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SUMMARY
This research report contains nine case studies (partII to

X) dealing with Palacozoic and Mesozoic mud mounds,
microbial reefs, and modern zones of active micrite produc-

Emiliano Formation of the Cdrmenes Syncline (Westphalian
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SCHAFER)

Part VII: Origin and depositional environment of Lower Carbon-
iferous mud mounds of Northwestern Ireland. (K. WARNKE &
D. MEIscunEr)

Part VIII: The Devonian mud mound of Riibeland in the Harz

tion, and two parts (I and XI) summarizing the major questions
and results. The formation of different types of in situ formed
micrites (automicrites) in close association with siliceous
sponges is documented in Devonian, Carboniferous, Triassic,
Jurassic and Cretaceous mounds and suggests a common
origin with amodern facies found within reef caves. Processes
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involved in the formation of autochthonous micrites com-
prise: (i) calcifying mucus enriched in Asp and Glu, this type
presumably is linked to the formation of stromatolites,
thrombolites and massive fabrics; (ii) protein-rich substances
within confined spaces (e.g. microcavities) result in peloidal
pockets, peloidal coatings and peloidal stromatolites, and
(iii) decay of sponge soft tissues, presumably enriched with
symbiotic bacteria, lead to the micropeloidal preservation of
parts of former sponge bodies. As a consequence, there is
strong evidence that the primary production of micrite in
place represents the initial cause for buildup development.
The mode of precipitation corresponds to biologically-
induced, matrix-mediated mineralization which results in
high-Mg-calcites, isotopically balanced with inorganic ce-
ments or equilibrium skeletal carbonates, respectively. If
distinct automicritic fabrics are absent, the source or origin
of micrite remains questionable. However, the co-occurring
identifiable components are inadequate, by quantity and
physiology, to explain the enhanced accumulation of fine-
grained calcium carbonate. The stromatolite reefs from the
Permian Zechstein Basin are regarded as reminiscent of
ancestral (Precambrian) reef facies, considered the precur-
sor of automicrite/sponge buildups. Automicrite/sponge
buildups represent the basic Phanerozoic reef type. Analo-
gous facies are still present within modern cryptic reef
habitats, where the biocalcifying carbonate factory is re-
stricted in space.

Part 1
MUD MOUNDS: RECOGNIZING A
POLYGENETIC SPECTRUM OF FINE-GRAINED
CARBONATE BUILDUPS
J. Reitner and F. Neuweiler

The implementation of the Priority Programm of the
'Deutsche Forschungsgemeinschaft' (DFG) 'Controlling
Factors of Biogenic Sedimentation: Reef Evolution and
Cretaceous Sedimentation’ in 1990 led to the establishment
of a group of scientists to work on the topic of mud mounds
and microbial mounds. This 'mud mound-group' has con-
cerned itself with the study of fine-grained (mostly micritic)
carbonate buildups including case studies ranging from the
Lower Devonian to the Recent, with localities from N-
Africa, N-Europe and modem environments with active
micrite production, e.g. reef caves of the Great Barrier Reef,
Australia (Fig. 1). We have held several meetings to intro-
duce our individual case studies and to concentrate on the
key questions of mud mound genesis. Besides the annual
meetings in Neustadt a.d.W., we had discussions in Ham-
burg 1992, organized by G. HiLMmer and J. Scuorz (cf.
Faces vol. 29: 'Microbial Carbonates'), in Géttingen 1993
(D. MErscuner) and most recently in Berlin (J. RErmner and
F. NEUWEILER).

The main topics of our discussions were: i) paleoecology
and environmental settings, ii) microbial textures, iii) the
role of sponges, iv) lithification processes, v) types of
cavities and their time of formation, vi) stable isotope

geochemistry, vii) micrite genesis related to the diagenesis
of organic matter, viii) micrite genesis via diffuse organic
matter and associated organic macromolecules, and viiii)
the distinction between allomicrite, parautochthonous micrite
and automicrite, respectively (micrite budgets).

