Molecular structure and dynamics of C-1-adamantyl substituted N-unsubstituted pyrazoles studied by solid state NMR spectroscopy and X-ray crystallography

Rosa María C. Laramunt, a María Dolores Santa María, a Isabelle Forfar, a Francisco Aguilar-Parrilla, † b María M. Inguet-Bonvehí, a Oliver Klein, b Hans-H einrich L imbach, b Concepción Foces-Foces, c Antonio L. Llamas-Saiz c and José Elguero d

a Departamento de Química Orgánica y Biología, Facultad de Ciencias, U N E D, Senda del Rey s/n, 28040 Madrid, Spain
b Institut für Organische Chemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany
c Departamento de Cristalográfia, Instituto de Química Física ‘Rocasolano’, CSIC, Serrano, 119, E-28006 Madrid, Spain
d Instituto de Química Médica, CSIC, Juan de la Cierva 1, 28006 Madrid, Spain

The influence of the 1-adamantyl group on the structure and the proton transfer dynamics of N-unsubstituted pyrazoles has been determined. Four compounds have been labelled with 15N and studied by variable temperature 15N CP MAS NMR spectroscopy: 3(5)-(1-adamantyl)pyrazole 2, 4-(1-adamantyl)pyrazole 3, 3,5-di(1-adamantyl)pyrazole 4, and 3,5-di(1-adamantyl)pyrazole 5. Compound 2 (a 1:1 mixture of both tautomers) is a long chain of hydrogen bonded molecules (‘catemer’) and as in most catemers there is no proton transfer since it would imply an ‘infinite’ number of proton jumps. Compound 3, although also a ‘catemer’, is possibly an exception to this rule, in that it seems to show proton transfer. In the solid state, compounds 4 and 5 should be cyclic hydrogen-bonded structures, dimers or trimers, but the activation energies for proton transfer, about 39 kJ mol\(^{-1}\), are quite low compared with those of 3,5-dimethylpyrazole. It appears that the quasi-spherical shape of the 1-adamantyl substituent and its solid-state plasticity may play a role in lowering these barriers. The crystal structure of 2 has been determined by X-ray analysis. Individual molecules of 2 form chains through N–H···N hydrogen bonds (‘catemers’) very similar to those already described for 4-(1-adamantyl)pyrazole and for pyrazole itself; however, the packing of these catemers is different. Tautomers 2a and 2b are present in the crystal in a 1:1 ratio, forming alternating chains of hydrogen-bonded molecules (2a···2b···2a···2b···); the N–H hydrogen atoms are linked to both nitrogen positions (N1 and N2) and show a 1:1 disorder.

Introduction

The substitution of the hydrogen atoms at positions C3, C4 and C5 of an N-unsubstituted (NH)-pyrazole affects the spatial ordering of the molecules in such a way that different intermolecular hydrogen-bonded complexes are formed in the solid state depending on the nature of the substituents. 1,4 This is the case for several pyrazole derivatives, previously studied by X-ray crystallography, where different classes of hydrogen-bonded networks, such as dimers, trimers, tetramers or longer chains (‘catemers’) are found in the crystal. 1–6 In addition, double, triple and even quadruple intermolecular proton transfer processes were detected in the cyclic hydrogen bonded complexes by 2H CP MAS NMR spectroscopy (CP: cross-polarization, MAS: magic angle spinning). 2,4 After labelling the compounds with 2H, equilibrium constants, rate constants and additional information about the proton tautomerism were obtained by variable temperature (VT) 2H CP MAS NMR spectroscopy. 2,4 Since then, we have used pyrazoles as model compounds in order to study how the mechanism of proton exchange depends on the number of protons transferred. 7–9 Further investigations showed that substituents which can adopt different conformations 10 with respect to the pyrazole ring affect the equilibrium and rate constants of the proton tautomerism. 5 This is the case for 3,5-di-tert-butylpyrazole 1 where the tert-butyl group conformation, different at C3 and C5, strongly affects the degeneracy of the intradimer proton tautomerism. As a consequence, an asymmetric exchange system is observed by CP MAS NMR, i.e. one tautomer is preferentially formed in the solid state although the pyrazole ring is symmetrically substituted (R 3 = R 5). By combination of X-ray crystallography and 15N CP MAS NMR spectroscopy the complex exchange process in 1 has been fully characterized. 5

In the present work, we were interested in studying the influence of the 1-adamantyl group on the structure and...
adamantyl substituent around the adamantyl–pyrazole C(sp³) bond, i.e., the crystal plasticity (easy molecular motion about mean positions in the lattice) of adamantane itself which usually results in special physical properties of its derivatives.11,12 and, (ii) as already stated, the possibility of finding dynamic conformational disorder of the adamantyl substituent around the adamantyl–pyrazole C(sp³)–C(sp²) bond, i.e., two or more conformations, which could affect the crystal structure and proton transfer dynamics as in the case of 1,5-

Four symmetric and asymmetric 1-adamantyl-substituted N-H-pyrazoles (2-4) and two 1-adamantyl-substituted N-methylpyrazoles (6, 7) were synthesized. For the 3(5)-(1-adamantyl)-pyrazole 2 a non-degenerate system should be expected in the solid state which could result in the presence of only one tautomer. However, the results obtained by 13C and 15N CP MAS NMR spectroscopy show that tautomers 2a and 2b are present in equal amounts in the crystal. In the case of the three other compounds, although symmetrically substituted, the orientation of the adamantyl group affects the symmetry of the crystal resulting in different equilibrium constants for the tautomerism.

