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The effective Hamiltonian of the “‘simple excitation for the
dephasing of the rotational-echo amplitudes” (SEDRA) exper-
iment has been derived. This experiment enables the determi-
nation of the strength of the dipolar interaction of a homonuclear
spin pair in a solid, rotating at the magic angle, and thus provides
a way to measure internuclear distances. The dipolar decay of
the rotational-echo amplitudes of powder samples, generated by
a set of = pulses, is measured together with the echo decay that
is not influenced by the dipolar interaction. The latter is measured
by the transverse-echo SEDRA experiment that refocuses the
SEDRA decay. The Floquet theory approach is utilized to eval-
uate the effective Hamiltonians that describe the behavior of the
spin systems. The influence of the chemical-shift anisotropy pa-
rameters of the interacting spins on the effective SEDRA Ham-
iltonian is also discussed. Results of AS/S, SEDRA experiments
on the '*N spin pair in solid 3 (5)-methyl-5(3)-phenylpyrazole-
15N, are shown and compared with exact calculations. The data
suggest a nuclear distance between the nitrogen atoms of 1.385
+ 0.025 A. © 1994 Academic Press, Inc.

INTRODUCTION

The dipolar interaction between nuclei is one of the most
important interactions that influence the spectra in solid-
state NMR. This interaction depends on the distance between
the coupled nuclei. Measurements of its strength can there-
fore provide internuclear distances. In single crystals, spectral
splitting enables the deduction of the dipolar interaction
strengths. However, in powders, NMR spectra are usually
characterized by broad and sometimes overlapping line-
shapes. In order to increase the resolution and the sensitivity
of the observed spectra, it is desirable to perform solid-state
NMR experiments on samples rotating at the magic angle.
This leads to partial or complete averaging of all anisotropic
interactions that are defined by second-order tensors, such
as the chemical shift, dipolar, and first-order quadrupolar
interactions. Radjofrequency pulse schemes were designed
to interfere with this averaging process, thereby reintroducing
a selected interaction into the spectral behavior of spins.

In this publication, we will discuss the pulse sequence that
consists of a simple excitation for dephasing of rotational-
echo amplitudes (SEDRA) ( /-4). This pulse method belongs
to a set of experiments that were suggested to enhance sig-
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nificantly the influence of the homonuclear dipolar inter-
action on NMR signals of a rotating solid. Among these is
the well-known rotational-resonance (R?) experiment for
homonuclear spin pairs (5-75). In this experiment one sets
the spinning speed to satisfy the condition A,, = Nwg, where
wg 1s the spinning frequency, A,; is the isotropic chemical-
shift difference, and N is any integer. Under this condition,
the sidebands and centerband in the MAS spectra of spin
pairs are broadened to an extent depending on the dipolar
interaction. The analysis of the lineshapes of these bands can
provide us with the dipolar interaction strengths. Another
experimental approach is to monitor the exchange of mag-
netization between the coupled spins by measuring the decay
of the difference between these magnetizations. This ap-
proach is applicable in particular for the detection of weak
dipolar interactions (6-8). The R? experiments are highly
selective in the sense that the resonance condition can be set
independently for each type of coupled spin pairs in the
sample that exhibits a discrete isotropic chemical-shift dif-
ference.

A different method for observing homonuclear interac-
tions is to use pulse sequences that partially defeat the av-
eraging process of MAS spectroscopy. Tycko et al. (16) pro-
posed the DRAMA sequence for this purpose. This experi-
ment consists basically of the application of two /2 pulses
during each rotor cycle period Tx. This causes only partial
dipolar refocusing at the end of the rotor period and hence
a dipolar-induced decay of the MAS powder signal. This
scheme yields its best results when the two interacting nuclei
have similar isotropic chemical-shift values. Chemical-shift
anisotropy parameters and isotropic shift differences, al-
though partially compensated by = pulses, influence the
DRAMA decays and should be taken into account during
data analysis. Extensions of this approach toward double-
quantum filtering techniques lead to selective spectral exci-
tations (17).

Gullion et al. introduced the rotational-echo double-res-
onance (REDOR ) technique for the detection of dipolar in-
teractions between heteronuclear spins (/8-20). An exten-
sion of this experiment was introduced by Hing ef al. in the
form of their transfer-echo double-resonance (TEDOR)
scheme (217). In these MAS experiments, a pair of = pulses
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are applied to each rotor cycle and the signal is acquired at
the end of each rotor cycle or after a set of rotor periods.
Another interesting experiment for deducing dipolar inter-
action strengths in solids is the zero-field-high-field method,
also proposed by Tycko (22, 23). Here both RF pulses and
sample rotations off the magic angle are used to transform
the orientation-dependent truncated Hamiltonian into a
scalar (orientation-independent ) Hamiltonian.

The SEDRA experiment for homonuclear dipolar de-
phasing also relies on synchronously applied RF pulses
(1, 3, 4, 18). The basic time unit for this experiment is 27Ty
and one single = pulse is applied during each rotor cycle.
This method refocuses the decays due to chemical-shift an-
isotropy (CSA) interactions of uncoupled spins, but induces
signal dephasing due to the dipolar interaction between cou-
pled spins.

In this publication, we derive the effective Hamiltonian
governing the SEDRA experiment, using the Floquet for-
malism. This formalism was proven to be very convenient
and informative for the description of MAS experiments.
Various examples of its use were discussed -earlier
(9,11, 24, 25). An average Hamiltonian for the basic
SEDRA pulse sequence in the RF driven dipolar recoupling
(RFDR) experiment has already been derived by Bennet et
al. (3). A vector model representation of this experiment
was suggested by Sodickson et al. (4).