In summer 1993, CLAUDE MonTty (Nantes) convened a
meeting in Paris in order to define the main aims of IGCP 344
'Correlation of microbial buildups'. The meeting postulated
that the main effort should be related to the microbial
processes by which sediments are precipitated, accumulated
and lithified (cf. Stromatolite Newsletter 1993). Studies of
mud mounds should focus on: (i) the interaction between
microbial processes, sea-water and macro-organisms, (ii)
the environmental setting and possible nutrient sources, and
(iii) the role of microbial organisms in the processes of
cementation, dissolution, cavity formation and neomorphism
during mud mound diagenesis. A compilation of Phanerozoic
mud mounds will be published soon (MonTy et al. 1995).

The German group is aware of the fact, that we use the
term 'mud mound' in a very broad, descriptive manner for a
fine-grained carbonate buildup at the macroscopic scale.
The evaluation of the origin of micrites involved in the
formation of mud mounds is crucial in determining their
polygenetic history and forms the basis of a refined genetic
classification of ancient fine-textured carbonate buildups,
e.g. biodetrital feedback mechanisms vsdifferent kinds of in
situ production.

As far as we know, the original use of the term ‘mud
mound' referred to biodetrital carbonate bodies in areas like
the Florida Bay. Their origin is related to the baffling of
currents by marine grasses (e.g. Thalassia sp.) and a surplus
of carbonate production by numerous epibiontic organisms
(GINsBURG & LowensTaM 1958; LAND 1970). Other modern
occurrences of lime mud bodies are characterized by purely
hydrodynamic accumulation near zones of enforced mud
production induced by Penicillus sp. and mechanical skel-
etal breakdown (Stockman et al. 1967). Genetically, all
these bodies are clearly related to the bank category of
buildups, lacking a 3-dimensional framework, i.e. the ability
of the involved organisms for active vertical (skeletal)
growth or non-skeletal accretion, respectively.

In contrast to the above-mentioned processes, MoNTY
(1976) postulated that many ancient mud mounds represent
'a megadevelopment of cryptalgal textures' with a signifi-
cant amount of organically-induced peloids. The term
'cryplalgal texture' (AITKEN 1967) has been largely replaced
by 'microbial texture’, stressing the predominant role of the
involved procaryotic organisms (bacteria). Commonly, sil-
iceous sponges are the main associated faunal element,
considered as a biostrategic consortium between microbes
and sponges (Monty 1984). This consortium presumably
originated during the Late Proterozoic (cf. STEINER et al.
1993) and is regarded as an ultraconservative life strategy
which marks the onset of metazoan-bearing carbonate
buildups in Earth's history (cf. RowrLAND & GANGLOFF 1988
for summary). Until recently, no modern counterparts of
bioherms consisting of microbial carbonates and sponges
have been known. However, there are examples in deeper
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shelf areas, like those of the Otway Margin, southeastern
Australia (BoreeN & James 1993), and the deeper forereef
slopes in the Red Sea of Sudan (Bracuert & DuLLo 1991)
(Fig. 1).

Several authors have proposed a practicable termi-
nology for fossil carbonate buildups, dominated by mud
(incl. micrite). JAMEs (1984) used the ratio of skeletal meta-
zoan remains relative to mud as the criterion to distinguish
between mud mounds, reef mounds and reefs. Similarly,
RiDING (1990) used the relative amount of skeletons 1o
separate reefs (framework reefs) from carbonate mounds,
which seems, at least in part, contradictory to his own earlier
statement that 'micrite mounds may in some cases be organic
reefs’. These proposals suggest a continuous spectrum of
buildups where the relative amount of mud increases with
increasing depth of formation, correspondingly from wave-
resistant to quiet-water bioherms. But how can wave resist-
ance be assessed below wave base?

In agreement with the IGCP 344, we use the term mud
mound in a descriptive mode for every carbonate buildup
consisting of more than 50 % of mud and/or peloidal mud,
where mud represents microscopically unidentifiable com-
ponents, usually < 16 pm (cf. Stockman et al. 1967). In a
strict sense the term mud infers a primarily soft, muddy
substrate; but this is not necessarily the case for every
carbonate body labeled mud mound. We stress the point, that
genetic and environmental interpretations may be mislead-
ing without an evaluation of the origins and relative amounts
of micrites involved. Particularly, in situ production of
micrite excludes any conclusion with respect to the hydrody-
namic environment, because this fraction never was held in
suspension.

This compilation of case studies provides an opportunity
to confirm the polygenctic origin of mud mounds and to
discuss specific groups with a similar origin. Some authors
have ncarly completed their work, whereas others are pre-
senting preliminary results.

