A novel series of hydrogen-bonded solid 1:1 acid–base complexes of 15N-labeled 2,4,6-trimethylpyridine (collidine) with carboxylic acids and their hydrogen bond deuterated analogs were synthesized and studied by 1H magic angle spinning (MAS) and 15N cross-polarization NMR with and without MAS. Not only zwitterionic complexes with the H-bond proton closer to nitrogen than to oxygen but also molecular complexes have been observed, where the proton is located closer to oxygen. For these complexes, the isotropic 1H and 15N chemical shifts and the 15N chemical shielding tensor elements were measured (the latter by lineshape simulation of the static powder spectra) as a function of the hydrogen bond geometry. For the deuterated analogs 1H/2H isotope effects on the isotropic 15N chemical shifts were obtained under MAS conditions. Lineshape simulations of the static 15N powder spectra revealed the dipolar 2H/15N couplings and hence the corresponding distances. The results reveal several hydrogen bond geometry–NMR parameter correlations which are analyzed in terms of the valence bond order model.

(1) The collidine and apparently other pyridines isotropic 15N chemical shifts depend in a characteristic way on the nitrogen–hydrogen distance. This correlation can be used in the future to evaluate hydrogen bond geometries and solid-state acidities in more complicated systems. (2) A correlation of the 1H with the 15N isotropic chemical shifts is observed which corresponds to the well-known hydrogen bond geometry correlation indicating a strong decrease of the A···B distance in an AHB hydrogen bond when the proton is shifted to the hydrogen bond center. This contraction is associated with a low-field 1H NMR chemical shift. (3) The 15N chemical shift anisotropy principal tensor elements δ_t, δ_r, and δ_p (tangential, radial and perpendicular with respect to the pyridine ring) exhibit a linear relation with the isotropic 15N chemical shifts. A crossing point of $\delta_t = \delta_r$ is observed. Further correlations of the hydrogen bond geometry with the geometric H/D isotope effects on the 15N chemical shifts and with the pK$_a$ values of the associated acids are reported. Copyright © 2001 John Wiley & Sons, Ltd.

KEYWORDS: NMR; 1H NMR; 15N NMR; collidine–carboxylic acid complexes; hydrogen bonding

INTRODUCTION

Whereas acid–base interactions in aqueous solutions can be described in terms of a conventional chemical equilibrium, the situation is very different in non-aqueous systems. Here, the acid and the base are in direct contact via a hydrogen bond. Such non-aqueous acid–base interactions between side-chains of amino acids play an important role in the structure and function of enzymes where bulk water is often absent in the active site. In order to understand the influence of the variation of the relative acidity on the acid–base hydrogen bonds, some of us have carried out low-temperature NMR studies of hydrogen-bonded complexes of various bases such as pyridine, and other bases with carboxylic and other acids. By using a polar Freon mixture, CDF$_2$Cl–CDF$_3$ (2 : 1), which is liquid down to 95 K we were able to characterize the intrinsic NMR parameters of a number of hydrogen-bonded complexes in the slow hydrogen bond exchange regime. Thus, as a function of the relative acidity of the components, the chemical shifts of the hydrogen-bonded protons and deuterons and also of the heavy atoms of the hydrogen...
bridges such as 15N or 19F, or adjacent 13C nuclei, could be measured which experience interesting H/D isotope effects. The phenomenon of scalar coupling between heavy atoms of the hydrogen bridges and of the proton across the hydrogen bonds was described, in addition to H/D fractionation factors. The main result of these studies is that an increase in the acidity of AH leads to a gradual transformation of the molecular hydrogen-bonded complex $A\cdots H\cdots B$ via a proton-shared complex $A^{\pm}\cdots H\cdots B^{\pm}$ to a zwitterionic complex $A\cdots H\cdots B^{+}$, where $A^{\pm}\cdots H\cdots B^{\pm}$ exhibits the shortest distance $A\cdots B$ and where the zwitterionic complexes are favored at low temperatures when the solvent polarity increases. During this transformation of the hydrogen bond $O\cdots H\cdots N$, the nitrogen signal experiences a monotonic upfield shift, whereas the proton resonates at the lowest field in the proton-shared complex $O^{\pm}\cdots H\cdots N^{\pm}$.

In order to exploit fully the power of liquid-state NMR in hydrogen bond research, it is desirable to establish direct links between hydrogen bond geometries, especially distances between hydrogen bond protons and their neighboring heavy atom nuclei and their NMR parameters. Because of the drawbacks of x-ray diffraction, solid-state NMR therefore plays an important role because (i) NMR parameters of hydrogen-bonded complexes $A^{\pm}\cdots H\cdots B^{\pm}$ are sensitive to the $A\cdots H$ and $H\cdots B$ distances, (ii) these distances can be obtained for NHN and OHN hydrogen bonds by dipolar 1H–15N NMR and (iii) in combination with dipolar 2H–15N NMR it is possible to obtain very significant H/D isotope effects on these distances. Unfortunately, the strong homonuclear 1H dipolar couplings need to be decoupled in order to obtain the 1H, 15N dipolar couplings which are then scaled by a factor depending on the experimental setup which complicates the determination of H/D isotope effects on nitrogen–hydrogen distances. Another possibility is to deteurate overall the systems except the 1H–15N groups studied, which is, however, not always possible.