Results and discussion

For the following discussion a summary of the crystallographic results concerning adamantyl-NH-pyrazoles 2-5 is necessary. We failed to obtain crystals of 3,5-diadamantylpyrazole 5; in the case of 3,5-dimethyl-4-adamantylpyrazole 4, crystals were obtained but they proved to be twinned. The case of compounds 2 and the already published 3,13 will be discussed in detail in the corresponding sections.

We show here that in the solid state the adamantyl group orientation and proton tautomerism are completely different in the four pyrazole derivatives studied. Therefore, we prefer to present and discuss the crystallographic data (when available) and NMR spectroscopic results for each compound separately.

3(5)-(1-Adamantyl)pyrazole 2

The 13C and 15N CP MAS NMR spectra of 2 obtained at room temperature (300 K) are shown in Fig. 1. All 13C and 15N chemical shifts are reported in Table 1. In the 13C NMR spectrum (Fig. 1(a)) two signals are observed for both the C3 and the C5 atoms of the pyrazole ring, indicating that the two tautomers, 3-(1-adamantyl)-2a and 5-(1-adamantyl)pyrazole 2b are present in the solid state. Increment calculations based on the effect of the adamantyl group on the 13C chemical shifts of the pyrazole-substituted carbon atom†,‡ lead to the conclusion that the outer C3/C5 signals at 161.1/128.3 ppm must be assigned to the 3-(1-adamantyl) tautomer 2a, and the inner C3/C5 signals at 138.1/152.3 ppm to the 5-(1-adamantyl) tautomer 2b. The chemical shift of 99.6 ppm for the C4 atom is the same for the theoretical values for 3-(1-adamantyl)pyrazole 2a of 165 ppm (C3) and 128 ppm (C5) (see ref. 18). Introducing an adamantyl group at C4 results in a 13C chemical shift of 132.8 ppm for this C atom, i.e., an increment of +25.8 ppm (see ref. 14). With this increment we obtain theoretical values for 3-(1-adamantyl)pyrazole 2a of 165 ppm (C3) and ca. 128 ppm (C5), and of ca. 139 ppm (C3) and 154 ppm (C5) for 5-(1-adamantyl)pyrazole 2b, which are in excellent agreement with the experimental values obtained.

Table 1 13C and 15N chemical shifts (in ppm) of adamantyl substituted pyrazoles in the solid state at room temperature (300 K) unless otherwise indicated.* For comparison the values for pyrazole and 3,5-dimethylpyrazole are also included.14

<table>
<thead>
<tr>
<th>Compound</th>
<th>C3</th>
<th>C4</th>
<th>C5</th>
<th>N–H</th>
<th>--N–</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyrazole pz</td>
<td>139</td>
<td>107</td>
<td>128</td>
<td>170</td>
<td>248</td>
</tr>
<tr>
<td>3-(1-D adamantyl)pyrazole 2a</td>
<td>161.1</td>
<td>99.6</td>
<td>128.3</td>
<td>163.5</td>
<td>240.4</td>
</tr>
<tr>
<td>5-(1-D adamantyl)pyrazole 2b</td>
<td>138.1</td>
<td>99.6</td>
<td>152.3</td>
<td>165.8</td>
<td>245.0</td>
</tr>
<tr>
<td>4-(1-D adamantyl)pyrazole 3 a</td>
<td>134.5</td>
<td>132.8</td>
<td>123.7</td>
<td>166.5</td>
<td>242.7</td>
</tr>
<tr>
<td>3,5-Diadamantylpyrazole 3 a</td>
<td>146</td>
<td>105</td>
<td>141</td>
<td>167</td>
<td>241</td>
</tr>
<tr>
<td>3,5-Diadamantylpyrazole 4 a</td>
<td>144.5</td>
<td>121.2</td>
<td>134.3</td>
<td>166.6</td>
<td>240.5</td>
</tr>
<tr>
<td>3,5-Di(1-adamantyl)pyrazole 5 a</td>
<td>152-160br</td>
<td>93.7</td>
<td>152-160br</td>
<td>159.6</td>
<td>241.0</td>
</tr>
<tr>
<td>1-Methyl-3-(1-adamantyl)pyrazole 6 a</td>
<td>162.1</td>
<td>102.5</td>
<td>130.2</td>
<td>156.2</td>
<td>262.8</td>
</tr>
<tr>
<td>1-Methyl-5-(1-adamantyl)pyrazole 7 a</td>
<td>138.6</td>
<td>103.5</td>
<td>150.3</td>
<td>160.0</td>
<td>274.8</td>
</tr>
</tbody>
</table>

* All 15N chemical shifts relate to external solid 14N HCl and are given with an error of ±0.3 ppm. 13C chemical shifts are given with respect to SiMe 4.