The casc studies are arranged in stratigraphic order
beginning with a comparative study of fossil and modern
automicrites by RerrNer & NEuweiLer. Their petrographic
and analytical results suggest, at least in part, a common
organically mediated origin of micritesand peloidal micrites
of Lower Cretaceous mud mounds of northern Spain and
those observed within cryptic habitats of modern reefs from
castern Australia (Great Barrier Reef). - cf. Part II.

The second contribution by LEINFELDER & KEUPP intro-
duces the strong relationships of the widely-known Euro-
pean Upper Jurassic micritic siliceous sponge facies with
respect to microbial mud mounds. The paper provides dif-
ferent aspects of micrite accumulation and a summary of
controlling environmental mechanisms. - cf. Part I11.

The Mesozoic examples are completed by NEUWEILER &
REITNER with a short note concerning excellently preserved
automicrites from cryptic environments in the Upper Triassic
(Cipit-boulders; Cassian Formation). They used fluores-
cence-microscopy to demonstrate various aspects of
automicrite characteristics. - cf. Part IV,

Paleozoic mud mounds/microbial buildups are illus-
trated with 6 case studies of Permian, Carboniferous and

Devonian age. Stromatolite reefs from the German Zechstein
Basin are described by PauL. He stresses the importance of
considering relative sea-level changes and excursions of
salinity in understanding the relative production of micro-
bial and macroskeletal fabrics. - cf. Part V.

HenseN, DINGLE & ScHAFER present several indicators for
distinguishing between primary mounds and diagenetic
mounds exemplified by the Upper Carboniferous of the
Cantabrian Mountains (northern Spain). They demonstrate
the inadequacy of the preserved skeletal algae (dasyclad
Donezella and rhodophyte Petschoria) to produce, baffle
and bind large amounts of mud. - cf. Part VI.

The origin and depositional environment of Lower Car-
boniferous mud mounds from Ireland are discussed by
WARNKE & MEIscHnER. They conclude that the diagenesis of
sponge soft tissue led to the formation of a rigid microcrys-
talline frame and early stromatactoid cavities. - cf. Part VII.

The Upper Devonian mud mound of Harz area (Ger-
many) consisting of stromatactis-bearing micrites,
stromatolites and zebra limestones is discussed by WELLER
inthe contextof microbial activities and tectonic setting, - cf.
Part VIIL.

Middle Devonian mud mounds and reef mounds from
Morocco are the subjects of the paper by Kaurmann. He
describes the variability of these buildups ranging from
neritic to pelagic environmental settings. - cf. Part IX.

The case studies are completed by Lower Devonian
stromatactis mud mounds from France presented by Frass,
HussNer & VIGENER. They consider the large stromatactis
structures 10 be cavities formed by the decay of microbial
mats and summarize their subsequent diagenetic history.
The pronounced internal rhythmicity of facies is discussed
in the light of high frequency sea-level changes. - cf. Part X.

The epilogue tries to summarize our major results and
evaluates the principal modes of mud mound genesis. It sets
out the major aims with regard to furthering our understand-
ing of ancient fine-grained carbonate buildups and includes
the conceptual framework for future research. - cf. Part XI.

Part I1
MODERN AND FOSSIL AUTOMICRITES:
IMPLICATIONS FOR MUD MOUND GENESIS
J. Reitner, F. Neuweiler and P. Gautret

Significant automicrite production is taking place within
modern reef caves of Lizard Island (Great Barrier Reef) and
(1 1s considered to have been crucial in the development of
Albian (Lower Cretaceous) mud mounds situated on the
outer platform margins of the Vasco-Cantabrian Busin (N.
Spain). Two principal types of automicrites are distin-
guished: i) accretionary automicrites exhibiting a distinct
growthform,andii) container automicrites occurring within
closed and semi-closed microenvironments.

Accretionary automicrites form via reactive organic
matter dominated by glucidic and proteic compounds
(organomicrites). Macromolecules of soluble matrices con-
tainlarge amounts of acidic amino acids (32 mole % Asp and
Glu) and specific monosugars which are important in calci-



sponge tissues and found specific sterols and typical bacte-
rial remains.

