transfer rate constants as well as on the reaction pathway.20 In the slow exchange regime the proton signal of a 15NH15N hydrogen bond exhibits a scalar coupling to the 15N nucleus to which it is attached, characterized by the coupling constant $^1J(^{15}$N,1H) = J_{NH}. If we neglect scalar coupling across the hydrogen bond to the other 15N nucleus—a phenomenon which arises only in strong NHN hydrogen bonds23—the mobile proton signal will be split into a doublet. The onset of intermolecular proton exchange will broaden the lines of the doublet which coalesce and sharpen again into a singlet. The line shape can be calculated in terms of the usual degenerate two-state exchange theory.20 By contrast, an intramolecular transfer leads to a doublet–triplet transition. When both intra- and intermolecular proton transfers are superimposed, a broadened triplet may be observed before the scalar coupling disappears.

As an example, we have plotted in Fig. 1 the line shape of the mobile proton in the presence of a degenerate intramolecular proton transfer between two 15N nuclei as a function of the rate constant k. We choose a value of J_{NH} = 94 Hz and a value of W_o = 30 Hz for the linewidth in the absence of exchange which are typical of protonated pyridines.22 In the absence of exchange, when the rate constant $k = 0$, both values determine entirely the doublet line shape of the 1H signal. When k is increased, each of the two lines broadens, coalesce and sharpen again into a triplet which eventually reaches the peak height ratio of 1 : 2 : 1. The central peak arises from protons jumping between 15N nuclei in different spin states, whereas the two outer lines stem from protons jumping between 15N nuclei in the same spin state. The total line shape can then be simulated in terms of a degenerate two-state exchange theory and two non-exchanging singlets as depicted in Fig. 1.20 In all cases, k can be obtained without assumptions as J_{NH} and W_o are determined by the line shape of the outer lines.

Results

Low-temperature 1H NMR spectroscopy

The low-field 1H NMR signals of Bpy/acid complexes in CDF$_3$/CDClF$_2$ measured at low temperatures are depicted in Fig. 2. The main NMR parameters extracted from the spectra are collected in Table 1. In all cases scalar couplings to 15N are observed indicating the formation of BpyH$^+$ cations. However, the signals depend strongly on the type of the counteranion. In the case of AC$^-$ (Fig. 2a to c), at 115 K a doublet is observed exhibiting a coupling constant J_{NH} = −83 Hz. We assign to the coupling the negative value taking into account the results of theoretical calculations on pyridinium.22 The signal is shifted to low field when temperature is increased. Concurrently, the doublet is converted into a triplet characterized by a coupling constant of J_{NH} = −40 Hz, at 120 K. This type of transition indicates an intramolecular degenerate proton transfer.20 At 130 K the signal broadens because of the onset of intermolecular proton exchange4,20 which leads eventually to loss of the splitting.

By contrast, a doublet observed in the case of BF$_4^−$ does not shift with temperature, and does not exhibit a doublet–triplet

15N-H...15N

k

15N...H.15N

J_{NH}=94 Hz

W_o = 30 Hz

k/s^1

0

150

300

1200

7000

Fig. 1 Simulated 1H NMR signals of an 15N–1H...15N spin system in the presence of an intramolecular degenerate proton transfer characterized by the rate constant k. For further description see text.

This journal is © the Owner Societies 2010

Phys. Chem. Chem. Phys., 2010, 12, 10373–10379 | 10375
transition. When temperature is increased, only a broadening is observed arising from intermolecular proton exchange. The signal broadening at the lowest temperature arises from the increase of the solvent viscosity.

In the case of BARF\(^{-}\) as counterion the hydrogen bonded proton of BpyH\(^{+}\) is a triplet even at the lowest temperatures. Its chemical shift and multiplicity are also independent of temperature.

Low-temperature \(^{15}\)N NMR spectroscopy

Experimental low-temperature \(^{15}\)N NMR spectra of Bpy and BpyH\(^{+}\) dissolved in CDF\(_3\)/CDClF\(_2\) in the presence of different anions are depicted in Fig. 3. The spectra were obtained in the absence of \(^1\)H decoupling. The NMR parameters extracted from these measurements are included in Table 1.

In Fig. 3a the signal of free Bpy is depicted. For convenience we used Bpy as reference in this study and set its chemical shift to 0 ppm.

After protonation with dichloroacetic acid two new signals appear. The first signal at \(-95 \text{ ppm}\) exhibits a doublet splitting and, therefore, corresponds to the protonated nitrogen N1. The singlet at \(+2 \text{ ppm}\) corresponds to the non-protonated nitrogen N2. This sample contains some free Bpy, the singlet at 0 ppm. In the case of BpyH\(^{+}\) BF\(_4^{-}\) a similar spectrum is observed, although both signals are shifted to high field. By contrast, only a single doublet is observed in the case of BARF\(^{-}\) indicating a fast proton transfer along an intramolecular pathway as shown by the triplet splitting of the corresponding \(^1\)H signal.