Therefore, in the case of polycrystalline $[R-C\equiv N\cdots H\cdots N=\equiv C\cdots R^-]$ K$^+$ salts and their deuterated analogs we used the following solid-state 15N NMR approach. First, using CP/MAS (CP = cross polarization, MAS = magic angle spinning), we determined the isotropic 15N chemical shifts of the protonated and deuterated powdered salts, where we observed for the first time H/D isotope effects on solid-state NMR chemical shifts. Then, for the static powdered solids, we determined the values of the principal components of the nitrogen CSA tensor of the protonated hydrogen bond by 15N lineshape analysis as a function of the hydrogen bond geometry. These tensor components were used to analyze the corresponding spectra of the deuterated salts and to determine the 1H, 15N dipolar coupling constants. As these constants are related to the distance between the coupled nuclei, nitrogen–deuteron distances could be measured as a function of the deuteron location and related to the isotropic nitrogen chemical shifts. The H/D isotope effects on the latter were then used to extrapolate the related nitrogen–hydrogen distances and hence the H/D isotope effects on the hydrogen bond geometries. These results were greatly assisted by ab initio calculations including corrections for anharmonic ground-state vibrations.

In this study, we combined both areas of research and describe here the results of solid-state NMR measurements of a series of novel solid-state acid–base 1 : 1 complexes between collidine and carboxylic acids depicted in Scheme 1. In this series the hydrogen bond proton is systematically shifted from oxygen to nitrogen. For the complexes 2, 5 and 6 crystal structures at 150 K have been reported. Two structures, those of 2 and 5, are depicted in Fig. 1. Whereas 2 represents a typical molecular complex, exhibiting an $N\cdots O$ distance of 2.613(4) Å, there is evidence that 5 and 6 exhibit zwitterionic structures with $N\cdots O$ distances of 2.596(3) and 2.597(2) Å. One may even classify the latter as collidine salts. We choose a pyridine derivative because of its heterocyclic nitrogen which represents a model for the proton acceptor nitrogen of the imidazole side-chain of histidine in proteins.
We chose collidine instead of pyridine whose 15N chemical shielding tensor in the free compound and in pyridinium salts has been studied previously, because in spite of many attempts we were not able to obtain solid 1:1 complexes of pyridine with the less acidic carboxylic acids such as benzoic acid where the competition between cyclic dimer and the 1:1 acid–base complex formation and the interplay with other intermolecular interactions apparently favors the former.

The scope of this paper is, therefore, to describe the results of our 15N NMR studies and also additional 1H NMR studies of this series of acid–base complexes. After the experimental section, which contains a description of the synthesis of the compounds, the details of the NMR measurements and the data analysis, the results are reported and discussed. One of the main results is a correlation between the nitrogen–hydrogen distances and both the 15N and also 1H chemical shifts of the NHO bonds as a function of the proton location. As in our previous studies, 4–6,10 we will make use of the valence bond order of hydrogen bonds leading to a correlation of the two distances A and B of hydrogen-bonded complexes AHB.15 In addition, we report H/D isotope effects on the 15NN chemical shifts of the solid-state complexes 2–7.

EXPERIMENTAL

Solid-state NMR measurements

Solid-state 9.12 MHz 15N spectra were measured on a Bruker CXP 100 spectrometer (2.1 T) equipped with a Doty 7 mm CP/MAS probe at room temperature as described previously, or a Bruker MSL 300 spectrometer (7 T) operating at 30.41 MHz for 15N. 1H MAS NMR spectra were measured on a Varian Infinity Plus 600 MHz solid-state NMR spectrometer. Standard [1H]–15N CP NMR experiments were performed under static or MAS conditions with continuous proton decoupling and an r.f. power of about 28 kHz. MAS spinning speeds were of the order of 2–3 kHz in the 9.12 MHz and 5–6 kHz in the 30.41 MHz experiments. The 90° pulse widths were about 6 µs, the CP contact times were between 2 and 8 ms and the recycle time was 3s. All spectra are referenced to external solid 15NH4Cl (95% 15N-enriched). In order to convert these data into the nitromethane scale, the relation

\[\delta(\text{CH}_3\text{NO}_2) = \delta(15\text{NH}_4\text{Cl}_{\text{cryst}}) - 338.1 \text{ ppm} \]

may be used.16

Materials

15N-labeled 2,4,6-trimethylpyridine (collidine) (1) was synthesized from 95% 15N-enriched NH4Cl and 2,4,6-trimethylpyrylum tetrafluoroborate according to the method of Balaban et al.17 Benzoic, 4-nitrobenzoic, 3-nitro-4-chlorobenzoic, 3,5-dinitrobenzoic, 2-nitrobenzoic, 3,5-dichlorobenzoic, 3,5-dinitro-4-methylbenzoic, 2-chloro-4-nitrobenzoic and hydrochloric acid and deuterium oxide, sodium tetraphenylborate and methanol-d4 were purchased from Aldrich. The purity of the synthesized complexes was verified by 1H NMR and 13C NMR spectroscopy using chloroform solutions on a 270 MHz NMR spectrometer.

Comounds

[15N]-2,4,6-Trimethylpyridine–benzoic acid (2), [15N]-2,4,6-trimethylpyrylum–4-nitrobenzoic acid (3), [15N]-2,4,6-trimethylpyrylum–4-chloro-3-nitrobenzoic acid (4), [15N]-2,4,6-trimethylpyrylum–3,5-dinitrobenzoic acid (5), [15N]-2,4,6-trimethylpyrylum–2-nitrobenzoic acid (6), [15N]-2,4,6-trimethylpyridine–hydrochloric acid (8) and [15N]-2,4,6-trimethylpyrylum–2-chloro-4-nitrobenzoic acid (9) complexes were prepared using a solution in dichloromethane as an intermediate stage followed by azotropic distillation. Microcrystalline powder was twice washed in diethyl ether to remove the excess of collidine. Finally, the complexes were recrystallized from diethyl ether at 253 K.

[15N]-2,4,6-Trimethylpyridinium tetraphenylborate (7) was prepared from a 10% HCl solution of collidine after adding an excess of sodium tetraphenylborate. Since 7 is not soluble in water it was dried and recrystallized from acetone at 253 K.