Soba Reef area: The diagenesis of sponge soft tissuc acts
asasecond process of the in situ production of micrite within
mud mounds (NeEuweiLER & RErmer 1993a, b). PL 5 shows
various geological endproducts found within lithistid and
non-lithistid demosponges and within hexactinellids. Dis-
tinct aggregates of minipeloids exist, resembling calcified
bacteria (P1. 5/1); especially when compared to the stained
bacteria of P1. 2/3 and entirely preserved individuals of Aka
embedded in peloidal flakes (Pl 5/2). Because Aka only
excavales calcareous substrates and it is found within a
lithistid demosponge, the entire fabric of P1. 5/2 suggests a
very carly, perhaps synvivo diagencsis of the involved
sponge. In addition, lairly intact bioclasts of demosponges
found within tempestite beds support this timing of the onset
of sponge petrogenesis (cf. PL 1/8).

The automicritic nature is well expressed by auto-
chthonous sponge skelctons representing a ‘carbonate is-
land" surrounded by marls and limy marls of the basin
depositional environment (P1. 5/3-5). This is apparent from
the embryonic stages of automicritic buildup developments,
which first appear like erratic carbonate boulders but reveal
an autochthonous fauna mainly consisting of hexactinellid
sponges, platy corals and bryozoans (PI. 5/5).

An external rim of dense automicrite provides an excel-
lent preservation of lithistid demosponges, including the
outerdermal layer (NeuwEILER 1993; PL. 5/6). This particular
preservation was detected within the reef caves of Lizard
Island (cf. PL. 2/7-8). Currently, we don't know whether
these automicritic rims originate from the sponge sofl tissue
and related symbionts, or from external biofilms and im-
ported organic matter. Growth of accretionary automicrites
upon a lithistid demosponge normally occupies the outer
area of the sponge skeleton (NeuweiLEr 1993: plate 44, fig.
1) and is well separated from internal peloidal organomicrites,
exhibiting incomplete calcification, collapse structures, and
sometimes early stromatactoid cavities.

A succession of 'reactive’ non-lithistid demosponges in
association with thin thrombolites results in a cauliflower-
like structure (P1. 5/7-8). However, these combinations of
accretionary organomicrite and container organomicrile are
restricted to well-protected areas of cavities and therefore do
not participate in active vertical growth of Albian mud
mounds.

3.2 Allomicrites

LizardIsland: In contrast to automicrites the allochthon-
ous micrite or allomicrite is enriched in aragonite and
exhibits lighter carbon isotope values (8'3C +1 %0). The
allochems reveal a fluorescence behaviour completely dif-
ferent and much more variable than that seen in the
automicrites. The soluble organic matter differs also fromall
previous studied matrices. The soluble organic matter is
composed of 90 % glucidic material and 10 % proteic ones
only. This is characterized by the lowest amounts of acidic
amino acids (Asp + Glu: 15 mole %), while the basic ones
dominate (Lys+Arg+His: 19 mole %). The high amount of
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Lys is combined with the presence of ornithine duc to
decaying matter. Relatively large amounts of the bacterial
diaminopimelic acid is also detected, Allochem components
are reworked matenal, products of biocrosion, and disinte-
grated biodetritus.

Soba Reef area: Relatively purce scdimentary micrite
mostly exhibiting a geopetal fabric is found within coarse
tempestite beds (P1L. 1/8). Their co-occurrence with heavily
bored rudist debris suggests of intense biocrosion. Thisis in
agreement with stable isotope analyses (8'*C vs PDB),
which give comparable values for allomicrite and embedded
calcitic parts of rudist valves (8'*C +2.5 %) clearly scpa-
rated from the mean values for the automicrites with 8'°C
+3.5 %e) (NpuwriLER 1993). The small amount of intra-
crystalline organic compounds ol allomicrites was not suit-
able for chromatography.

4 GEOCHEMICAL ASPECTS

Stable oxygen and carbon isotopes exhibit the same
character in all studied specimens of aulomicrites/micro-
bialites. The Mg-calcitic automicrites were precipitated in
equilibrium with the ambient sea water and exhibit mean
values of 8'3C 4+3.5 and 8'%0 -1 %e. This is typical for a non-
enzymatic fractionation and the CO, source is from DIC.
Most of the biologically controlled carbonates are in
disequilibrium due to enzymatic fractionation (e.g. via car-
bonic anhydrase), as exemplilicd by the coralgal lacics.

