Supporting Information for

NMR Localization of Protons in Critical Enzyme Hydrogen Bonds

Shasad Sharif, [‡] Emily Fogle, [†] Michael D. Toney, [†] Gleb S. Denisov, [§] Ilya G. Shenderovich, [‡] Gerd Buntkowsky, [&] Peter M. Tolstoy, [‡] Monique Chan Huot, [‡] Hans-Heinrich Limbach [‡],*

Institut für Chemie und Biochemie, Takustrasse 3, Freie Universität Berlin, D-14195 Berlin, Germany, the Institute of Physics, St. Petersburg State University, 198504 St. Petersburg, Russian Federation, the Department of Chemistry, University of California-Davis, 95616 Davis, USA, and the Institut für Physikalische Chemie, FSU Jena, Helmholtzweg 4, D 07743 Jena, Germany.

[‡] Freie Universität Berlin

[†] University of California-Davis

[§] St. Petersburg State University

[&]amp; FSU Jena

Materials and Methods

The procedures for preparing the ¹⁵N-labeled PLP and the model aldimines are described in Ref. 6. The protected aspartic acid (Boc-Asp-OtBu) was purchased from Bachem GmbH.

The ¹⁵N NMR broadband ¹H-decoupled spectra of ¹⁵N-PLP embedded in E. coli AspAT in 10% D₂O was collected using a Bruker Avance 600 MHz (14 Tesla) liquid state spectrometer (60.8 MHz for ¹⁵N) at 282 K (9 °C). The 90° pulse for nitrogen was 25 µs by using a recycle time of 3 s and more than 40000 scans were recorded. In order to reference the ¹⁵N chemical shifts, we recorded under the same ²H field locking conditions ¹⁵N spectra of neat nitromethane containing a capillary with D₂O; the nitromethane scale was converted into the solid external ¹⁵NH₄Cl scale. Solid state ¹⁵N spectra of ¹⁵N-PLP in e. coli AspAT as lyophilized apoenzyme (to verify the ¹⁵N chemical shift of the backbone signal at natural abundance) and microcrystalline holoenzyme un- and liganded with maleate (inhibitor) with ¹⁵N-PLP, were performed on a Varian Infinity Plus 600 MHz (14 Tesla) solid state NMR spectrometer (60.8 MHz for ¹⁵N) at 225 K (-50 °C). Standard cross polarization ¹⁵N{¹H} CP RAMP MAS NMR experiments were performed under magic angle spinning (MAS) conditions. In the latter case, the spinning rate was 7 kHz. The 90° pulse for protons was 4 µs, the cross polarization contact time 1 ms, by using a recycle time of 3 s. For each spectrum more than 50000 scans were recorded. An echo sequence was employed to minimize artifacts from long radiofrequency pulses. The 180° pulse for nitrogen was 19 µs by an echo delay of one rotor period. The spectral resolution increases significantly when microcrystalline samples are used. The external standard was glycine (95%, ¹⁵N-enriched) which was converted into the external solid ¹⁵NH₄Cl scale. The liquid state ¹⁵N NMR spectra of the model complexes in the polar liquid were measured using a Bruker AMX 500 spectrometer (500.13 MHz for ¹H, 50.68 MHz for ¹⁵N) equipped for low-temperature NMR down to 100 K.

Figure S1. ¹H NMR spectrum of the ¹⁵N ring labeled aldenamine model with protected aspartic acid (Boc-Asp-OtBu), which mimic the Asp222 side-chain in AspAT, in the freon mixture at 130 K. Shown are the 1:1 and 1:2 complexes.