† The 13C chemical shift values obtained for pyrazole are 139 (C3), 107 (C4) and 128 ppm (C5) (see ref. 18). Introduction of an adamantyl group at C4 results in a 13C chemical shift of 132.8 ppm for this C atom, i.e., an increment of +25.8 ppm (see ref. 14). With this increment we obtain theoretical values for 3-(1-adamantyl)pyrazole 2a of 165 ppm (C3) and ca. 128 ppm (C5), and of ca. 139 ppm (C3) and 154 ppm (C5) for 5-(1-adamantyl)pyrazole 2b, which are in excellent agreement with the experimental values obtained.

Fig. 1 (a) 50.32 M H 2 13C CP MAS NMR spectrum of 2 recorded at room temperature (300 K): 7 s H–90° pulse width, 4 ms contact pulse, 5 s repetition time, spectral width 20 kHz; (b) room temperature (300 K) 9.12 M H 2 15N CP MAS NMR spectrum of 2: 5.5 s H–90°, 5 ms CP-time, 4 s recycle delay, spectral width of 7 kHz, no line broadening used

Ad

Ad

N

N

H

H

[Diagram of pyrazole structures with chemical shifts labeled]
The H N M R CP MAS N M R spectrum of 2 shown in Fig. 1(b) corroborates this finding. The low-field signal corresponding to the non-protonated nitrogen atoms, and the high chemical shifts ranging from the corresponding protonated nitrogen neighbours are split into doublets, corresponding to the presence of both tautomers in the crystal: 2a showing signals at 163.5 (N–H) and 240.4 ppm (–N–) and 2b with signals at 165.8 (N–H) and 245.0 ppm (–N–) (see Table 1).

The assignment of the signals to the different tautomers was carried out by comparison with the H N M R chemical shifts obtained for the 1-methyl derivatives (see Table 1). In all cases the N– signals are more broad than the N–H ones. Since the chemical shift anisotropy of the former is larger, we think that the observed inhomogeneous line broadening is due to the influence of a random distribution of adamantyl group conformations on the chemical shift of the non-protonated nitrogen atoms of both tautomers. This influence is less pronounced in the case of the protonated nitrogen atoms, leading to a difference in the line-width of both signals.

In order to detect possible dynamic processes, variable temperature N M R experiments were carried out on the 1-labeled sample. However, in the temperature range explored of 300–375 K (mp 388 K) no sign of adamantyl group rotation, nor of proton transfer was observed. In the first case, no sign of rotation, nor of proton transfer was observed. In the first case, no sign of, the internal bond angles at the N atoms of the pyrazole ring are significantly different, due to the influence of the substituent, as has been reported for monosubstituted benzenes. The angular distortions at ipso- and ortho-positions induced by the 1-adamantyl group in compound 3 is compared with pyrazole itself have been calculated (–1.9 and 0.9° respectively). These values have been applied to the equivalent positions of compound 2 (positions 1 and 4 for ortho; 5 for ipso) in a symmetrized pyrazole molecule and they are in good agreement with the experimental ones in Table 3 (calculated values of 109.2, 105.3 and 107.6° for bond angles at positions 1, 4 and 5, respectively).

With regard to the pyrazole ring, the 1-adamantyl moiety displays the conformation reported in Table 3. The tricyclic structure is formed by four six-membered C rings presenting an almost perfect chair conformation. The ranges for the q2 and /q2 Cremer and Pople parameters are 0.002(2)–0.020(2) Å and 0.2(2)–1.8(2)°, respectively. The secondary structure of compound 2 is very similar to those of the previously described structures of pyrazole and compound 3, as can be seen in Figs. 2(b)–d, and in spite of the different symmetry found in the crystals. The 8-shaped hydrogen-bonded chains of the molecules maintain the same pattern of hydrogen bond interactions, Fig. 3. The N–H···N hydrogen bonds are the primary ones and they are similar in all three cases (Table 3). However, the main differences are the changes in the geometry of the weaker C–H··· = electron cloud contacts that help to stabilize the cross-linked helix (Table 3). Their strength, as measured by their geometrical parameters, decrease in the following order: compound 2 > pyrazole > compound 3. The crystal structure of 2 is formed by centrosymmetrically related chains of hydrogen-bonded molecules oriented along a axis. The chains are also centrosymmetric by themselves as a consequence of the proton disorder [Fig. 3(a)].

There is one void left inside the unit cell of the crystal structure of 2 (van der Waals radii from Vainshtein et al.) located at the special position (0,1/2,1/2). The total packing coefficient [V (unit cell volume)] is 0.68.

Table 2

<table>
<thead>
<tr>
<th>Compd.</th>
<th>δH (3)</th>
<th>δH (5)</th>
<th>δH (4)</th>
<th>δH (4)</th>
<th>δH (H 3–N 2)</th>
<th>δH (H 3–N 3)</th>
<th>δH (H 5–N 1)</th>
<th>δH (H 5–N 2)</th>
<th>δH (H 4–N 1)</th>
<th>δH (H 4–N 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 (exp.)</td>
<td>7.49</td>
<td>7.49</td>
<td>6.09</td>
<td>2.05</td>
<td>9.9</td>
<td>9.9</td>
<td>9.9</td>
<td>9.9</td>
<td>9.9</td>
<td>9.9</td>
</tr>
<tr>
<td>2 (calc.)*</td>
<td>—</td>
<td>—</td>
<td>2.03</td>
<td>9.8b</td>
<td>5.3</td>
<td>9.8</td>
<td>5.3</td>
<td>5.3</td>
<td>2.8a</td>
<td>4.0b</td>
</tr>
<tr>
<td>6</td>
<td>—</td>
<td>7.23</td>
<td>6.05</td>
<td>2.20</td>
<td>—</td>
<td>—</td>
<td>4.5</td>
<td>0.0</td>
<td>6.0</td>
<td>0.9</td>
</tr>
<tr>
<td>7</td>
<td>7.33</td>
<td>—</td>
<td>5.98</td>
<td>19.5</td>
<td>12.5</td>
<td>8.0</td>
<td>—</td>
<td>—</td>
<td>1.1</td>
<td>5.6</td>
</tr>
</tbody>
</table>