Large amounts of P and S were detected within calcily-
ing mucus substances using EDX. Possible sources for the S
are¢ Ca-binding sulphate groups of polysaccharids and
glycoproteins, and sulphur containing amino acids methio-
nine and cysteine. Phosphor is related o lysing cells and
therefore olten enriched in decaying sponges. Stisrelated Lo
sponge spicules and some radiolarians and clay minerals. Fe
(as goethite) and Mn-oxids are common in F¢/Mn-microbial
biofilms often with traces ol Mo.

Part 111
UPPER JURASSIC MUD MOUNDS:
ALLOCHTHONOUS SEDIMENTATION VERSUS
AUTOCHTHONOUS CARBONATE PRODUCTION
R. R. Leinfelder and H. Keupp

1 INTRODUCTION

If mud mounds are defined as buildups dominated by
cryptocrystalline ('micritic’) or peloidal carbonates, where
the macrofauna does not form an obvious framework, a large
number of Upper Jurassic reefs and massive buildups falls
into this category. Mud mound characteristics ar¢ most
common within siliceous sponge facies, but may occur also
as a rare type of coral reef. Cryptocrystalline to peloidal
crusts of microbial origin can dominate to form microbial
crust reefs (LEINFELDER et al. 1993b). They represent true
framestone reefs and are not considered mud mounds in the
strict sense here, both because of the apparent crust-type
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nature of the carbonate and because the entire mound mate-
rial obviously was hardened already at the time of formation.
However, their mode of formation is of importance for
understanding growth mechanisms of mud mounds as a
whole. Additionally, non-correlatable lagoonal shallowing
upward sequences up to 10 m thick were compared with
Florida Bay type mud bank successions by LEINFELDER
(1994).

Upper Jurassic mud mounds are here regarded of special
significance for the general understanding of mud mounds,
because most, though not all, exhibit sponge faunas as well
as distinct, calcified microbial mats, i.e. distinct calcareous
crusts. The co-occurrences of sponges and calcified micro-
bial films or mats, are considered as crucial for mound
formation by some authors (cf. RErr~er 1993, REITNER &
NEUWEILER, this set of contributions). Consequently, their
participation in mound formation is often assumed, though
not always obvious, for many other mud mounds from the
Earth's history.

This contribution results from a comparative analysis of
the entire range of Jurassic reef types presented elsewhere in
greater detail (LEINFELDER 1993, LEINFELDER et al. 1994), to
which the reader is referred for a more complete interpreta-
tion of factors controlling occurrence and characteristics of
Jurassic reefs. In the present study we emphasize factors
thought to be of particular importance for the growth of
Jurassic mud mounds, namely microbial activity and the
relative importance of allochthonous versus autochthonous
generation of mound 'micrites’,

2 GEOLOGICAL FRAMEWORK
2.1 Location, structural unit, general environment,
and age

Most Upper Jurassic siliceous sponge-microbial crust
mud mounds occur in southern Germany, where they form
part of limestone-dominated ammonitic limestone-marl
successions, deposited on a very wide, initially near level-
bottom, mid-ramp setting. Major episodes of mound forma-
tion were the Late Oxfordian and the Late Kimmeridgian.
The dominance of fine terrigenous deposits resulted in a

setback of mound development during the Early Kim-
meridgian (cf. GWINNER 1976, BracHERT 1992), To a lesser
extent, similar mounds occur within the Middle to Upper
Oxfordian siliceous sponge facies of Romania, Poland,
Switzerland, France, Spain and Portugal. Isolated coral-
bearing to coral rich mud mounds have been located in
southern Germany, Switzerland, eastern Spain and central
Portugal. In Iberia they occur within shallowing-upwards
succession at the base of widespread biohermal to biostromal
coral reef facies (MEYER 1977, LEINFELDER et al. 1994). Most
are of Kimmeridgian age. Except for central Portugal, all
mud mounds formed within the peri-/epicontinental seas
bordering the northern Tethyan margin (Fig. 2).