In the next section, the effective SEDRA Hamiltonian of
a homonuclear-coupled spin pair will be derived, taking into
account the influence of the chemical-shift anisotropies of
the spins. Then the transverse-echo SEDRA experiment will
be introduced and its effective Hamiltonian derived. This
experiment will measure the contributions to signal decays
that are not caused by the SEDRA sequence and, when com-
bined with SEDRA, will provide an accurate determination
of the dipolar interaction and hence an intramolecular dis-
tance. In the last section, experimental results, obtained from
SEDRA experiments on a fully '*N-enriched powder sample
of 3(5)-methyl-5(3)-phenyipyrazole, will be shown.

THE SEDRA EXPERIMENT

In this section, the theory of the SEDRA experiment is
discussed in terms of the Floquet theory in order to show
the full derivation of the effective SEDRA Hamiltonian as
presented before (I, 3, 4). At first, the time-dependent
Hamiltonian of a dipolar-coupled homonuclear spin pair,
rotating at the magic angle, is used to construct a time-in-
dependent Floquet Hamiltonian. The steps required to con-
vert a periodically time-dependent Hamiltonian into a time-
independent Floquet Hamiltonian were described elsewhere
(26). This Floquet Hamiltonian is represented in the toggling
frame, defined by the RF irradiation part of the original
Hamiltonian, and then expressed in terms of the Floquet
operators and exploited to derive an effective SEDRA Ham-
iltonian. This Hamiltonian should describe the stroboscop-

ically detected signal decay. For our theoretical derivations
we assume infinitely short « pulses.

THE EFFECTIVE SEDRA HAMILTONIAN

The pulse sequence for the SEDRA experiment on a ho-
monuclear spin pair is shown in Fig. 1a. The basic unit of
the SEDRA experiment for infinitely short 7w pulses consists
of two rotor periods 27 with two = pulses inserted at po-
sitions 1/27x and 3/27Tx. In order to follow the effect of
this pulse scheme on the spin system, we first write the spin
Hamiltonian of the spin pair without its RF part,

H (1) = ~oT() ] — 0T ()2 + 2wp(l)

X {11, — §(UIT1; + 17 13))}

+ L+ 53U + 1T, (1]

where w§°(1) and w5 (¢) are the time-dependent CSA coef-
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FIG. 1. In(a) the pulse scheme for the SEDRA experiment is shown.
It consists of a cross-polarization period followed by a sequence of eight =
pulses (four basic SEDRA cycles) with phases according to the X Y-8 phase
cycle. At the end of an integer set of cycles, signals are recorded. In (b) the
time-dependent function p(z) is given. This function modulates only the
chemical-shift part of the Hamiltonian, causing the average of the off res-
onances to vanish for all spinning speeds. In (¢) the transverse-echo SEDRA
(1-SEDRA ) is shown. It reassembles the SEDRA sequence with the addition
of one n /2 pulse to refocus dephasing due to the dipolar interaction.
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ficients of spin-1 and spin-2, respectively, wp(?) is the dipolar
interaction coeflicient, and J is the indirect scalar coupling,
The explicit forms of those coefficients are given elsewhere
(27, 26) and are repeated for convenience in Appendix A.
The off-resonance values and the isotropic chemical-shift
values Aw; and Aw, of the spins are contained in w§*(¢) and
w$ (1), respectively.

In the manifold of spin states | 1) = a0 ), [2) = |a i, ),
13 = |B1a2), and |4) = |B,4; ), this Hamiltonian can be
written, using the fictitious spin-{ operators, as

H (1) = —{oF(1) + 0P ()} 11 = {0T(1) — oF()} 17

+ [wo(t) + %](Ii2 —I¥*)y = {wp(t) — J}I2. [2]

In order to involve the n pulses, we transform this Hamil-
tonian to the RF toggling frame. This introduces an addi-
tional time dependence into the Hamiltonian which can be
written as

H ()" = —{P() + 0P} PO

~{@F() ~ WO} PO + {wom + 5’}

X (U7 =1~ {wp(t) — J}IP. [3]
The dipolar and the J-coupling part of the Hamiltonian are
left unchanged under the influence of the # pulses. The form
of the time-dependent function p(t) is given in Fig. 1b. When
the time-dependent coefficients of the Hamiltonian are ex-
panded in their Fourier series with a time period 27 and
with wg = 27/ Tx, we get

2
—[0F(D) + WD) =2 T (0F + 0 ke w2

m=-2

2
—[oP() —w0f(D] =2 2 (0F — wF)me?mew

m=-2

p(t) = 3 pueinterdr

n=—aoc

2
op(1)=2 3 @Bemewdr,

m=-2

(4]

The coefhicients (0§ + w$)s,, and w3, for m = +1, +2 are
the nonzero Fourier components of the chemical shift and
the dipolar interaction, respectively, as given explicitly in
Appendix A.