* A assuming 1/3 of tautomer 2a (using compound 6 as model) and 2/3 of tautomer 2b (using compound 7 as model). * For instance, ⟨δH (4.5 Hz)⟩ = 9.8 Hz. * Average value 3.4 Hz.
Table 3 Selected geometrical parameters for compound 2 and hydrogen bond interactions for 2, 3 and pyrazole (Å, °). Cent(i) stands for the geometric centroid of the pyrazole rings.

<table>
<thead>
<tr>
<th>Molecule</th>
<th>i = 1</th>
<th>i = 2</th>
<th>Molecule</th>
<th>i = 1</th>
<th>i = 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(01)–N(02)</td>
<td>1.362(3)</td>
<td>1.350(3)</td>
<td>C(05)–C(06)</td>
<td>1.514(3)</td>
<td>1.506(3)</td>
</tr>
<tr>
<td>N(01)–C(05)</td>
<td>1.340(3)</td>
<td>1.345(2)</td>
<td>C(06)–C(07)</td>
<td>1.533(3)</td>
<td>1.537(3)</td>
</tr>
<tr>
<td>N(02)–C(03)</td>
<td>1.331(3)</td>
<td>1.335(3)</td>
<td>C(06)–C(11)</td>
<td>1.539(3)</td>
<td>1.552(3)</td>
</tr>
<tr>
<td>C(03)–C(04)</td>
<td>1.390(3)</td>
<td>1.386(3)</td>
<td>C(06)–C(12)</td>
<td>1.538(4)</td>
<td>1.542(3)</td>
</tr>
<tr>
<td>C(04)–C(05)</td>
<td>1.390(3)</td>
<td>1.394(4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(02)–N(01)–C(05)</td>
<td>109.2(2)</td>
<td>109.6(2)</td>
<td>C(04)–C(05)–C(06)</td>
<td>131.9(2)</td>
<td>131.5(2)</td>
</tr>
<tr>
<td>N(01)–N(02)–C(03)</td>
<td>107.8(2)</td>
<td>107.9(2)</td>
<td>N(01)–C(05)–C(06)</td>
<td>120.0(2)</td>
<td>120.9(2)</td>
</tr>
<tr>
<td>N(02)–C(03)–C(04)</td>
<td>109.5(2)</td>
<td>109.4(2)</td>
<td>C(05)–C(06)–C(12)</td>
<td>109.7(2)</td>
<td>110.5(2)</td>
</tr>
<tr>
<td>C(03)–C(04)–C(05)</td>
<td>105.3(2)</td>
<td>105.5(2)</td>
<td>C(05)–C(06)–C(11)</td>
<td>110.0(2)</td>
<td>109.7(2)</td>
</tr>
<tr>
<td>N(01)–C(05)–C(06)–C(07)</td>
<td>106.1(2)</td>
<td>107.6(2)</td>
<td>C(05)–C(06)–C(07)</td>
<td>111.1(2)</td>
<td>111.5(2)</td>
</tr>
<tr>
<td>N(01)–C(05)–C(06)–C(11)</td>
<td>–70.2(3)</td>
<td>–76.2(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N(01)–C(05)–C(06)–C(12)</td>
<td>50.0(3)</td>
<td>43.9(3)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hydrogen bond interactions

<table>
<thead>
<tr>
<th>Compound 2</th>
<th>X–H</th>
<th>Y–H</th>
<th>X–Y</th>
<th>X–H–Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(101)–H(101)–N(201)</td>
<td>1.869(6)</td>
<td>2.821(3)</td>
<td>174(8)</td>
<td></td>
</tr>
<tr>
<td>N(201)–H(201)–N(101)</td>
<td>2.028(5)</td>
<td>2.821(3)</td>
<td>163(8)</td>
<td></td>
</tr>
<tr>
<td>N(102)–H(102)–N(102)</td>
<td>1.500(3)</td>
<td>2.898(3)</td>
<td>175(7)</td>
<td></td>
</tr>
<tr>
<td>N(02)–H(02)–N(02)</td>
<td>1.309(3)</td>
<td>3.029(3)</td>
<td>176(7)</td>
<td></td>
</tr>
<tr>
<td>C(103)–C(103)–Cent1(1)–C(101)–z</td>
<td>1.994(4)</td>
<td>2.356(4)</td>
<td>3.461(3)</td>
<td>151(3)</td>
</tr>
<tr>
<td>C(203)–C(203)–Cent1(1)–C(101)–z</td>
<td>1.994(4)</td>
<td>2.554(4)</td>
<td>3.467(3)</td>
<td>154(3)</td>
</tr>
</tbody>
</table>