Deuteration of these substances, performed by repeated distillation from methanol-d4, led to the corresponded samples 2D, 3D, 4D, 5D and 6D. A sample of 7D was specially prepared from DCl solution in deuterium oxide. The melting points of the polycrystalline samples were 339 (2), 408 (3), 355 (4), 423 (5), 361 (6), 373 (9) and >520 K (7 and 8).

As mentioned above, the x-ray crystal structures of 2, 5 and 6 obtained at 150 K have been reported previously. Unfortunately, we were not able to obtain crystals of the other complexes suitable for obtaining x-ray crystal structures. In addition to the problems of crystallization, crystalline 2 and 3 lost slowly collidine, especially during dehydration in a vacuum line, and were thereby converted into the
Hydrogen-bonded acid–base complexes of collidine S21 corresponding 1:2 complexes, as monitored by solid-state 15N CP/MAS and 1H MAS NMR.

Determination of N···H/N···D distances by dipolar 15N solid-state NMR lineshape analysis

The 15N NMR lineshape equations taking into account the heteronuclear dipolar coupling between the 15N and a close deuteron have been described recently. In this study, the same computer program was used and therefore it is not described further. All details concerning the means by which the couplings were obtained are given in the following section.

RESULTS

The results of the NMR experiments are depicted in Figs. 2–5. All parameters obtained are given in Table 1. The parameters are analyzed in Fig. 6 as described partly in this section and partly in the discussion section.

1H MAS NMR measurements

In Fig. 2 are depicted the room-temperature 1H MAS NMR spectra of the complexes 2–7 measured at a spinning speed of 24 kHz using a Varian Infinity Plus spectrometer operating at 600 MHz. As fast spinning removes homonuclear dipolar coupling to a large extent, we are able to observe the isotropic chemical shifts of the hydrogen-bonded complexes 2–6. When the acidity of the carboxylic acid is increased, we observe in a similar way as for the complexes with pyridine in the liquid-state first a low-field shift of the hydrogen bond.

Figure 2. Room-temperature 600 MHz 1H NMR spectra of compounds 2–7 at 24 kHz spinning speed. The spectra are referenced to external solid TMDS, (CH$_3$)$_3$Si(CD$_2$)$_2$SO$_3^-$Na$^+$. The asterisk indicates a 1:2 collidine–benzoic acid complex.

Figure 3. Room-temperature 9.12 MHz 15N (1H) CP MAS NMR spectra of solid powder samples 2–7 and 2D–7D at room temperature, 3 kHz spinning speed. The spectrum of 1 was obtained at 140 K. The spectra are referenced to external solid 15NH$_4$Cl.

Figure 4. Superposed experimental and calculated 9.12 MHz 15N (1H) CP NMR static spectra of solid powder samples 2–7 at room temperature. The spectrum of 1 was obtained at 30.41 MHz by slow MAS at 140 K with 540 Hz spinning speed. The spectra are referenced to external solid 15NH$_4$Cl.
samples bond geometries, indicating opposite H/D isotope effects on the hydrogen signals for

When the acidity of the carboxylic acid is increased, a 1H–15N dipolar interaction is removed by the continuous temperature solid-state 9.12 MHz 15N CP NMR spectra of 15N CP/MAS NMR measurements of static powdered samples at room temperature. The spectra are referenced to external solid 15NH4Cl.

Figure 5. Superposed experimental and calculated 9.12 MHz 15N (1H) CP NMR static spectra of deuterated solid powder samples 2D–7D at room temperature. The spectra are referenced to external solid 15NH4Cl.

A proton to a maximum shift around 20 ppm and then again a high-field shift. Unfortunately, the hydrogen bond proton signal of 7 could not be identified. Either the chemical shift is around 10 ppm or smaller and hence hidden under the aromatic proton signals, or the signal is broadened owing to molecular motions interfering with MAS. Since the NH proton has no other protons in its direct vicinity, it experiences only comparably weak homonuclear dipolar interactions to other protons. Hence it should be possible either to observe this proton directly, employing ultra-fast MAS NMR spectroscopy and homonuclear dipolar decoupling, or indirectly via homonuclear dipolar decoupling and coherence transfer to the NH nitrogen.

Such experiments are currently under investigation.

15N CP/MAS NMR measurements
The room-temperature 9.12 MHz 15N CP/MAS NMR spectra of the 15N-labeled compounds 2–7 and of their deuterated analogs 2D–7D are depicted in Fig. 3. For comparison, the spectrum of neat frozen [15N]collidine is also included. When the acidity of the carboxylic acid is increased, a monotonic shift of the [15N]collidine signal to high-field is observed. Whereas deuteration causes a low-field shift of the signals for 2 and 3, high-field shifts are observed for 5–7, indicating opposite H/D isotope effects on the hydrogen bond geometries.

15N CP NMR measurements of static powdered samples
The superimposed experimental and calculated room-temperature solid-state 9.12 MHz 15N CP NMR spectra of the polycrystalline powders 2–7 are depicted in Fig. 4. The 1H–15N dipolar interaction is removed by the continuous proton decoupling. Hence the shape of the spectral lines depends only on the values of the chemical shift anisotropy (CSA) tensor components. The spectrum of frozen collidine collected at 140 K and 30.41 MHz was obtained using MAS at a low spinning speed of 540 Hz.

As a starting point, we made use of a similar analysis of [15N]pyridine and [15N]pyridinium reported by Solum et al. They found experimentally and by quantum mechanical calculations that the CSA tensors of pyridine and pyridinium are located in the molecular frame as indicated in Fig. 6. One of the principal CSA axes is the molecular symmetry axis, which is defined as the NC4 axis, the second axis is the normal to the molecular plane and the third axis goes through atoms C-2 and C-6 (or C-3 and C-5). The corresponding principal chemical shielding values are labeled according to the literature for heterocyclic nitrogen atoms as tangential component $\delta_{11} = \delta_t$, radial component $\delta_{22} = \delta_r$, and perpendicular component $\delta_{33} = \delta_p$. Solum et al. showed that for pyridine and pyridinium the values of δ_t and δ_p are inverted.