An important parameter is the off-resonance difference
between the two spins Aj; = 2(w§ — «T) = Aw; — Awy.
The toggling-frame Hamiltonian of Eq. [3] can now be
transformed into the time-independent Floquet Hamiltonian
Hg,

o0
wrN? + 3 2{o)Z )+ wPZ )

n=-o0

N |

4
HE = X
=1

+ X 2{QuzZP-Z¥ - xx B}, [5]

n=—ox

which can also be written using the single-block Z#” oper-
ators:

4 [}
wrN?”+ 3 3 2FZP

p=1 n=-

DN | =

4
HE = 3
=1

- 2 20X [6]

n=—ao

The various coefficients in HF are defined as

2
Z (wa:s + wgs)Zmpn—bn

m=-2

Wit =

2
ngB = z (w(i‘s - w(Z:S)Zmpn—Zm
m=-2

J
z — D z _
Qi = Wim, Q5 =~
4
J
. — D _
Q%m = W2m, 96 = 5
wi' =t + Q5 @ =w -0
wy = —wi —Q5, wit= w4 Q. (71

In this Hamiltonian we use the Floquet operators which are
defined as (27)

1
2

1
(pm+n|Zﬁq|pm>=—(qm+an’,’,"|qm>=5

(pm+n|Z¥ |pmy=_gm+n|Z¥|qgm) =

1
{pm+n|X5|\gm) = <qm+n|Xﬂ"|pm>=§

{pm+n|Y|gm)={gm+n|Y 5 |pm)*= —é. 18]

The operators allow a convenient representation of the in-
finite Floquet matrices. The last term in HF represents the
flip-flop term in # (¢). Its matrix elements are off-diagonal
in the off-diagonal block {|2#), {3n)}. For heteronuclear
spin pairs, this term may be ignored. The block-diagonal
part of the Hamiltonian of Eq. [5] can be diagonalized by
the matrix Dg (26, 27),
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Y (2drZ7), (9]

4
Dr= 2
p=1 n=-cc
where the coefficients d%” can be calculated by the Fourier
transform

o ) ac w pr )

3 dpen = exp{— S T (et 1)] . [10]
n=—oc - an

and where 2w are the coefficients of the Z ¥ operators in
HI. The derivation of the equality in Eq. [10] is presented
in Appendix B. In the special case that only the w# =
w’e**» elements are different from zero, the solutions to the
d? coefficients can be expressed in terms of Bessel functions
(29) and become

—2wh

WR

d¥ = J(x)e™,

(1]

X =

The details of this approach are discussed in Appendix C.
Applying the diagonalization matrix to the Hamiltonian
of Eq. [ 5] yields

4
1
De'HID: = 3 EwRN”” +2{wZ i+ WPZ3

p=1

+Q3Z8 - Z3} - 2 20D X PDe. [12]

n=—o0

Since the Fourier expansion of p(¢) in Eq. [4] gives ps,, =
Oform =0, +1, +2, ..., the coefficients w{* and w3’ are
zero. Thus we get a Z-diagonalized toggling-frame Floquet
Hamiltonian for the SEDRA experiment of the form

4 @
1
HE =2 5 RN+ 205(Z F-ZH+ Z of
p=1 n=-o

X(XZB+iYD)+ o™ XPE-iY?), [13]

where
ac

wff=—-
k,m=-a

A2 Uik, [14]

This Hamiltonian can be utilized to evaluate the effective
SEDRA Hamiltonian. As was shown elsewhere (27), the Z-
diagonalized toggling-frame Floquet Hamiltonian represents
the Floquet Hamiltonian of the spin system as long as the
toggling-frame transformation is cyclic and the system is
monitored synchronously with its time period.

To utilize the Hg of Eq. [13] as a precursor to the time-
independent effective Hamiltonian, we assume that only the
diagonal part of the nondiagonal {|2n), |3n) } block is sig-

nificant. This assumption is justified when the dipolar
strength is small compared to the spinning speed. The ele-
ment «§T is complex in general; however, under the above
conditions, it becomes real and hence the SEDRA Floquet
Hamiltonian can be written as

+2{wf"XP+QZ 8 -2z}, [15]
The effective Hamiltonian can now be constructed by trans-
forming the Floquet Hamiltonian back to the normal spin-
Hamiltonian form (27):

#7 = z[waﬁzzg AT 134)}

= w§(ITI; + IT1I3) + JI\ 1.,. [16]
Hence the SEDRA effective Hamiltonian consists only of a
flip-flop term multiplied by a scaled dipolar interaction factor
and a diagonal term which corresponds to the indirect cou-
pling.

In order to obtain an estimate for the value of w§T, we
notice that the terms arising on the diagonal of the X block
of Hf are given by

o0
eff _ 22-1 33
woe T — Z di’ Qmord .
k,m=—o00

(17]

The effective Hamiltonian can now be used to evaluate the
signal measured after a set of m SEDRA cycles. If we are
interested in monitoring the spin coherence after a cross-
polarization excitation ( /), the SEDRA signal becomes pro-
portional to

Ssepra(2mTR) = (I + 13)(1)
= (I, + I3 )(0)

X cos([wgH - Ej]zmTR) . [18]

However, if we want to follow the exchange of magnetization
between the spins in the RFDR experiment (3, 4), the system
must be prepared into an initial state (/! — 7?) and the mag-
netization difference must be detected:

Ssepra(2mTR) = <I,lz - I?)(l)

= (I} = I2)(0)cos(2w§2mTR). [19)

The above expressions for the SEDRA signal are orien-
tationally dependent via the values of w§T. Hence, for the
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analysis of powder signals, proper integration over Euler an-
gles must be performed. The values of w§T for the different
orientations can be calculated using Eq. [10] and inserting
the various d, coefficients into Eq. [17]. For small values of
the CSA parameters and weak dipolar interactions, an ap-
proximate expression for w§" can be derived, using Bessel
functions. The details of this approximation are discussed
in Appendix C. In Fig. 2 the dependence of w§T on the iso-
tropic chemical-shift difference of a spin pair in a single crys-
tal is shown and compared with its approximated values.