Pyrazole

<table>
<thead>
<tr>
<th>Compound 3</th>
<th>X–H</th>
<th>Y–H</th>
<th>X–Y</th>
<th>X–H–Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(101)–H(101)–N(202)</td>
<td>1.041(1)</td>
<td>1.901(1)</td>
<td>2.914(10)</td>
<td>164(1)</td>
</tr>
<tr>
<td>N(201)–H(201)–N(102)</td>
<td>1.011(1)</td>
<td>1.891(1)</td>
<td>2.902(9)</td>
<td>177(1)</td>
</tr>
<tr>
<td>C(103)–C(103)–Cent1(2)–C(101)–z</td>
<td>1.972(2)</td>
<td>2.674(2)</td>
<td>3.688(6)</td>
<td>165(1)</td>
</tr>
<tr>
<td>C(205)–C(205)–Cent1(2)–C(101)–z</td>
<td>1.110(2)</td>
<td>2.552(2)</td>
<td>3.554(6)</td>
<td>151(1)</td>
</tr>
</tbody>
</table>

4-(1-A damantyl)pyrazole 3

We have already published the crystal structure as well as the room temperature 13C chemical shifts of this compound in the solid state.18 There are four independent molecules in the asymmetric unit cell which are linked by hydrogen bonds forming a helix (‘catamer’) with two of the four damantyl groups disordered in two orientations with respect to the pyrazole ring [see Fig. 2(d)]. Large thermal ellipsoids were found for both nitrogen atoms N1 and N2 indicating some disorder involving the NH protons. In the 13C CP MAS NMR spectrum, recorded at room temperature, we reported broad signals for the C3 and C5 carbon atoms which we interpreted as indicative of NH proton disorder, corroborating the X-ray results. Moreover, there is a splitting of the C5 signal arising from the existence of two main types of molecule in the unit cell.

In the present study we measured the 15N CP MAS NMR spectra of 15N2-labelled 3 as a function of temperature. The superimposed experimental and calculated spectra are shown in Fig. 4. At room temperature (300 K), there is again a large splitting of the –N– signal at 251.7 and 242.7 ppm, whereas the proton-bearing nitrogen atoms show a single line at 166.5 ppm. Since the crystal structure determined by X-ray crystallography is known,19 one could explain the CP MAS NMR results in terms of two non-protonated nitrogen atoms experiencing the effect of two damantyl groups in different crystallographic situations, one of the damantyl groups presenting ‘conformational’ disorder about the damantyl–pyrazole CC bond, in contrast to the second damantyl group which shows a definite conformation, as indicated by X-ray crystallography. As in compound 2, this influence is less pronounced in the case of the protonated nitrogen atoms.8 Furthermore, since both –N– signals appear to have nearly the same line-width which does not change at low temperature (227 K), one could conclude that the conformational disorder of the damantyl groups must be static so that the nitrogen atoms experience the effect of an average conformation. If the conformational disorder were dynamic, at low temperature a distribution of different damantyl group conformations should be reflected in a larger line-width for one of the two –N– signals, which is not the case.6

As the temperature is raised, a slight broadening of all signals is observed, indicating a very slow quadruple proton transfer between nitrogen sites. Note that all three signals broaden simultaneously and that there is no sign of exchange between the two –N– signals. Provided that there is no change in the crystal structure at higher temperatures, we can assume that the proton transfer takes place between two chemically exchanging systems with different conformations of the damantyl group. The first one involves pyrazole molecules bearing damantyl groups which show a static conformational disorder. The second one includes pyrazole molecules bearing damantyl groups with a.

Fig. 2 (a) ORTEP31 view of one crystallographically independent molecule of compound 2 showing the numbering scheme. The 1:1 hydrogen disorder is plotted for both tautomeric positions [2a, N(1)--H(1); 2b, N(2)--H(2)]. Ellipsoids are drawn at 30% probability level. (b), (c), (d) Extended views of the hydrogen bonded chains of molecules in the same orientation for compounds 2, pyrazole and 3, respectively. Dotted lines indicate hydrogen bonds and the bulky substituents represent the 1-adamantyl group. Crystallographically independent molecules have been labelled to clarify the hydrogen bond interactions shown in Table 3.

Table 4 Rate constants obtained by line-shape analysis of the proton transfer in 4-(1-adamantyl)pyrazole 3 and 3,5-dimethyl-4-(1-adamantyl)pyrazole 4