2.2 Size, geometry, architecture and dimensions of
mounds

Both small (0.5-5.0 m in height) and large (> 50 meters)
mud mounds occur in southern Germany and show a discrete
zonation of facies (WirsING 1988, Scuorr & Kocu 1985,
Bracuert 1992, Keupp et al. 1993, LEINFELDER 1993,
LEINFELDER et al. 1994). Commonly, basal crust-rich facies
is followed upwards by more micritic types and/or by layers
of intraclastic to peloidal packstones. Other examples show
a general increase of crust at the expense of siliceous
sponges. More frequently, crust facies has a patchy, unpre-
dictable distribution. Other mounds are composed of crust
and sponge containing micrite and/or pelmicrite. Late
Kimmeridgian mud mounds diminish in number, in favour
of buildups rich in allochthonous and autochthonous silt and
sand-sized particles (KocH in LEINFELDER et al, 1994), Small
micrite-dominated mounds occur at the flanks of these
grain-rich buildups. Larger mud mounds tend to develop on
top of pre-existing ones, so that in certain areas, formation of
micritic and peloidal mounds appears to occur across several
ammonite zones or even stages, but they represent stacked
and amalgamated mounds rather than one single mound
only.

Oxfordian sponge mud mounds which occur within the
biostromal siliceous sponge facies of Switherland and Spain,
only a few meters thick developed extensively in homoclinal
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Fig. 3. Upper Jurassic spongiolitic mud mound geometries and internal composition. Mounds include both stratigraphic buildups
representing stacked low-relief muddy biostromes as well as small and large ecologic buildups which developed a distinct primary relief.

to near level bottom midramp to outer ramp settings. In
eastern Spain most sponge mud mounds occur within a
narrow stratigraphic range (LEINFELDER et al. 1994). The
same is true for southeastern Portugal, the few examples of
where siliceous sponge mud mounds up to 6 meters thick
occur in one single level which otherwise is dominated by
the occurrence of thrombolitic microbial crust reefs one
meter up to 30 meters thick (LEINFELDER et al. 1993a). Coral-
bearing mud mounds do not exceed a couple of meters in
height.

The microbial crust facies of biostromal and biohermal
spongiolitic buildups contains a variable amount of mm to
cm-sized cavities, particularly of the stromatactis-type. Some
can be interpreted as shelter pores, whereas the majority of
cavities appears to be related to internal erosion and rework-
ing (cf. WaLLace 1987, Kott 1989, MaTyskiewicz 1993).
The high content of isolated sponge spicules within the
spongiolites and the fairly frequent nearly complete preser-
vation of non-rigid demospongia and hexactinellids by
automicritic envelopes (GAILLARD 1972, DRresNAY et al.
1978, cf. REHFELD in LEINFELDER et al. 1994) suggests that the
formation of many cavities results from the decomposition
of organic material and the coeval precipitation of auto-
micrites. Such processes are assumed for analogous exam-
ples of many Paleozoic mud mounds as well (see this set of
contributions).

External geometries are very variable and often irregu-
lar, although an inverted cone to convex-upward hemi-
spheroidal shape predominates. In some cases, the width of
a mound appears narrower than its height, although this
might be a two-dimensional outcrop effect of an originally
elongated shape. The lateral marginsare often oversteepened
by compactional differences between massive mound and

the surrounding bedded limestone marl succession. The
occurrence of debris aprons, coelobitic faunal dwellers in
open mound cavities, onlap contacts to surrounding bedded
sediments and topography-reflecting intercalation of marly
horizons proves the development of a pronounced positive
relief in many examples, whereas subhorizontal marl layers
or indistinct limestone beds are indicative of stacking of
low-relief biostromal bodies to form a stratigraphic buildup
(sensu DunnaMm 1970, HEckeL 1974; cf. GAILLARD 1983: fig.
120) (Fig. 3). Rarely, small biohermal lenses cluster and
amalgamate to form larger mound bodies (LEINFELDER 1993),

3 FORMATION AND PRESERVATION OF
MUD MOUNDS
3.1 Bathymetric range

Based on the establishment of bathymetric faunal and
floral gradients by comparative palaeoecology and sed-
imentological analysis, the coral facies is bathymetrically
separated from siliceous sponge facies, with a broad overlap
zone characterised by mixed coral-siliceous sponge facies
(LeNnrELDER et al. 1993a, LemnreLDER et al. 1994). Conse-
quently siliceous sponge-bearing mud mounds should occur
at depths generally deeper than 50 to 60 meters and mud
mounds with corals from below fair-weather wave base to
depths of about 30 to 40 meters (cf. Gyar & Persoz 1986,
LEINFELDER et al. 1993a). Particle-rich muddy mounds with
mixed coral-siliceous sponge fauna occasionally occur be-
low coral reef facies. Within the siliceous sponge bearing
mounds, the sponges of the Oxfordian examples are largely
dominated by hexactinellid (‘dictyid) sponges, whereas
during the Kimmeridgian, lithistid Demospongiae were
prevailing, which reflects a general shallowing (Keurp et al.
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Criteria - Explanation

no boring organisms occur in most aphanitic material, these are
mostly attacked microbial crusts or macrofaunal hardparts, but
only rarely early lithified aphanitic surfaces.