TRANSVERSE-ECHO SEDRA

As long as we assume infinitely short pulses for the SEDRA
experiment, the signal can be monitored at times 2mT7Ty.
When pulses of finite length are considered, one must use
an appropriate scheme to minimize pulse imperfections and
errors in pulse intensities. For this purpose we adopted the
XY-8 pulse scheme (/). Hence in all subsequent experiments
the signal is collected at times 8T for integer m. The decay
of the SEDRA signal is dominated by the dephasing of the
individual oscillating signals of the microcrystals in the pow-
der sample. The signal decays are also due to 7, processes.
To enable a comparison of experimental results of the de-
caying SEDRA signal amplitudes with simulations, one
should try to minimize the effect of these additional decay
processes and subtract the signals from uncoupled spins.
Thus it is desirable to measure a quantity AS/.S, (18}, defined
by

A‘S _ Ssepra (8mTg) — So(8mTRr) [20]

So So(8mTy) ’
where Ssepra(8m7Tr) 18 the SEDRA decay and Sp(8m7Tg)
is the signal independent of the dipolar dephasing process.
This ratio eliminates the part of the signal decay that is due
to relaxation processes, but introduces to some extent a de-
pendence on the uncoupled spin signals through their pres-
ence in the denominator in AS/Sy. When the concentrations
of the spin pairs in the sample are known, a correction con-
sidering this contribution can be made.

We suggest measuring Sy(8mTg) by the dipolar refocusing
pulse scheme depicted in Fig. 1c¢. This pulse sequence has a
basic time unit of 8 Tr and is similar to the normal SEDRA
sequence with the addition of a w/2 pulse at the fourth ro-
tational-echo position. We name this pulse technique the
transverse-echo SEDRA experiment (t-SEDRA). In order
to calculate the effective Hamiltonian of t-SEDRA, one must
extend the experimental scheme to make it cyclic (30, 31).
This can be accomplished by adding a second t-SEDRA cycle
with a w/2 pulse in the opposite direction. The resulting
cyclic t-SEDRA extends over 16 rotor cycles. We can use
average Hamiltonian theory in order to obtain the effective
t-SEDRA Hamiltonian. This average Hamiltonian can be
derived from the effective SEDRA Hamiltonian of Eq. [16]

140 i , N
o © o
j,\:. o o &
701 <} < ]
= o
<1 o o
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FIG. 2. Calculated values of the SEDRA effective frequency for a single
crystal. O, w§T values obtained by taking into account the full Hamiltonian;
O, w§ values using the approximation of Appendix C. The dipolar param-
eters in the calculation were wp = 400 Hz, 6, = 30°, and ¢p = 40°. The
spinning speed was taken to be wg = 4000 Hz.

by transforming the SEDRA Hamiltonian to a toggling
frame, defined by the two = /2 pulses.

The toggling-frame Hamiltonian of the t-SEDRA pulse
sequence is divided into three time intervals. In the first in-
terval up to 47y, this Hamiltonian looks like

1= D = W [20 1 + 1y 1,] + I 1.
During the second period, from 47y to 127y, it becomes
2= AV = o8 [20 Lo + I 1) + 1y,

due to the 7 /2 pulses in the x direction. Finally, in the third
period after the second 7 /2 pulse with opposite phase, from
127Tx to 16Tk, we again get the same Hamiltonian as that
in the first period,

3= HD = 0§ 201y + 1 10) + JI s

Because these three parts of the Hamiltonian commute, the
average t-SEDRA Hamiltonian is their weighted sum; hence

w

2

eff
0

H:

J
(2101, + 2L - L] + 2 [21) - 1, — 21, 1,,]). [21]

In fact, from a practical point of view, this Hamiltonian
describes the signal also after each eight rotor periods. Hence
we can retain 87k as our basic unit for the description of
both SEDRA and t-SEDRA experiments. If the initial mag-
netization, right after cross polarization, points along the x
direction, namely if the density matrix p(0) is proportional
to [1,, + I,,], at the end of one t-SEDRA period, it will
come back to [I,; + I;»]. This is a direct consequence of
the fact that the above Hamiltonian commutes with the sum
of the two x components. The /., and I,, terms, however,
do not refocus individually. For example, the I, term in the
density matrix, omitting the effect of J coupling, oscillates
with a term proportional to cos?(w§'8Tx ), arising from the
initial I, coefficient itself, and a term with sin*(w§'87%x),
coming from the initial 7., coefficient.
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TABLE 1
N Chemical-Shift and Dipolar Tensor Parameters
of Solid Doubly '*N-labeled PMP*

_ISN: _ISNH_

Oise” 236 (4784) 167 (3385)
o’ 409 (8290) 267 (5412)
oy’ 257 (5210) 165 (3345)
o3¢ 39 (790) 69 (1399)
Euler angles of the

(-"*NH-) CSA tensor* a=242° 8 =90° v =90°
Polar angles of the dipolar

vector” fp = 90° ¢p=111°

2 All values are taken from Ref. (34). For a definition of parameters, see
Ref. (34).
® Values in ppm refer to solid '*NH,CL. Values in parentheses are in hertz

for a spectrometer of 4.7 T.
‘ Values are derived from Ref. (34) and are defined with respect to the

(-"*"N=) CSA tensor.