<table>
<thead>
<tr>
<th>Compound 3</th>
<th>T/K</th>
<th>k_{12}/s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>227</td>
<td><10</td>
<td>328</td>
</tr>
<tr>
<td>300</td>
<td><10</td>
<td>338</td>
</tr>
<tr>
<td>353</td>
<td>30</td>
<td>348</td>
</tr>
<tr>
<td>396</td>
<td>130</td>
<td>357</td>
</tr>
<tr>
<td>413</td>
<td>220</td>
<td>368</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compound 4</th>
<th>T/K</th>
<th>k_{12}/s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>328</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>338</td>
<td>820</td>
<td></td>
</tr>
<tr>
<td>348</td>
<td>1210</td>
<td></td>
</tr>
<tr>
<td>357</td>
<td>1700</td>
<td></td>
</tr>
<tr>
<td>368</td>
<td>2430</td>
<td></td>
</tr>
</tbody>
</table>

and given conformation. If the two systems could interconvert through rotation of the adamantyl groups, both N^- signals should coalesce into a single line reflecting an average conformation of the adamantyl groups,8 but this is again not the case. Since the pyrazole molecule is symmetrically substituted the spectra were calculated assuming two two-site systems with different N^- chemical shifts but with identical N--H chemical shifts, and an equilibrium constant of $K_{eq} = 1$. Although the rate constants k_{12} were determined in the slow exchange regime, where line-shape analysis is not very accurate, and only for three points, they can be used at least as estimated values for the proton transfer. They are assembled in Table 4. The reaction rates obtained can be expressed by the corresponding Arrhenius equation (1).

$$k_{12} = 1 \times 10^{7.4} \exp(-40.1 \text{kJ mol}^{-1}/RT) \quad (1)$$

In view of the crystal structure of this compound where a helix is present, it is very unlikely that a proton transfer takes place between the very large number of molecules of the ‘catemer.’ There is no such example reported in the literature; more probably, one can assume that a change in the crystal structure must take place at higher temperatures allowing the proton transfer, which is, by the way, very slow as compared to other pyrazole derivatives. However, since a crystal structure analysis at higher temperature could not be performed on the diffractometers at our disposal (highest temperature: 340 K) these conclusions are only tentative.

3,5-Dimethyl-4-(1-adamantyl)pyrazole 4

Attempts were made to determine the crystal structure of this compound. Although apparently good crystals were obtained, the structure cannot be solved. It is probable that this compound is a plastic crystal like adamantane itself.11,12

Fig. 5 shows the superimposed experimental and calculated ^{15}N CP MAS NMR spectra of 4 at different temperatures. At low temperature (230 K), this time, only two signals are
observed arising from the protonated (166.6 ppm) and non-protonated nitrogen atoms (240.5 ppm). We note that both lines exhibit the same intensity as well as a clearly larger line-width as compared to the other compounds studied in this work. This could arise either from a distribution of pyrazole molecules with the adamantyl group in different fixed time-independent conformations, or from a distribution of different pyrazole associates such as dimers, trimers, tetramers or even larger ones with the adamantyl group showing dynamic disorder, i.e. time-dependent conformations. This second explanation seems to us more plausible in view of the plastic properties expected for crystals of compound 4 and of the large temperature range of coalescence of nearly 60 °C as compared to other pyrazoles where it is only about 30 °C. When the temperature is raised, the two lines broaden, coalesce and, at high temperature, give rise to a single central line indicating a degenerate proton exchange between two equally populated states, i.e. an equilibrium constant for the tautomerism of $K_{12} = 1$.

The spectra were again calculated assuming two two-site systems with different N and $N-H$ chemical shifts, the results being very satisfactory (see Fig. 5). However, the rate constants obtained (see Table 4) must be regarded as average values for the proton transfer processes in the different pyrazole associates present in the crystal. Eqn. (2) can be obtained from the corresponding Arrhenius plot.

$$k_{12} = 10^{10} \exp(-39.5 \text{ kJ mol}^{-1}/RT)$$ (2)

Due to the presence of two 1-adamantyl substituents, this compound might be a plastic crystal like compound 4. In the 13C CP MAS NMR spectrum recorded at room temperature broad signals are observed for the C3 and C5 carbon atoms at 144.4 and 134.3 ppm, respectively (see Table 1) indicative of dynamic proton disorder in the nitrogen sites. The 15N CP MAS NMR spectra for the labelled compound confirm this assumption. The superimposed experimental and calculated spectra are depicted in Fig. 6. As expected, there are two lines at low temperature corresponding to the $N-$ (241 ppm) and $N-H$ (159.6 ppm) nitrogen atoms. The different adamantyl conformations are again reflected in a larger line-width of the $N-$ signal as compared to the $N-H$ one. As the temperature is raised the lines broaden, sharpen again and move inwards; this is characteristic of a non-degenerate proton transfer between unequally populated states. This is not surprising since the conformational disorder of the adamantyl groups can lead to an asymmetric system, though the pyrazole ring is symmetrically substituted, just as in the case of compound 1. From the line-splitting at low temperature, where the transfer is frozen, and from the splittings at high temperature, the temperature-dependent equilibrium constants can be obtained. A van’t Hoff analysis of these data yields at room temperature (298 K) an equilibrium constant of $K_{12} = 0.287$ corresponding to 78% of the major tautomer. Moreover, a reaction enthalpy of $\Delta H_{12} = 3.9 \text{ kJ mol}^{-1}$
and a reaction entropy of $\Delta S_{12} = 4.3 \text{ J K}^{-1} \text{ mol}^{-1}$ were obtained, which are small values indicating a small asymmetry of the system. This is confirmed at high temperature where a small line-splitting is observed in the spectrum recorded at 373 K. The value of $K_{12} = 0.508$ found at this temperature corresponds to 66% of the major tautomer, not far from the value of 50% present in a degenerate process. This could again be a sign that the small asymmetry is caused by the conformational disorder of the adamantyl groups.