A more detailed view provides the present series of complexes for which a detailed analysis is depicted in Fig. 6(a), where we have plotted all components as a function of the isotropic 15N chemical shifts. The latter is a sensitive gauge for the nitrogen–hydrogen distance, as shown later. For convenience and comparison in the future with other heterocyclic nitrogen atoms, we used neat frozen collidine as a reference, appearing at 268 ppm downfield of solid 15NH4Cl or at ~70 ppm high field from liquid CH3NO2. We note that δ_t and δ_p are not very sensitive to the hydrogen bond geometry and move towards one another whereas δ_r is strongly shifted to high field when the proton approaches nitrogen. For 4, δ_t and δ_r components are almost equal, leading to the appearance of a quasi-axial symmetric CSA tensor lineshape. The high-field shift of the isotropic value is, therefore, mainly determined by δ_r, so that a linear dependence of the tensor elements as a function of the isotropic chemical shifts has been observed. More details will be given in the discussion section.

At this stage, we were now able to analyze the corresponding room-temperature 9.12 MHz 1H decoupled 15N CP NMR spectra of the powdered deuterated analogs 2D–7D depicted in Fig. 5. These spectra are additionally affected by the dipolar 2H–15N interaction. The spectra were simulated by assuming that the N···D axis coincides with the NC4 axis, i.e. parallel to δ_t. Thus, only the values of the dipolar coupling constants D_{ND} were varied, and no Euler angles relating the chemical shielding and the dipolar ND coupling tensors. The results of the coupling constants and the resulting cubic average distances r_{ND} are included in Table 1. The values of δ_t, δ_r, and δ_p were not directly taken from the protonated compounds but extrapolated from Fig. 6(a) based on the isotropic 15N chemical shifts of the deuterated compounds. The resulting calculated lineshapes in Fig. 5 are very satisfactory.

Finally, in Fig. 6(b) the cubic average distances r_{ND} obtained are plotted as a function of the isotropic nitrogen chemical shift. We obtained an exponential dependence. Again, the function represented by the dotted line will be given and discussed in the next section.
Table 1. Chemical shielding parameters of hydrogen-bonded acid–base complexes

<table>
<thead>
<tr>
<th>AHB</th>
<th>No.</th>
<th>M. P. (°C)</th>
<th>pKₐ</th>
<th>δ(¹H) (ppm)</th>
<th>δiso(¹⁵N) (ppm)</th>
<th>δt(¹⁵N) (ppm)</th>
<th>δr(¹⁵N) (ppm)</th>
<th>rNH (Å)</th>
<th>δmol(¹⁵N) (ppm)</th>
<th>δ(H) (ppm)</th>
<th>δd(¹⁵N) (ppm)</th>
<th>δ(⅓)(¹⁵N) (ppm)</th>
<th>2Δ¹⁵N (D/H) (ppm)</th>
<th>DND (Hz)</th>
<th>rND (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Col</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>0</td>
<td>222</td>
<td>67</td>
<td>—</td>
<td>298</td>
<td>—</td>
<td>58</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Bz–Col</td>
<td>2</td>
<td>66</td>
<td>4.19</td>
<td>14.0</td>
<td>−34</td>
<td>132</td>
<td>57</td>
<td>293</td>
<td>1.60</td>
<td>31</td>
<td>142</td>
<td>8</td>
<td>3.2</td>
<td>410</td>
<td>1.64</td>
</tr>
<tr>
<td>4-NO₂–Bz–Col</td>
<td>3</td>
<td>135</td>
<td>3.41</td>
<td>18.2</td>
<td>−47</td>
<td>102</td>
<td>52</td>
<td>293</td>
<td>1.44</td>
<td>31</td>
<td>107</td>
<td>53</td>
<td>−3.1</td>
<td>530</td>
<td>1.52</td>
</tr>
<tr>
<td>4-Cl-3-NO₂–Bz–Col</td>
<td>4</td>
<td>78</td>
<td>3.66</td>
<td>18.9</td>
<td>−75</td>
<td>15</td>
<td>37</td>
<td>283</td>
<td>1.23</td>
<td>31</td>
<td>142</td>
<td>57</td>
<td>4.0</td>
<td>1400</td>
<td>1.10</td>
</tr>
<tr>
<td>3,5-di-NO₂–Bz–Col</td>
<td>5</td>
<td>150</td>
<td>2.82</td>
<td>19.7</td>
<td>−89</td>
<td>−21</td>
<td>32</td>
<td>273</td>
<td>1.16</td>
<td>34</td>
<td>26</td>
<td>53</td>
<td>2.8</td>
<td>1400</td>
<td>1.10</td>
</tr>
<tr>
<td>2-NO₂–Bz–Col</td>
<td>6</td>
<td>88</td>
<td>2.16</td>
<td>18.3</td>
<td>−95</td>
<td>−40</td>
<td>22</td>
<td>268</td>
<td>1.13</td>
<td>34</td>
<td>22</td>
<td>50</td>
<td>2.4</td>
<td>1600</td>
<td>1.06</td>
</tr>
<tr>
<td>HB(Ph)₄–Col</td>
<td>7</td>
<td>>250</td>
<td>0</td>
<td>−120</td>
<td>−118</td>
<td>2</td>
<td>248</td>
<td>1.02</td>
<td>34</td>
<td>50</td>
<td>22</td>
<td>22</td>
<td>2.4</td>
<td>1000</td>
<td>0.02</td>
</tr>
<tr>
<td>HCl–Col</td>
<td>8</td>
<td>>250</td>
<td>1</td>
<td>16.2</td>
<td>−105</td>
<td>−118</td>
<td>2</td>
<td>248</td>
<td>1.02</td>
<td>34</td>
<td>22</td>
<td>22</td>
<td>2.4</td>
<td>1000</td>
<td>0.02</td>
</tr>
<tr>
<td>2-Cl-4-NO₂–Bz–Col</td>
<td>9</td>
<td>100</td>
<td>1.96</td>
<td>16.2</td>
<td>−81</td>
<td>−118</td>
<td>2</td>
<td>248</td>
<td>1.02</td>
<td>34</td>
<td>22</td>
<td>22</td>
<td>2.4</td>
<td>1000</td>
<td>0.02</td>
</tr>
<tr>
<td>pyr</td>
<td>10</td>
<td>—</td>
<td>—</td>
<td>0</td>
<td>263</td>
<td>96</td>
<td>−359</td>
<td>268</td>
<td>1.02</td>
<td>34</td>
<td>22</td>
<td>22</td>
<td>2.4</td>
<td>1000</td>
<td>0.02</td>
</tr>
<tr>
<td>HCl–pyr</td>
<td>11</td>
<td>1</td>
<td>1</td>
<td>−106</td>
<td>308</td>
<td>241</td>
<td>−43</td>
<td>268</td>
<td>1.02</td>
<td>34</td>
<td>22</td>
<td>22</td>
<td>2.4</td>
<td>1000</td>
<td>0.02</td>
</tr>
</tbody>
</table>