As long as the effective SEDRA Hamiltonian in Eq. [16]
is valid, the t-SEDRA Hamiltonian refocuses all CSA effects,
J interactions, and the dipolar interaction itself. When the
CSA parameters become comparable or larger than the spin-
ning speed, one must be careful interpreting the SEDRA
experiments with the help of the effective SEDRA and t-
SEDRA Hamiltonians. In the discussion below, we propose
a modified version of t-SEDRA that can be implemented
when the CSA parameters become comparable to the spin-
ning speed. In general, the off-diagonal elements in the orig-
inal Z-diagonalized toggling-frame Floquet Hamiltonian can
become significant, leading to a complex w§T. Only exact
numerical calculations can provide the theoretical SEDRA
behavior of the signals. Numerical calculations are also re-
quired when incorporating the effect of finite pulse lengths
for the SEDRA and t-SEDRA cycles.

EXPERIMENTAL

As a demonstration of the SEDRA approach for the de-
tection of internuclear distances, a set of experiments was
performed on solid 3(5)-methyl-5(3)-phenylpyrazole- *N,
(PMP). This compound was synthesized according to the
literature (32, 33), starting from hydrazine sulfate labeled
to 95% in both nitrogen positions (Chemotrade, Leipzig).
Solid PMP contains directly bound '*N spin pairs of the type
- 5SNH-"N==, characterized by a nitrogen distance of 1.36
A (34). The dipolar coupling tensor, the components of the
chemical-shift tensors of the protonated (- °NH-), and the
nonprotonated (- '*N =) nitrogen atoms of PMP and the
relative orientation of the different tensors have been deter-
mined (35) by powder lineshape analysis and are listed in
Table 1. The CPMAS experiments were done on a homebuilt
spectrometer operating at 20.27 MHz for '*N nuclei. From
the table it follows that for this spectrometer, the difference

A, between the isotropic chemical-shift values equals 1.4
kHz. This value is rather small with respect to the principal
values of the CSA tensors. Thus significant overlap of the
MAS sideband patterns of the two spins is observed. In Fig.
3 the CPMAS experimental spectra of PMP are shown. The
nonprotonated nitrogen ==N- gives rise to a signal at 235
ppm, and the protonated nitrogen -NH- to a signal at 167
ppm, referenced to the single line of solid "NH,Cl. The re-
sults in Fig. 3a were obtained with a spinning speed of 2777
Hz, which is far from the rotational resonance condition.
The results in Fig. 3b were measured with a speed of 1400
Hz, satisfying this condition,

For the SEDRA experiments, each AS/S, decay curve is
made up of six experiments with increasing numbers of
SEDRA periods. The "N FID signals were collected after
the application of the SEDRA pulses and Fourier transfor-
mation. The length of the SEDRA sequence was incremented
by 87k, so that the signals were collected after up to 48 rotor
periods. For each total length n X 87Tk the SEDRA signal
Ssepra (78 7R ) was recorded, by adding the intensities of all
center- and sidebands in the Fourier frequency spectra. The
transverse-echo SEDRA signals Sy(78 7 ) were recorded in
a similar way after a multiple of eight rotor periods. In all
experiments, the XY-8 phase-cycling (/) scheme was used
for the = pulses. Each data point was a sum of 24 signals,
accumulated with a repetition time of 30-40 seconds. In all
experiments, the = pulses on '’N and the irradiation field
for cross polarization on 'H were about 50 kHz. The CP

L A
8 4 0 -4 -8
kHz
FIG. 3. CPMAS "*N experimental spectra of the 3(5)-methyl-5(3)-

phenylpyrazole molecule. In (a) the spinning speed is 2777 Hz, and in (b)
a rotational-resonance (N = 1) spectrum is shown.
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FIG. 4. The resuits of AS/S, from SEDRA experiments on the '*N
nuclei in a fully "*N-enriched sample of 3(5)-methyl-5(3)-phenylpyrazole.
In these experiments, the spinning speeds were 2272 Hz in (a), 2500 Hz in
(b), and 2777 Hz in (c). The experimental data are represented by circles
in a proper size in order to include the experimental errors. Calculated results,
including the effects of finite pulses, for a dipolar strength of 470 Hz are
given by the upper dashed line and for a dipolar strength of 420 Hz by the
lower dashed line. The parameters in Table | were used for these exact
calculations.

mixing time was 4.5 ms. The proton decoupling power was
about 100 kHz for the experiments at a spinning speed of
2777 Hz and about 65 kHz for all other spinning speeds. A
rotor stabilizer was used and the spinning speed variations
were smaller than =10 Hz.

For the analysis of the data, a computer program was uti-
lized that allows the evaluation of a large variety of NMR
experiments on rotating spin pairs. In this program the den-
sity matrix of the spin system is calculated in all stages of
the experiments. All CSA and dipolar parameters are taken
into account. The program also allows incorporation of the
lengths and the intensities of the pulses. The powder data
are obtained by integration over all Euler angles using the
method of Cheng ef al. (36). In the actual calculations 550
sets of Euler angles were sufficient to generate the exact
CEDRA decays.

RESULTS AND DISCUSSION

In Fig. 4 the results of the SEDRA experiments, performed
at spinning speeds of 2272 Hz (Fig. 4a), 2500 Hz (Fig. 4b),
and 2777 Hz (Fig. 4¢), are shown. These spinning speeds
are all larger than the difference between the isotropic chem-
ical shifts of the interacting nuclei. As can be seen from Table
1, the CSA tensor elements are also larger than this difference.
Thus it is apparent from the discussion above that the
SEDRA decay will depend on these parameters and on the
relative Euler angles of the tensors. Thus for the computer
analysis it was essential to incorporate all the parameters of
Table 1.