Due to the larger line-width of the $\equiv N -$ signal, the spectra were calculated assuming two two-site systems with different $\equiv N -$ and the same $N-H$ chemical shifts, as in the case of the preceding pyrazoles. The rate constants k_{12} obtained (see Table 5) were fitted to the Arrhenius equation (3).

$$k_{12} = k_{22}/K_{12} = \text{ca. 10}^{9.6} \exp(-39.0 \text{ kJ mol}^{-1} R T) \quad (3)$$

T/K K_{12} x_1 k_{12}s$^{-1}$

245 0.155 0.86 <10
252 0.171 0.85 <10
263 0.197 0.84 70
275 0.226 0.82 140
298 0.287 0.78 550
313 0.329 0.75 1200
327 0.369 0.73 2200
373 0.508 0.66 >5000

Fig. 6 9.12 MHz superimposed experimental and calculated ^{15}N VT CP MAS NMR spectra of 5: sweep width 7 kHz; CP times of 2-8 ms, average number of scans 800, line broadening 20, k_{12} is the forward rate constant.

Table 5 Temperature dependence of the equilibrium constant K_{12} obtained by linear regression of the experimental data (x_1 is the mole fraction of the predominant tautomer) and forward rate constants k_{12} obtained by line-shape analysis of the proton transfer in 3,5-di-(1-adamantyl)pyrazole 5.

Table 6 Summary of the structural conclusions regarding adamantylpyrazoles 2-5.

<table>
<thead>
<tr>
<th>Compound</th>
<th>X-Ray crystallography</th>
<th>NMR</th>
<th>Pyrazole N-H tautomerism</th>
</tr>
</thead>
<tbody>
<tr>
<td>2a, 2b</td>
<td>Catemer, NH disorder: 2a/2b 1:1</td>
<td>2a $K_{12} = 1$ Proton transfer & N-H order</td>
<td>Ordered</td>
</tr>
<tr>
<td>3</td>
<td>Catemer, NH disorder: Ad disorder</td>
<td>3 $K_{12} = 1$ Proton transfer</td>
<td>Some ordered some disordered</td>
</tr>
<tr>
<td>4</td>
<td>Unknown</td>
<td>4 $K_{12} = 1$ Proton transfer</td>
<td>Ordered</td>
</tr>
<tr>
<td>5</td>
<td>Unknown</td>
<td>5 $K_{12} = 1$ Proton transfer</td>
<td>Disordered</td>
</tr>
</tbody>
</table>

Conclusions

Regarding molecular dynamics, the four adamantylpyrazoles show four different types of behaviour. In spite of the fact that only two X-ray structures were solved (compounds 2 and 3), the use of VT ^{15}N CP MAS NMR allows some tentative and some definitive conclusions to be drawn. In Table 6 we have summarized the most relevant information. Compound 2 (the 1:1 mixture of 2a and 2b according to X-ray crystallography) is a ‘catemer’ and as in most catemers there is no proton transfer. In this sense, the use of K_{12} in Table 6 is not entirely correct since there is no ‘equilibrium’ between the two tautomers, only a 1:1 mixture. Compound 3 may be an exception and be the only ‘catemer’ showing proton transfer. A possible explanation for this exceptional behaviour is that the proton transfer is coupled with a rotation (X) about the C4–A d1 bond.

Compounds 4 and 5 should be cyclic structures, dimers or trimers (tetramers are less common) but the activation energies of ca. 39 kJ mol$^{-1}$ are relatively low compared with those of 3,5-dimethylpyrazole (trimr, $E_a = 50.5$ kJ mol$^{-1}$) and 3,5-di-tet-butylpyrazole 1 (dimer, $E_a = 56.6$ kJ mol$^{-1}$). Probably, the quasi-spherical shape of the 1-adamantyl substituent and its crystal plasticity play a role in lowering these barriers.