Discussion

The NMR parameters of doubly \(^{15}\)N labeled bipyridine dissolved in CDF\(_3\)/CDClF\(_2\) measured at 150 K and below in the presence of three acids indicate that bipyridine is protonated and that ion pairs are formed with the acid anions. The first statement is corroborated by the large coupling constant \(J_{\text{NN}}\) and the second by the finding of different NMR parameters for the three systems. In the case of dissociated ion pairs the NMR parameters would not depend on the acid used.

For XHN hydrogen bonds (X = O, F, N) analysis of geometric parameters based on neutron structures indicated that the distances XH and HN are correlated with each other. If one distance is known, the other can be estimated using empirical equations.\(^{24}\) For collidine–carboxylic acid complexes it has been shown by dipolar NMR that their \(^{15}\)N chemical shifts are correlated with the NH distances of the OHN hydrogen bonds.\(^{25}\) Besides that, for hydrogen bonds of the OHN type involving pyridine there is a correlation between the \(^{15}\)N chemical shift and the \(^1\)H chemical shift of the mobile proton.\(^{26}\)

Structures of the bipyridinium–anion complexes

The values of the chemical shifts and scalar couplings of the BpyH\(^{+}\) BF\(_4^{-}\) complex are close to the values expected for a

![Fig. 2](image_url)

Table 1 NMR parameters of BpyH\(^{+}\) complexes in CDF\(_3\)/CDClF\(_2\)

<table>
<thead>
<tr>
<th>Complex</th>
<th>(T/K)</th>
<th>(\delta (\text{H})/\text{ppm})</th>
<th>(\delta (\text{N})/\text{ppm})</th>
<th>(J_{\text{NH}}/\text{Hz})</th>
</tr>
</thead>
<tbody>
<tr>
<td>BpyH(^{+}) AC(^{-})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a)</td>
<td>130</td>
<td>19.1</td>
<td>18.9</td>
<td>81 ± 3</td>
</tr>
<tr>
<td>(b)</td>
<td>120</td>
<td>18.9</td>
<td>18.9</td>
<td>83 ± 1</td>
</tr>
<tr>
<td>(c)</td>
<td>115</td>
<td>18.8</td>
<td>18.8</td>
<td>83 ± 1</td>
</tr>
<tr>
<td>BpyH(^{+}) BF(_4^{-})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a)</td>
<td>150</td>
<td>15.6</td>
<td>15.6</td>
<td>74 ± 1</td>
</tr>
<tr>
<td>(b)</td>
<td>130</td>
<td>15.6</td>
<td>15.6</td>
<td>74 ± 1</td>
</tr>
<tr>
<td>(c)</td>
<td>120</td>
<td>15.6</td>
<td>15.6</td>
<td>74 ± 1</td>
</tr>
<tr>
<td>BpyH(^{+}) BARF(^{-})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a)</td>
<td>130</td>
<td>18.0</td>
<td>18.0</td>
<td>42 ± 1</td>
</tr>
<tr>
<td>(b)</td>
<td>120</td>
<td>18.0</td>
<td>18.0</td>
<td>42 ± 1</td>
</tr>
<tr>
<td>ColH(^{+}) Col BF(_4^{-})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a)</td>
<td>150</td>
<td>19.9</td>
<td>19.9</td>
<td>40 ± 4</td>
</tr>
<tr>
<td>(b)</td>
<td>180</td>
<td>19.9</td>
<td>19.9</td>
<td>40 ± 4</td>
</tr>
</tbody>
</table>

\(a\) This study. \(b\) Ref. 8. For atom numbering see Fig. 2.
protonated pyridine involved in a weak hydrogen bond.22 Based on the 15N chemical shift of -111 ppm for the protonated nitrogen atom we can estimate that the NH distance in the BpyH$^+$ BF$_4^-$ complex is about 1.05 Å.23 The chemical shift value of the non-protonated nitrogen atom is slightly negative. This fact indicates that this nitrogen is involved in a hydrogen bond as well. Indeed, the 1H chemical shift of 15.6 ppm is characteristic of a hydrogen bond of moderate strength. From these findings it follows that the BpyH$^+$ BF$_4^-$ complex exhibits an asymmetric structure, where the proton is localized on one of the pyridine rings.

An intramolecular proton transfer below 150 K is either slow or absent. Above this temperature, intermolecular proton transfer sets in. We ascribe the hindrance of the intramolecular proton transfer to the formation of an intermolecular hydrogen bond to the counteranion BF$_4^-$.