The circles in these figures represent the experimental AS/
Sy results and their size represents the experimental errors.
These results are compared with two simulated results for
dipolar interaction strengths of 420 and 470 Hz. The com-
puter simulations were performed by taking into account
the lengths of the pulses as well as their phases. In all these
calculations the XY-8 pulse scheme was used. It turned out
that the length of the pulses can influence the calculated
results significantly. Their influence is mainly noticeable
when the spinning speed is much larger than the off-reso-
nance difference. In order to demonstrate the difference be-
tween the values of AS/ S, for both finite and infinitely short

AS /S,

AS /S,

FIG. 5. The effect of the lengths of the = pulses is demonstrated by a
simulation of AS/S, of a powder sample with (a) A;;/wg = 0.6 and (b)
Ajz/wg = 1.2. In both cases the lower solid line corresponds to the results
of SEDRA experiments with infinitely short pulses and the upper dashed
line for = pulses with intensities of 50 kHz. The CSA and dipolar interaction
parameters in the calculations were taken from Table 1. As can be seen,
finite pulses enhance AS/S, decay and must be taken into account during
analysis, particularly when high spinning speeds are used.
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pulses, two sets of simulated data for A;;/wg = 0.6 and for
A5/wr = 1.2 are shown in Figs. 5a and 5b, respectively. In
both cases it can be seen that finite pulses lead to enhanced
decays. When the spinning speed is substantially larger than
the off-resonance difference A,,, a larger part of the observed
signal decay may be due to pulse-length effects. Hence when
working under such circumstances, one must be cautious
not to misinterpret the experimental results. The incorpo-
ration of finite pulses and the effects of pulse imperfection
on the SEDRA signal will be discussed more extensively
elsewhere.

The data corresponding to AS/S, values that are larger
than 0.8 are not very reliable because at these values the
individual SEDRA signals become very small. Figure 6 shows
the results of the SEDRA experiments that were performed
at a spinning speed of 3400 Hz. Again the data are compared
with exact calculations for 470 and 420 Hz dipolar inter-
actions, taking into account the parameters of Table !, the
length and the intensity of the pulses. This result deviates
slightly from the values suggested in Fig. 4. The results given
in Fig. 5 explain this behavior if we notice that at such a
spinning speed, A;>/wr = 0.4, the efficiency of the SEDRA
cycle is small, whereas other terms, like inaccurate pulse
lengths or intensities mismatches, can become quite signif-
icant. In such circumstances, experimental instabilities can
dominate the observed results. In Fig. 7, the experimental
decays of the individual Ssppra(877g) and Sy(8n Tgr) are
shown separately, in Fig. 7a for wg = 2777 Hz and in Fig.
7b for wg = 3400 Hz. The oscillation in the time dependence
of So(8n Ty ) is also reproduced by the computer simulations.

Finally, from all the experimental results presented above,
we can conclude that the dipolar interaction between the
two nitrogens in PMP equals 445 + 25 Hz. This range of

1.0t
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FIG. 6. The results of AS/S, from SEDRA experiments on the N
nuclei in a fully '*N-enriched sample of 3(5)-methyl-5(3)-phenylpyrazole.
In these experiments the spinning speed was 3400 Hz. The ¢xperimental
data are represented by circles of a proper size to include experimental error
bars. Calculated results for a dipolar strength of 470 Hz are given by the
upper dashed line and for a dipolar strength of 420 Hz by the lower dashed
line. The parameters in Table | were used for these exact calculations. Here
A2/wr = 0.42. As evident from Fig. 5, at this regime the SEDRA scheme
has only a minor effect on signal dephasing and other terms must be con-
sidered such as finite pulse length and pulse intensities mismatch. Indeed
the results at this spinning speed seem to deviate slightly from the general
trend illustrated by Fig. 4.
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FIG. 7. Experimental results of Ssepra{82 Tx) and So(8n Tx) for the

SEDRA experiments on 3(5)-methyl-5(3)-phenylpyrazole for a spinning
speed of (a) 2777 Hz and (b) 3400 Hz. In both cases S, is marked by
diamonds and Ssepra by circles.

values corresponds to a nuclear distance in the range of 1.385
+ 0.025 A, which can be compared with X-ray (35) and
neutron-diffraction (37) data on the same compound re-
sulting in an internuclear distance of 1.36 or 1.345 A deduced
from NMR lineshape analysis of static powder spectra (34).