debris aprons normally are devoid of clasts with aphanitic fabric
but rather are composed of fragments of microbial crusts or
sponge mummies ('tuberoids’)

rusts

debrite of crust
fragments

bioturbation fabrics occur, although discrete burrows or endo-
benthos are rare. Oxygen depletion within mound sediments or
early diagenetic hardening might restrict abundance of burrow-
ing fauna

no petrographic differences between ammonite-bearing, aphanitic,
bedded limestones and aphanitic parts of mounds. Aphanitic
parts of mounds are sometimes vaguely bedded, pointing to

eous crusts or other macrofauna but very rarely
affected homogeneous micritic parts. This indi-
cates selective early lithification.

3.3 Composition and fabrics of mound
sediments and calcareous crusts

Upper Jurassic mud mounds are composed

predominantly of cryptocrystalline to peloidal car-
bonate. This is even true for larger mounds which
developed a distinct positive relief. Although in
some examples mound flanks may be secondarily
oversteepened due to differential compaction, it
appears that not only low-relief but also, particu-
larly during the Late Kimmeridgian, also high-
relief buildups existed. This raises questions as to
the consistency and stabilization of the mound
material. We will present evidence which indi-
cates that:
* Upper Jurassic spongiolitic mud mounds were
composed both of initially indurated carbonate
(carly lithified microbial automicrites, including
microbial crusts) as well as of primary soft carbon-
ate muds.

allochthonous sedimentation

* primary soft carbonate muds represent both

Fig. 4. Criteria for identification of primarily soft mud within Upper Jurassic

mud mounds.

1990, LeNrELDER et al. 1993a, WERNER et al. 1994). How-
ever, even within single small mounds the concentration of
siliceous sponge groups may vary, which is evidence that
their distribution is not governed by bathymetry alone
(LEINFELDER et al. 1994). Mud mounds without accompany-
ing macrofauna are associated with sponge bearing mud
mounds and, hence, apparently grew at similar water depths.

3.2 Organisms, burrows and borings

The organisms occurring in Jurassic reefs, including
mud mounds, are discussed in more detail in LEINFELDER et
al. (1994). The sponge-bearing mud mounds contain
brachiopods,cementing bivalves, serpulids, bryozoans, gas-
tropods, echinoids, glochoceratid ammonoids, belemnites,
certain taxa of coralline sponges (particularly Neuropora)
and small solitary corals besides the lithistid, lychniscosan
and hexactinosan sponges. Faunal abundances are variable,
but are mostly low. Rarely, siliceous sponges are densc
enough to influence the style and structure of the mound. In
some cases, siliceous sponges occur dominantly at the
margins of the mounds. The coral mud mounds from Iberia
are dominated by a community of meandroid corals (LEIN-
FELDER et al. 1994). Chondrites burrows occur in some
Oxfordian examples of siliceous sponge mounds. Distinct
vertical burrows are rare but do occur in some examples.
More common is a mottled fabric which appears related to
bioturbation of soft muds. Borings in siliceous sponge
mounds, mostly by the excavating sponge trace Aka, in
coral-bearing mounds by Cliona and by lithophage bivalves
(RErNEr & Keupp 1991), show that borers attacked calcar-

allochthonous material (allomicrites) and in place
deposits.

* both calcified and uncalcified microbial mats
and biofilms as well as organic matter from the interstitial
water were important for stabilization of primary soft muds,
although the influence of inorganic early diagenetic cemen-
tation is difficult to decipher.