a Col = ¹⁵N-labeled collidine; Bz = benzoic acid. Δiso = isotropic ¹⁵N chemical shifts obtained from the MAS spectra. δt, δr and δl are the principal components of the CSA tensor.

b The ¹⁵N chemical shifts of collidine and pyridine containing compounds are referenced to the corresponding free frozen bases, absorbing at 268 and 275 ppm (reference solid ¹⁵NH₄Cl) or −70 and −63 ppm (reference liquid nitromethane).

c Extrapolated using Eqn (13).

d Values according to Solum et al.¹³
DISCUSSION

We have studied by solid-state 1H and 15N NMR the interaction of 2,4,6-trimethylpyridine (collidine) with various carboxylic acids in the solid-state. The series of compounds 2–7 allows us to follow the changes in the hydrogen bond geometries and of important NMR parameters when the proton is shifted from oxygen to nitrogen. In the following, we will analyze and discuss the results obtained. For this purpose, we will make extensive use of the valence bond order model of hydrogen bonding, reviewed briefly in the next section.

Valence bond order model of hydrogen bonding

One can associate with any hydrogen-bonded system $A—H···B$ two distances $r_1 \equiv r_{AH}$ and $r_2 \equiv r_{HB}$ (using either...
a bond labeling or an atom pair labeling) and an hydrogen bond angle θ as indicated in Scheme 2.

\[
\begin{array}{c}
A \quad \theta \quad H \quad \cdot \quad \cdot \quad B \\
\hline
\end{array}
\]

It is convenient to define additionally the coordinates q_1 and q_2 according to

\[
q_1 = 1/2(r_{AH} - r_{HB})/2, \quad q_2 = r_{AH} + r_{HB} \tag{2}
\]

In the case of a linear hydrogen bond q_1 corresponds directly to the distance of the proton with respect to the hydrogen bond center and q_2 to the heavy atom A··B distance, as indicated in Scheme 3.

\[
\begin{array}{c}
A \quad \cdots \cdots \quad H \quad \cdots \cdots \quad B \\
\hline
\end{array}
\]

According to the valence bond order concept of Pauling and Brown, one can define a valence p_{ij} of a diatomic molecule $ij = AH$ as

\[
p_{ij} = \exp[-(r_{ij} - r_{ij}^0)/b_{ij}] \tag{3}
\]

where b_{ij} is a decay parameter and r_{ij}^0 the distance where $p_{ij} = 1$; p_{ij} becomes zero at infinite distance. A hydrogen-bonded system $A··H··B$ is then characterized by two bond valences $p_{AH} = p_{AH}$ and p_{HB} and two distances $r_1 = r_{AH}$ and $r_2 = r_{HB}$ (Scheme 1). In this paper, A corresponds to oxygen and B to the nitrogen atom of collidine. The bond valence concept then assumes that the total bond order of hydrogen is unity:

\[
1 = p_{AH} + p_{HB} = \exp[-(r_{AH} - r_{AH}^0)/b_{AH}] + \exp[-(r_{HB} - r_{HB}^0)/b_{HB}] = \exp[-(q_1 + 1/2q_2 - r_{AH}^0)/b_{AH}] + \exp[-(q_1 + 1/2q_2 - r_{HB}^0)/b_{BH}] \tag{4}
\]

Hence, it follows that the two bond distances r_{AH} and r_{HB} or alternatively q_1 and q_2 cannot be varied independently. Whereas it is possible to express r_{AH} as a function of r_{HB}, the function of q_1 vs q_2 is calculated easily only numerically. Only in the cases of OHO or NHO hydrogen bonds where $b_{AH} = b_{HB} = b$ and $r_{AH}^0 = r_{HB}^0 = r^0$ does it follow from Eqn (4) that

\[
q_2 = r_{AH} + r_{HB} = 2r^0 + 2q_1 + 2b\ln[1 + \exp(-2q_1/b)] \tag{5}
\]