Experimental

Materials

[15N]$_2$J hydrazine derivatives prepared starting from [15N]$_2$J hydrazine sulfate (from Chemotrade, Leipzig, FRG). [15N]$_2$Jpyrazole and 3,5-dimethylpyrazole were synthesized according to published procedures and 4-(1-A damantyl)-3 and 3,5-dimethyl-4-(1-adamantyl) [15N]$_2$Jpyrazole 4 were then prepared by C-adamantylolation of the corresponding [15N]$_2$J labelled pyrazoles using 1-bromo adamantane. The 1:1 mixtures of 1-adamantylpyrazole 2 and 3,5-di-[1-adamantyl]pyrazole 5 were also obtained by C-adamantylolation of pyrazole, changing the regioselectivity of the adamantylolation in a microwave oven; attention should be paid to the reaction time that should be 5 min at 600 W instead of 3 min as stated in ref. 26. C-Adamantylation of pyrazole with 1-bromo adamantane carried out at 13 kbar and 70 °C for 24 h failed however; starting materials were recovered unchanged. Labeled pyrazoles 3, 4 and 5 have melting points identical with those of the corresponding unlabelled compounds; they have been identified by mass spectrometry.
A mixture of 0.1 g (0.49 mmol) of 3(5)-(1-adamantyl)pyrazole and 0.2 g (1.47 mmol) of anhydrous K₂CO₃, 0.06 g (0.98 mmol) of KOH and 0.04 ml (0.59 mmol) of CH₃I in 3 ml of anhydrous acetone was heated under reflux for 4 h. After cooling, the solvent and excess of CH₂I₂ were evaporated under reduced pressure and the N-methylpyrazoles 6 and 7 were separated by column chromatography using as eluent dichloromethane-ethanol (99:1) and isolated as oils. The same procedure was followed to obtain 1-methyl-3-(1-adamantyl)[¹⁵N]pyrazole 6 and 1-methyl-5-(1-adamantyl)[¹⁵N]pyrazole 7. Compound 6: yield (isolated product) 70%; Rₛ (dichloromethane-ethanol, 99:1) 0.64; H N N M R (CDCl₃) δ 1.76 [6H, t, J(H-) 2.9, H-15 A A d], 1.91 [3H, d, J(H-15 b) 3.6, H-3], 2.03 [3H, br s, H-5, 2.6, 1-M e], 2.65 [1H, dd, J(H-2) 9.0, J(2-N) 19.1, 1.9], 2.72 [2H, 2.2, J(N-1) 6.0, H-4, 2.72 [1H, dd, J(N-1) 4.5, H-5]; ᵃC N N M R (CDCl₃) δ 28.6 [133.1, C-15 Ad], 33.8 [139.1, ᵃ(N-1) 2.8. C-Α Ad], 36.8 [173.7, 8.6, ᵃ(N-2) 15.1, ᵃ(N-1) 1.9, C-4], 129.9 [183.6, 8.8, ᵃ(N-2) 2.6, C-5], 162.5 (C-3). Compound 7: yield (isolated product) 25%; Rₛ (dichloromethane-ethanol, 99:1) 0.36; ᵃH N N M R (CDCl₃) δ 1.77 (6H, br s, H-5, 2.01 [3H, d, J(H-3) 2.7, H-15 A A d], 2.08 [3H, br s, H-5, 2.6, 1-M e], 2.65 [1H, dd, J(H-2) 9.0, J(2-N) 19.1, 1.9], 2.72 [2H, 2.2, J(N-1) 6.0, H-4, 2.72 [1H, dd, J(N-1) 4.5, H-5]; ᵃC N N M R (CDCl₃) δ 28.3 [133.1, C-15 Ad], 33.4 (C-Α Ad), 36.5 (173.7, 8.6, ᵃ(N-2) 15.1, ᵃ(N-1) 1.9, C-4), 129.9 [183.6, 8.8, ᵃ(N-2) 2.6, C-5], 162.5 (C-3).
The ^{15}N CP MAS NMR spectra were recorded on a Bruker CXP-100 spectrometer (F. U. Berlin) working at 9.12 MHz for ^{14}N and 90.02 MHz for protons. The spectrometer is equipped with a 7 mm CP MAS probehead from Doty Scientific, USA. The spinning speeds were of the order of 2–3 kHz. A Bruker BVT-1000 temperature unit was used to control the temperature of the bearing nitrogen gas stream and a home-built heat exchanger was employed in order to achieve low temperatures. The sample temperatures were determined by using a 2 × 3 mm platinum resistance thermometer, PT-100, from Degussa. It was placed approximately 3 mm from the coil. No interferences during NMR signal acquisition were observed. The standard CP pulse sequence was again performed. General recording parameters: quadrature detection, 5.5 s$^{-1}$, 90° pulse width, 2–8 ms CP times, 4 s recycle delay, spectral width of 7 kHz, line broadening of 20 Hz. All ^{15}N chemical shifts are related to external solid ^{15}NHCl and given with an error of ±0.3 ppm.

X-Ray analysis

Table 7 summarizes the main details of data collection and processing. Data were collected at 150 K using an Oxford Cryostream device and the stated temperature was measured continuously during data collection. The structure was solved by direct methods, SIR92, and refined on F$_2$ by least-squares procedures. The hydrogen atoms, located by Fourier difference synthesis, were refined isotropically, but their thermal parameters were fixed in the last weighted cycles of refinement. Most non-hydrogen atoms have been deposited at the Cambridge Crystallographic Data Center (Project nos. PB93-0197-C-02 and PB93-0125). We thank Professor Lutz F. Tietze (Institut für Organische Chemie, Göttingen) who carried out the high pressure experiments and the referees for considerably improving our manuscript.

Acknowledgements

Thanks are given on the EU for the TMR network ‘Localization and Transfer of Hydrogen’ (No. CHRX CT 940582). Financial support was provided by the Spanish DGICYT (Project nos. PB93-0197-C-02 and PB93-0125). We thank Professor Lutz F. Tietze (Institut für Organische Chemie, Göttingen) who carried out the high pressure experiments and the referees for considerably improving our manuscript.

Åtomic coordinates, hydrogen atom parameters and thermal parameters for the non-hydrogen atoms have been deposited at the Cambridge Crystallographic Data Centre. See ‘Instructions for Authors’. J. Chem. Soc., Perkin Trans. 2, 1997. Issue 1. Any request to the CSD for the material should quote the full literature citation and reference number 188/82.

References

27. L. F. Tietze, personal communication.

Paper 6/21436G

Received 1st November 1996

Acepted 29th April 1997