By contrast, intramolecular proton transfer is fast in the BpyH$^+$ BARF$^-$ complex. The intramolecular pathway follows from the observation of the triplet in the 1H NMR spectrum arising from scalar coupling to both nitrogen atoms of BpyH$^+$. The coupling constant is -42 Hz, indicating an intrinsic coupling of about -84 Hz. This represents a strong decrease as compared to the value found for BpyH$^+$ BF$_4^-$ and corroborates together with the low-field shift to 18 ppm a much stronger hydrogen bond. Only a single averaged 15N signal is observed down to 120 K. This means BpyH$^+$ BARF$^-$ adopts a cis-conformation stabilized by the intramolecular hydrogen bond. In order to obtain information about the hydrogen bond geometry the intrinsic 15N chemical shifts of both nitrogen atoms in the slow exchange regime are required. These data can be estimated from the 1H/15N correlation.26 The 1H chemical shift of 18 ppm of BpyH$^+$ BARF$^-$ corresponds to a 15N chemical shift of about -100 ppm for the protonated pyridine. This value corresponds to an NH distance of about 1.07 Å. From the NHN hydrogen bond correlation we then estimate the second NH distance to be about 1.7 Å. A similar estimation for the related homocoujugated 2,4,6-trimethylpyridine cation ColH$^+$ Col BF$_4^-$ (Scheme 1d, Table 1)6 leads to the NH distances of 1.1 and 1.6 Å, correspondingly. Thus, the NHN hydrogen bond in the BpyH$^+$ BARF$^-$ complex is less strong than that of the ColH$^+$ Col BF$_4^-$. We also note that BF$_4^-$ does not hinder the intramolecular proton transfer in ColH$^+$ Col.

Finally, the 15N chemical shifts of the BpyH$^+$/AC$^-$ complex indicate a short NH distance of 1.1 Å. As the non-protonated nitrogen N2 resonates at $+2$ ppm this atom is not involved in a hydrogen bond. The chemical shift of the hydrogen bond proton, 19 ppm, and the reduced 1H/15N coupling constant of -81 Hz attest the formation of a strong OHN hydrogen bond to AC$^-$. From the corresponding correlation it follows that the H\cdotsO distance is about 1.45 Å. This also explains the fact that the mobile proton exhibits the largest chemical shift of the three complexes. Of course, the values of the proton chemical shift depend on the molecules forming the hydrogen bond and cannot be compared for very different systems.27 However, in the discussing complexes the mobile protons are already transferred to BpyH$^+$ and in the first approximation the numerical values of the 1H resonance depend only on the N\cdotsH distance. As temperature is increased the proton signal of the BpyH$^+$ AC$^-$ complex is shifted to low field. As the dielectric constant of the freon mixture is decreased at the same time (45 at 100 K to 25 at 145 K)16 this means that the proton is shifted towards the hydrogen bond center, a typical effect for zwitterionic hydrogen bonds. This shift is more pronounced in the corresponding pyridinium–dichloro- acetate complex indicating that pyridine is more basic than bipyridine.15

Proton transfer in bipyridinium–anion complexes

The mechanisms of proton transfer in the different bipyridinium–anion complexes arising from the above-mentioned findings are summarized in Scheme 5. Whereas the anions BF$_4^-$ and AC$^-$ lift the chemical equivalence of the two pyridine rings and, thus, quench the intramolecular transfer at low temperatures, BARF$^-$ does not effect remarkably the geometry of the intramolecular NHN hydrogen bond and thus enables the intramolecular proton transfer. A rough estimation of the rate constant of the intramolecular proton transfer can be obtained from the average 15N signal at 120 K, Fig. 3d: $k = \pi\Delta\nu^2/2(W - W_0)$. The intrinsic linewidth W_0 of 35 Hz is estimated from Fig. 3a. The exchange broadening W of 45 Hz is estimated from Fig. 3d. The chemical shift difference $\Delta\nu$ can be assumed to be of about 100 ppm, that is 5000 Hz. Thus, we estimate that the rate constant k of the intramolecular proton transfer is of the order of 10^6 s$^{-1}$. The same value can be obtained using the line-shape analysis of the 1H NMR spectrum at 130 K as described above, Fig. 2g. The latter analysis suggests that the exchange must be faster than 10^4 s$^{-1}$. These findings indicate little influence of BARF$^-$ on the hydrogen bond of BpyH$^+$ although the two might form a contact ion pair. This is probably the result of two features of BARF$^-$: (i) it has no tendency to form hydrogen bonds with proton donors and (ii) the electrical charge is well shielded and delocalized. We were not able to determine kinetic H/D isotope effects on the degenerate intramolecular proton transfer in BpyH$^+$ in order to obtain additional information about the mechanism of this process. For the isolated ion we expect a symmetric double-well potential for the proton motion, with a higher barrier as compared to the homocoujugated collidinium cation (Scheme 1d).7 In polar solvents, the solvent molecules will exhibit at a given time an asymmetry of the hydrogen bond and localize the proton in one of the potential wells. Reorganization of the solvent shell is then required for proton transfer to occur.28 The rate limiting step may then be the solvent reorganization.