The validity of Eqn (4) has been demonstrated in the form of r_{AH} vs r_{HB} graphs by Steiner et al. on the basis of a number of neutron diffraction structures contained in the Cambridge Structural Data Base. We have plotted the data points corresponding to OHN hydrogen bonds in the q_2 vs q_1 graph in Fig. 6(c). The calculated dotted curve indicates that when the proton is transferred from O to N the O··N distance first shortens, then reaches a minimum in the quasi-symmetric complex and finally widens again as the zwitterionic complex is approached. Unfortunately, data are lacking in the central region where the strongest hydrogen bonds are located. From this study, we included the data points for compounds 2, 5 and 6, derived by x-ray and NMR analyses as shown below. The dotted calculated curve was obtained as follows. For NHO bonds Steiner et al. proposed the parameter set $r_{OH} = 0.942 \AA$, $r_{HN} = 0.992 \AA$, $b_{OH} = 0.371 \AA$, $b_{HN} = 0.385 \AA$. As already noted in the case of NHN bonds, these best-fit parameters depend somewhat on the body of data included in the fit. Especially the parameters b_{OH} and b_{HN} which determine the position of the minimum of the correlation curve depend somewhat on whether data points in the region of the minimum are included. By setting $b_{HN} = 0.42 \AA$ we obtain the calculated curve in Fig. 6(c) which differs from the curve calculated with the Steiner parameters only that the minimum is located at $q_{2\text{min}} = 2.482 \AA$ and $q_{1\text{min}} = -0.04 \AA$ whereas for $b_{HN} = 0.385 \AA$ we obtain $q_{2\text{min}} = 2.458 \AA$ and $q_{1\text{min}} = -0.03 \AA$ which can not be distinguished within the margin of error. Using the slightly higher value of b_{HN} we obtain, however, a better 1H–15N chemical shift correlation as described below.

In the following, we will use the hydrogen bond NMR parameters measured in terms of valence bond orders instead of distances. This procedure has the advantage that it reduces the number of parameters necessary to describe the dependence of these parameters on the hydrogen bond geometry.

15N chemical shift–distance correlation

As we already proposed previously, the isotropic 15N chemical shifts of NHN and NHO hydrogen bonds depend to a good approximation in a linear way on the hydrogen–nitrogen bond order, i.e.

\[
\delta^{(15)N} = \delta = \delta^\infty - (\delta^\infty - \delta^0)p_{HN} \quad p_{HN} = \exp[-(r - r_{HN})/b_{HN}] \tag{6}
\]

As r_{HN} and b_{HN} are already given by the geometric H-bond correlation, only the two limiting nitrogen chemical shifts δ^∞ at infinite distance to the hydrogen bond proton and δ^0 at the distance r_{HN} need to be adapted. δ^∞ can be approximated from the pure base whereas δ^0 should be estimated independently. Both values depend on the type of base. As we have referenced all 15N chemical shifts to bulk frozen solid collidine appearing at 268 ppm low-field from solid 15NH$_4$Cl or -70 ppm high-field from liquid CH$_3$NO$_2$, we set $\delta^0 = 0$. With respect to this reference, the value of $\delta^\infty - \delta = -\delta^0 = 130$ ppm was then obtained by fitting the experimental 15N chemical shifts of compounds 2D–7D vs the dipolar distances r_{OH}^0 using Eqn (6) as depicted in Fig. 6(b). The agreement between theory and experiment is very satisfactory. This equation will be helpful in the future as the nitrogen chemical shift of pyridine or collidine can now be directly converted into the N–H distance. It is remarkable that at the minimum N–O distance the
\[^{15}\text{N}\] chemical shift corresponds approximately to the value \((\delta^0 - \delta^\infty)/2\). Figure 6(c) illustrates why we chose to present the calculated curves of Fig. 6(b) and of Fig. 6(d)–6(f) as dotted lines: whereas the dots are equally spaced in Fig. 6(c), the corresponding dots in the other graphs are unequally spaced because they converge in the left and right limits. This is because NMR chemical shifts of the interacting partners A and B have to become independent at longer distances. This convergence of the curves calculated by the valence bond order model is a great advantage over simple polynomials which are not restricted to a realistic range of chemical shift values. We note that the maximum spacing between the data dots corresponds to the minimum of the correlation curve of Fig. 6(c).

Encouraged by this result, we assumed a similar dependence as in Eqn (6) also for the three components \(\delta_4\), \(\delta_3\) and \(\delta_1\) of the \[^{15}\text{N}\] tensor of collidine in the complexes. In other words, we assume a linear dependence of these quantities as a function of the corresponding isotropic chemical shifts given by

\[
\delta_4(\[^{15}\text{N}\]) = \delta_4^\infty + [(\delta_4^\infty - \delta_4^\infty)/(\delta^0 - \delta^\infty)]\delta
\]

with \(\delta^\infty = 0\) we obtain \(\delta_4^\infty = 222\) and \(\delta_1 = -148\) ppm, \(\delta_3^\infty = 72\) and \(\delta_2 = 2\) ppm, and \(\delta_1^\infty = -303\) and \(\delta_2^\infty = -253\) ppm.

It is interesting that the crossing point of \(\delta_1\) and \(\delta_2\) occurs at the minimum of the correlation of Fig. 6(a) at the quasi-symmetric complex.

X-ray diffraction and NMR hydrogen bond distances

In Table 2 we compare the hydrogen bond geometries of the complexes 2, 5 and 6 obtained by low-temperature x-ray crystallography\(^{12}\) with those obtained by NMR.

First, we note that in addition to the experimental error of the dipolar coupling constants, the distances derived from these couplings are affected by a well-known systematic error, as the NMR distances represent average reversed cubic distances whereas neutron data represent mean distances. As we showed recently,\(^{30}\) an anharmonic ground-state stretching vibration leads then to a slightly smaller cubic as compared with the mean average distance, although the effect is only of the order of a few percent. On the other hand, a large amplitude bending vibration or a libration of the N—D vector will increase the cubic average distance value obtained by dipolar NMR. Hence the distance values obtained here are uncorrected for vibrational and librational motions.