CONCLUSIONS

We rederived the effective Hamiltonian for the SEDRA
experiment using Floquet theory. We showed that the effec-
tive SEDRA frequencies can be approximated by a relatively
simple expression in terms of the dipolar Fourier components
and the elements of the eigenvectors of the SEDRA Floquet
matrix. These elements can be obtained by a Fourier trans-
formation of a function that contains the various CSA and
dipolar parameters which appear in the Z blocks of this
Hamiltonian. In order to partially eliminate the dephasing
effects not due to the dipolar interaction, the t-SEDRA ex-
periment was introduced. Finally, we have demonstrated the
application of the SEDRA approach for determining ho-
monuclear atomic distances on a doubly labeled '*N PMP
sample. For performing computer simulations it is desirable
to know the CSA parameters and relative orientations in
advance. The influences of these parameters on the experi-
mental results manifest themselves mainly when the CSA
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values become comparable to the off-resonance difference.
In these cases, when tensorial angles are unknown, the com-
puter analysis can only provide a bounded range of values
for internuclear distances. As was pointed out, the influence
of the length of the pulses of the SEDRA cycle must be taken
into account during the analysis of the data. Thus accurate
data analyses require the presence of a computer program
that can handle the strength and duration of the pulses in
the calculation. Of course, the influence of pulse lengths is
not present when rotational-resonance experiments for ho-
monuclear distance measurements are performed. The fre-
quency selectivity of the rotational-resonance technique is
also not present in the case of SEDRA; however, the facts
that the frequency of rotation can be chosen conveniently
and that the SEDRA decay is not dependent on small fluc-
tuations of this frequency can be an advantage. The choice
of spinning speed for the distance measurement enables more
than one experiment on the same spin pair. If possible, the
value of the spinning frequency should be chosen between
one and two times the value of the difference between the
isotropic chemical shifts. The feasibility of detecting small
dipolar couplings depends on the details of the observed
molecule as well as on instrumentation. For dipolar strengths
of 100 to 50 Hz, an intramolecular distance of 2.2 to 2.5 A
can be measured for a nitrogen spin pair, respectively.

When CSA parameters and dipolar interaction become
comparable to the spinning speed, a modified version of t-
SEDRA could be employed for the detection of .Sy. In this
case, w&T in Eq. [15] could also lead to a small imaginary
contribution. This in turn leads to terms proportional to
Y 3% in the Floquet Hamiltonian, which then assumes the
general form of Eq. [13]. Since the Y 3 transforms to I, 1,
— I, I, in the effective Hamiltonian, it is evident that prop-
erly placed = pulses can eliminate this contribution to zeroth
order. Such a sequence is depicted in Fig. 8a. In Fig. 8b the
standard t-SEDRA curves are shown for two dipolar inter-
actions, 0.5 and 1.0 kHz, and in Fig. 8c the same curves are
shown for the experiment implementing the sequence in Fig.
8a. In practice there is almost no difference between the two
sequences for small dipolar interactions, as is the case for
the PMP molecule. We preferred the use of the standard t-
SEDRA scheme.

Finally, it should be mentioned that the SEDRA cycle
and the t-SEDRA cycle can be used in the mixing time of
two-dimensional homonuclear correlation spectroscopy ex-
periments. In the first cycle the exchange of polarization is
exploited in the RF-driven dipolar recoupling 2D experi-
ments (3), whereas in the second cycle, the spin coherence
is transferred in order to obtain cross peaks in the 2D spectra
(38).

APPENDIX A

In the text the MAS Hamiltonian is expressed in terms of
w$(2), w$(1), and wp(#) (11). In this appendix their explicit
forms are reported.

a
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FIG. 8. 1In (a) the zeroth-order corrected t-SEDRA scheme is shown.

t-SEDRA curves using finite pulses illustrating the efficiency of the standard
t-SEDRA pulse cycle are calculated. In (b) the standard t-SEDRA cycle was
used and in (c) the t-SEDRA with zero-order correction was applied. In
both cases, diamonds represent a dipolar strength of 0.5 kHz and squares a
dipolar strength of 1.0 kHz. The spinning speed is 2500 Hz and finite pulse
intensity is 50 kHz; all other parameters are taken from Table 1.

Chemical Shift

The chemical-shift coefficients of spin-1 or -2 can be writ-
ten as

w$(1) = Aw’ + wi{gicos(wrt + a’ + ¢})
+ ghcos(2wrt + 2a' + ¢h)}, [Al]
where (i = 1) for spin-1 and (i = 2) for spin-2 and where
Aw’ = wea
wp = wo(”'ﬁ - 0{))
Uil‘l - 052

[A2]

i i
033 — 09
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are the isotropic chemical shifts, the anisotropic chemical-
shift parameter, and the asymmetry parameter, which are
all expressed in terms of the principal components (g, 023,
d33) of the chemical-shift-anisotropy tensor. The geometric
factors are defined as

2 . . _ . . .
ghi= gsin B'V(n'cos 2y' + 3)2cos?8’ + n¥'sin 27"

1= 12 6in28" — T cos 24/(1 + cos28) 2
82 6!12 2 Y

1/2
+ nz’coszﬁisin227') , [A3]
and the angles ¢, and ¢, as
. . sin 2v°
t b=pl — : .
anyi=mn (n‘cos 2y’ + 3)cos B
) ) i 'n 2 i
tan ¢} = 7' cos f'sin 2y [A4]

(3/2)sin8 — (n'/2)
X cos 2v'(1 + cos’B")

The angles (o, 8°, ¥*) are the initial Euler angles of the CSA
principal-axis systems with respect to the rotor frame.

Dipolar Interaction

The dipolar coupling term in the Hamiltonian of a spin
pair can be written as

wpl(t) = w2 { G cos{wrt + ¢p)

+ 02COS(2(.0R! + 2¢D)}, [AS]
where
Wiy = Ho Y1Y2
12 41[' r%z
2
G = 5 sin fpcos Op
| I
G, = 2 sin“ép, [A6]

where 0p, ¢p are the initial polar angles of the vector con-
necting the spins in the rotor frame, ry; is the distance be-
tween the spins, and v, 7y, are the gyromagnetic ratios of
the spins.