In the case of the BpyH$^+$/BF$_4^-$ complex both the Coulomb interaction as well as the hydrogen bond energy of BpyH$^+$ with BF$_4^-$ will be substantially larger than with BARF$^-$, These intermolecular interactions hinder the intramolecular proton transfer. The line-shape analysis of the 1H NMR spectrum at 130 K shows that the rate constant must be smaller than 10 s$^{-1}$, Fig. 2e. We expect that BpyH$^+$/BF$_4^-$ must dissociate to allow the intramolecular proton transfer in the cation. Thereby, the dissociation is the rate-limiting step of the process.

The intermolecular interactions are even stronger with AC$^-$, as the basicity of AC$^-$ is higher than that of BF$_4^-$. The hydrogen...
bonded proton signal of BpyH\(^{+}\) AC\(^{-}\) consists of a broadened distorted triplet at 120 K or a broadened doublet at 115 K (Fig. 2b and c), indicating an intramolecular proton transfer which is fast on the \(^1\)H but in view of the two \(^{15}\)N signals (Fig. 3b) it is slow on the \(^{15}\)N time scale. The analysis of the line shapes in Fig. 2b and c give rate constants of about 300 and 100 s\(^{-1}\) at 120 and 115 K, respectively. This is much slower than in BpyH\(^{+}\) BARF\(^{-}\), but also much faster than in BpyH\(^{+}\) BF\(_4\)\(^{-}\). The intermolecular interaction energy of the BpyH\(^{+}\) AC\(^{-}\) complex is presumably large enough to prevent a dissociation of the ion pair at low temperatures. The observed intramolecular proton transfer may occur by a proton shift towards the acetate, followed by a hydrogen bond switch to the other nitrogen site and proton back-transfer. This mechanism resembles the tautomerism of diaryl-triazenes (Scheme 1b).\(^4\)

Conclusions

In this study we have found using low-temperature NMR that the mechanism of the intramolecular proton transfer in 2,2'-bipyridinium cation depends principally on the charge distribution in the counteranion. Thus, BpyH\(^{+}\) represents likely a unique example of three different counteranion-dependent mechanisms of intramolecular proton transfer observed in the same cation.

(i) The bulky BARF\(^{-}\) does not exhibit a preferential interaction with one of the pyridine rings. Therefore, it lets bipyridinium to organize a strong intramolecular NHN hydrogen bond. A very fast degenerate intramolecular proton transfer was detected in BpyH\(^{+}\) (Scheme 5a). A similar effect was detected before in the case of proton sponges (Scheme 1e),\(^12\) but the difference to other anions was much less pronounced in the latter case.

(ii) There is a specific interaction between BF\(_4\)\(^{-}\) and BpyH\(^{+}\) which quenches the intramolecular proton transfer as the ion pair needs to dissociate for this process to occur (Scheme 5b). This is in contrast to the homoconjugated collidinium cation where BF\(_4\)\(^{-}\) does not affect the formation of the intramolecular hydrogen bond (Scheme 1d).\(^6\)

(iii) Bipyridinium forms a strong hydrogen bond with the very basic dichloroacetate AC\(^{-}\). When temperature is increased, this hydrogen bond becomes stronger and a proton is shifted back from nitrogen towards the hydrogen bond center, as illustrated by a low-field shift of the hydrogen bond proton. It seems that the hydrogen bond and the associated Coulomb interaction are so strong that dissociation of the ion pair followed by an intramolecular proton transfer is not operative. However, a shift of the proton towards the anion and a subsequent hydrogen bond switch can explain the observed intramolecular proton transfer which is relatively slow.

In summary, the observations made in this study provide a model case of how nature controls function—here hydrogen bond and proton transfer phenomena—via a subtle interplay of chemical structure, conformation, and intermolecular interactions. This is of special importance in biomolecules. As some of us have shown recently, the protonation state of the cofactor vitamin B6 embedded in aspartate aminotransferase is better modeled using polar organic solvents rather than water,\(^29\) the present study might be relevant to develop a detailed physical chemistry of active sites in biomolecules.

Acknowledgements

This work was supported by funds provided by the Deutsche Forschungsgemeinschaft, Bonn, the Fond der Chemischen Industrie, Frankfurt, the Russian Ministry of Education and Science (Project RNP 2.1.1. 485) and the Russian Foundation...
of Basic Research (Project 09-03-91336). We thank Prof. G. S. Denisov (St. Petersburg State University, Russia) for stimulating discussions.

References