By contrast, a systematic error which would occur if one did not account for different geometries for the protonated and deuterated hydrogen bonds was eliminated by calculating the \(r_{\text{NH}}\) distances by extrapolation from the corresponding isotropic \[^{15}\text{N}\] chemical shifts using Eqn (6). Assuming furthermore quasi-linear OHN hydrogen bonds, we can then calculate the \(r_{\text{OH}}\) distances as the difference \(r_{\text{OH}} = r_{\text{ON}} - r_{\text{NH}}\) from the crystallographic \(r_{\text{ON}}\) distances (Table 2).

1H—\[^{15}\text{N}\]—chemical shift correlation

Recently, we also proposed the following correlation for the 1H chemical shifts of pyridine–carboxylic acid complexes:\(^4\)

\[
\delta(1\text{H}) = \delta + 4\delta_{\text{NH}}\delta_{\text{OH}} + \delta_{\text{OH}}\delta_{\text{NH}} + \delta_{\text{OH}}\delta_{\text{HN}} - \delta_{\text{N}}\delta_{\text{H}}
\]

where \(\delta_{\text{N}}\) and \(\delta_{\text{H}}\) are the limiting 1H chemical shifts of the isolated OH and NH groups. In addition to the linear terms in the OH and HN bond orders \(\rho_{\text{OH}}\) and \(\rho_{\text{HN}}\) there is an excess term proportional to the product of the two bond orders. This product exhibits a maximum at \(\rho_{\text{OH}} = \rho_{\text{HN}} = 0.5\). By combination of Eqs (6) and (8), taking into account Eqs (2)–(5) we were able to calculate the 1H—\[^{15}\text{N}\] chemical shift correlation curve of Fig. 6(d), using the parameters \(\delta_1 = 16.7\) ppm, \(\delta_{\text{OH}} = 1\) ppm and \(\delta_{\text{HN}} = 7\) ppm. As we do not have enough data points in the wings of the curve, these parameters are preliminary and may be subject to small changes in the future. By comparison of Fig. 6(c) with Fig. 6(d), it becomes clear that the geometric hydrogen bond correlation transforms into chemical shifts which are then a measure of the former, with the feature that the chemical shift correlation is much more sensitive in the range of strong hydrogen bonds and less sensitive in the cases of weak hydrogen bonds, as compared with the geometric correlation.

<table>
<thead>
<tr>
<th>Complex</th>
<th>(r_{\text{NH}}(\text{Å})^a)</th>
<th>(r_{\text{OH}}(\text{Å})^a)</th>
<th>(r_{\text{ON}}(\text{Å})^a)</th>
<th>(\sigma(\text{NHO})(^\circ)^b)</th>
<th>(r_{\text{ND}}(\text{Å})^c)</th>
<th>(r_{\text{NH}}(\text{Å})^d)</th>
<th>(r_{\text{OH}}(\text{Å})^d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzoic acid—coll. (2)</td>
<td>1.53</td>
<td>1.09</td>
<td>2.613</td>
<td>174</td>
<td>1.64</td>
<td>1.60</td>
<td>1.02</td>
</tr>
<tr>
<td>3,5-Dinitrobenzoic acid—coll. (5)</td>
<td>0.98</td>
<td>1.62</td>
<td>2.597</td>
<td>176</td>
<td>1.10</td>
<td>1.16</td>
<td>1.44</td>
</tr>
<tr>
<td>2-Nitrobenzoic acid—coll. (6)</td>
<td>0.94</td>
<td>1.65</td>
<td>2.596</td>
<td>171</td>
<td>1.10</td>
<td>1.13</td>
<td>1.47</td>
</tr>
</tbody>
</table>

\(^a\) Ref. 12.

\(^b\) \(^{1}\text{H}—^{15}\text{N}\) dipolar NMR, this study.

\(^c\) Extrapolated from the experimental \[^{15}\text{N}\] chemical shifts using Eqn (12).

\(^d\) \(r_{\text{OH}} = r_{\text{ON}} - r_{\text{NH}}\).
pK_a−15N chemical shift correlation

At this point we raise the question of the acid–base interaction in the solid-state. We have shown that an increase in the acidity of the acid interacting with collidine leads to geometric changes of the hydrogen bond from A−H⋅⋅⋅B via A−H−⋅⋅⋅B+ to A−H⋅⋅⋅B+, associated with a contraction of the A⋅⋅⋅B distance in A−H⋅⋅⋅B+ responsible for the low-field 1H chemical shift. Hence the situation is completely different to aqueous solution where the pK_a value of an acid is given by

$$K_{a}^{H} = \frac{[H^{+}][OH^{-}]}{[HA]}$$

From a structural standpoint, both the solid-state hydrogen bond geometry and hence the intrinsic 15N chemical shift of collidine hydrogen bonded to an acid as well as the pK_a value of the latter may have a similar origin. Therefore, it is tempting to look for a correlation between δ(15N) and pK_a. Indeed, as depicted in Fig. 6(e), such a correlation seems to be fulfilled. For the calculation of this dependence we assumed a linear relation of pK_a with the proton transfer coordinate

$$pK_{a} = -7q_{L} + 2.8$$

The parameters of Eqn (10) were adapted in such a way that the calculated curve in Fig. 6(e) fits best the experimental data points. However, these parameters are only estimates in view of the scattering of the data.