From the above equations, one can derive the various
coeflicients appearing in the Floquet Hamiltonians,

= 1(Aw' + Aw?) = Howf + of)

wo
wlf = J(wigle® =" 4 wiglerilatridly
= (0f + @0F)u
w4 = %(w}géeti[h'hﬁ}] + w;g%etiﬂnzwi])
= (0T + 0F)n2
W = H(Aw? — Aw') = (0F — o
= j4n
0B = {(wigle* ™ — g glemlatrely
= (0 — o)
w3 = f(wfgde 12 VA — o] glexilon' i)
= (wf ~ @)
wpx| = §wGe*e

Wpsy = §wpGre* 0
]
LoiG [A7]

% [} 262 .
APPENDIX B
Here we derive the expression given in Eq. [10] that relates

the eigenvector elements of the Floquet Hamiltonian 4% to
the Fourier transformation of the function

e o] wﬁp )
exp[— > = (e™eR — 1)} .
n=—o an

To derive this relation we assume a general diagonal Ham-
iltonian of the form

H(t)=22 o)

P

[B1]

that is defined in a manifold of states |7y and that is periodic
in time with a basic frequency wg:

oG
wpp(t): Z wﬁpemwm_

n=-oc

[B2]

The evolution operator corresponding to this Hamiltonian
can be evaluated by a simple time integral,
(plU(t) p)y = (ple ¥ | py, [B3)

because the Hamiltonian is self-commuting at all times. In-
sertion of the expansion for the coefficients w?” results in
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Y] o
(pIU)p) = <p|exp[-if02 > w’é”e""‘”“’l‘i”}dflm
oo pp
2wt -2 Wn
e <p|exp[ n?_w on

X gfmemt — 1]12’”]11))

el op
— e_iz‘”dp'exp[— > @n
n=—u NWR
X [eiﬂwnf _ 1]} .

[B4]

This expression for the element of the evolution operator
can be compared with the expression in terms of Floquet
theory,

GIU@IpY= 5 (pnle ™[ p0de™x, [BS]

n=-o0

with the Floquet Hamiltonian Hg corresponding to #(¢),
He=2 > w®Z?%, [B6]

n=-—oc

Inserting the diagonalization matrix Dg and using Hg =
DeADE!, we get

<P|U(l)|p> = Z <pn|DF|pm>eAi(wEﬂ+Inwn)l

nm=-—co

X <pm|D‘—:l |p0>einwgl

o ]
= e—Ziw%l z dﬁgmex(n—'n)wnld’—nlpp

nm=—oc

€K
= e—zm%z z d’;.feinRl d:nl pp

Nm=—

=e—2iwgﬁ.v z dﬁfeinR'{ Z d,-,,lpp}. [B7]

N=— m=—oo

In this derivation we used {n|Dg|m) = d,-,, and changed
the indices of summation n by N = n — m. The normalization
term { 2 %2__, d,'?}isequal to 1 (27, 11); hence we have

x©

(pIU(t)|p) = e™@8 T d¥eNer,

N=-wo

[B8]

Equalizing Eq. [B7] with Eq. [ B4] yields

w w pp
S d¥eiNent = exp{— D Whn [emrt — 1]]. [B9]

N=—og n=—on HTWR

If we evaluate the complex conjugate of this equation and
use the facts that the Hamiltonians are hermitian with
w?" = w? and that the Dg matrix is unitary with d* =
d~}, the following relation is also valid:

«© w© .pp
z d;/lppeinRl = exp{ Z &L (ei"“’ﬁl — l)} . [Blo]
nwgr

N=—0c n=-coo

APPENDIX C

In this appendix we show a different route for the calcu-
lation of w§T, utilizing the dependence of the d, coefficients
on Bessel functions (11, 29, 39, 40). In general this deriva-
tion is cumbersome; however, when some approximations
can be made, it can become quite easy and useful. In the
derivation of Eq. [15], we assumed that the dipolar inter-
action terms were smaller than the spinning speed, «? <
wg. In this case, the dipolar terms in the diagonal blocks of
H{ in Eq. [5] can be neglected and the diagonalization matrix
D becomes solely dependent on the chemical-shift param-
eters. Then w2? = — w3} which in turn leads to the connec-
tion d, = d?*"' = d33(27) and Eq. [14] becomes

wsﬂ =- Z dmd—m—kgf-

km=—oc

[C1]

If we further simplify the situation by assuming that the
chemical-shift anisotropy is small compared to the spinning
speed and that only the isotropic chemical-shift values are
relevant, then the w?” coefficients in Eq. [11] are equal to

[C2]

22 _ 33 _

Wi” = Twi Appy,

where the p, coefficients are given by

2

— n—1
(=D 2n— D=’

Doan-1 =

For this case, the argument of the Bessel functions becomes

orientation-independent, which in turn allows us to evaluate

the various d, values for only one arbitrary single crystallite.

Using the definitions of Eq. [7] and those of Eq. [A7] of
Appendix A and applying

~2A
Jn = Ju(x) = (=) p(x), x=—2,

TWR
we obtain the expression for the effective SEDRA frequency

1 ool
waﬂ' = 4Q|COS (ﬁd[é’ J% + 2 Jk.lz_k]

k=—c0

1 @K
+ 4Q,cos 24)‘,{5 Ji+ 3 JkJ4_k]

k=~

[C3]

.

S (-1

k=—

In Fig. 2, exact values of w§ for a single crystal are compared
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with their approximate value calculated according to this
expression. Values for other single crystals gave very similar
results. The digital resolution in these simulations was 7.8
Hz/point.

When the above approximations are not valid, because
the dipolar strength or the values of the CSA coefhicients
become comparable to the spinning frequency, the full Flo-
quet Hamiltonian of Eq. [5] must be considered. In such
cases, it is advised to use exact numerical calculations for
the analysis of the SEDRA experiments,
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