Equation (10) indicates that in order to obtain a hydrogen bond with q_L = 0, an acid with a pK_a value of ~3 is needed. As the pK_a value of collidinium is 7.43, this result means that this acid must be stronger than collidinium by about 4.5 units. A similar result has been obtained for solid 1:1 complexes of benzoic acids with pyridines by IR spectroscopy.19

Isotope effects on solid-state 15N chemical shifts

Finally, we analyze the observed isotope effects on the 15N chemical shifts. For this purpose, we assume that

$$p_{OH} + p_{NH} = p_{OD} + p_{ND} = 1$$

where p_{OH} and p_{OD} will be different for a given complex. We assume that the bond order changes after deuteration can be described in terms of a single parameter

$$\Delta p = 2(p_{ND} - p_{OH}) = -2(p_{OD} - p_{OH})$$

Now we assume the following relation, only justified later by comparison with experimental data:

$$\Delta p = A(p_{OH}p_{NH})^{B}(p_{NH} - p_{OH})$$

where A and B are adjustable parameters. Equation (13) allows us to associate with each value of r_{H first} and r_{D first}, i.e. of q_1^H and q_1^D, corresponding values of r_{H second} and r_{D second}, i.e. of q_2^H and q_2^D, and hence permits the calculation of 15N and 2H chemical shifts of the corresponding deuterated complexes using Eqns (6) and (7). Using the parameters A = 10^9 and B = 7 we obtain the graph of Fig. 6(f). There is a fairly good agreement between the experimental and calculated data.

The general shape of the calculated curve can be visualized as shown in Fig. 7, which displays the one-dimensional hydron potentials of AHB hydrogen bonds at fixed A⋅⋅⋅B distances. When the proton moves to the H-bond center, a contraction of the A⋅⋅⋅B distance results, in agreement with Fig. 6(c). After the proton has crossed the hydrogen bond center, an increase in the A⋅⋅⋅B distance results again. In the extreme situations where a proton is located preferentially on the heavy atom A or on B according to an asymmetric single well potential, substitution of H by D leads to a shortening of the shorter and a lengthening of the longer heavy atom–hydron bond. When A and B are equivalent, and the A⋅⋅⋅B distance is very short, there can be two different situations: if a system can adopt the shortest possible distance there will be a symmetric single well potential (right side) for the proton motion, otherwise a symmetric double well potential (left side) for the proton motion. The two situations are often difficult to distinguish. However, in the double well case the deuterons are always located closer to the heavy atoms than the proton leading.

Figure 7. One-dimensional hydron (L = H, D) potentials and geometric changes during the transfer of a hydron from A to B characterized by the reaction coordinate <r_1−r_2>. The squares of the wavefunctions of the vibrational groundstates for H and D, i.e. the proton and deuteron distribution functions, are included; however, for the sake of clarity, the difference in the one-dimensional potential functions for H and D according to Fig. 2 is omitted. (a) A barrier at the quasi-symmetric midpoint leads to a small H/D isotope effect on the geometry absent in case (b) with a very low barrier. Adapted from Smirnov et al.20
always to an increased A - B distance upon deuteration, the deuteron is more confined in the hydrogen bond center in the single well case, as compared with the proton. This can also lead to a slight contraction of the A - B distance. From Fig. 7, it is also clear that the hydron zero-point energies (ZPE) will drop at the quasi-symmetric midpoint. The calculated ZPE values could also be expressed in terms of the valence bond order model.

CONCLUSIONS AND OUTLOOK

We have described a series of hydrogen-bonded solid 1 : 1 acid–base complexes of 15N-labeled 2,4,6-trimethylpyridine (collidine) with carboxylic acids and their hydrogen bond deuterated analogs. In this series, a proton is systematically shifted from oxygen to nitrogen. During this process, the oxygen–nitrogen distance shortens when the proton is located in the hydrogen bond center. Thus, each complex can provide a snapshot of the proton motion in NHO hydrogen-bonded systems. Using a combination of high-resolution and dipolar 1H and 15N NMR, the worlds of hydrogen bond geometries and NMR shielding can be linked together, as both are intimately correlated. The determination of geometric H/D isotope effects arising from anharmonic motions provides interesting data to obtain the proton potential curves in the future. The results can be used in the future to determine hydrogen bond geometries of acid–base complexes of pyridine-type compounds from isotropic chemical shifts.

Let us finally comment on the method of determining 2H–15N dipolar couplings. Whereas in this and in our previous studies, we used the technique of lineshape analysis in order to determine these couplings, in view of the simplicity of our 15N spectra, these couplings can no longer be easily obtained in this way in more complex systems. Therefore, Sack et al. and Gullion proposed REDOR-type techniques such as CPL-REDOR in order to obtain these couplings under MAS conditions, and Schmidt-Rohr and co-workers the RIDER technique. All these sophisticated techniques measure the frequencies corresponding to the strength of the dipolar coupling indirectly from the dephasing of the signal of the X-nucleus, using composite pulses for inversion of the magnetization of the very broad 2H signal. Note also other improved two-dimensional rotational side-band techniques to measure 1H–15N dipolar couplings.

On the other hand, the stratagem proposed here is to establish carefully distance–chemical shift correlations using the lineshape technique of model systems. For related systems the corresponding correlations can then be obtained in a simple way once the limiting shifts have been established. The distance information is encoded directly in the isotropic 15N chemical shifts, which are much easier than the line intensities to determine accurately. In particular, one can hope that the correlation technique may be applicable to the nitrogen atoms of histidine in proteins and in mesoporous systems, because, together with the correlation, the 15N CP/MAS spectrum corresponds directly to the nitrogen–hydrogen distance distribution function. An example of the application in this area will be published elsewhere (L. Shenderovich, P. Lorente, E. Gedat, G. Buntkowski, A. Schreiber, G. Findenegg, N. S. Golubev and H.-H. Limbach, in preparation).

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft, Bonn-Bad Godesberg, the Fonds der Chemischen Industrie, Frankfurl, the German–Israel Foundation and the Russian Foundation of Basic Research RFBR–DFG grant 99-03-04026.

REFERENCES