Hardened automicrites (including microbial crusts) arc
easy o detect when they show features typical of calcified
microbial crusts (cf. NEUWEILER 1993, LEINFELDER ct al.
1993b). Such features include laminoid to irregular over-
growth of secondary substrates (¢.g. sponges), macroscopic
thrombolitic or, more rarely in Jurassic mud mounds, lami-
nated stromatolitic fabrics. Analysis of Middle Jurassic
spongiolitic biostromes (N-Spain: LEINFELDER et al. 1994)
indicate partial subsurface formation of thrombolitic and
peloidal carbonate crusts, precipitated under mostly anaerobic
conditions within the sediment and cavities. Similar conclu-
sions were drawn from Cretaceous buildups by NEUWEILER
& REermer (1993a), who related the origin of peloidal
automicrites to subsurfaces processes, whercas dense,
cryptocrystalline automicrites are considered 1o have grown
on the surface, similar to modern examples in coral reef
caves. This is in partial contrast with the examples from
Iberia, where most peloidal crusts of thrombolitic buildups
are intensively colonized by micro-encrusters (Scimip in
LEINFELDER et al. 1994). This suggests that automicrite
fabrics are a fraction of process of numerous factors, thus
similar fabrics may be caused by different processes.

Dense hardened automicrites (cryptobacterial crusts sensu
RibING 1991b) may be recognized macroscopically by their
darker coloration, together with a crust-like appearance and
partial reworking into irregular clasts (commonly known as
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Interpretation - Explanation

* Crusts are important for constructing and stabilising mudmounds. It is the amount of
crusts, not of sponges, which is higher in sponge mudmounds than in sponge biostromes

* Possibly more biofilms and microbial mats became calcified as crusts than during many
other times of earth history. No convincing explanation to date. Possibly generally elevated
sea water alkalinity during the Late Jurassic? Distinct microbial associations without

calcification inhibitors, producing high pH-EPS?

* Calcification of mats mostly represents true calcification (of EPS) rather than trapping of
particles. Crust exhibit distinct calcification fabrics. Carbonate crust bioherms often

occur within clay-rich successions

* Widespread occurrence of uncalcified biofilms and microbial mats is probable:
- occasional occurrence of mudmounds or parts of them without crusts

- epifauna is not restricted to crusts only
- occasional transitions from soft mud to crusts

- domal grain fabrics, often without obvious crusts

- aphanitic texture of Jurassic supratidal LF-limestones does not differ from aphanitic muds

Fig. 5. The importance of microbial crusts in the construction and stabilization of Upper Jurassic spongiolitic mud mounds.

'tuberoids' in Upper Jurassic sponge mud mounds, cf. Frirz
1958). Clotted peloidal micrites, with peloids partly ar-
ranged in laminae are typical of microbial crusts, although
dense cryptic fabrics occur as well. Sponge 'mummies’
exhibitsimilar fabrics, indicating that sponge preservation is
related to microbial activity. Borings by bivalves and sponges
and the presence of microencrusters prove the early harden-
ing of the crusts, but alone do not allow recognition of
automicrites, since they also develop on hardgrounds, where
primarily soft mud becomes microbially and diagenetically
hardened at the sea floor. No new carbonate is produced
except in interstitial pores. Problems exist particularly with
non-crustose cryptocrystalline micrites. An automicritic
origin may only be substantiated by geochemical analyses
(cf. NEuweILER 1993), if at all. It is assumed that hardened
automicrites represent completely calcified microbial mats
or stacked microbial films. The place of autoprecipitation of
carbonate was probably the extracellulary polymeric sub-
stance (EPS), as examination of modern counterparts by
REerrner (1993), has revealed. Different calcification tex-
tures are thought to be related to differences in microbial
film characteristics, such as thickness, chemical composi-
tion, water content, microbial association, external micro-
environment, internal pH and available time.

Some authors (e.g. RbinG 1991a), have suggested that
microbial mats trap allochthonous material rather than
autoprecipitate carbonate, and hence would be preserved by
trapped allomicritic particles. If this was generally true for
the Upper Jurassic examples, automicrite formation could

be ruled out. However, in both Upper Jurassic mud mounds
as well as Jurassic reefs as a whole, the existence of micro-
bial bioherms exclusively composed of microbial crusts
within clayey and marly successions clearly corroborates
the interpretation of calcareous crusts as automicrites. This
does not exclude the possibility thatJurassic microbial films
trapped particles. However, whenever the fabric of crusts is
clearly different to the fabric of the over- and underlying
micritic sediments, autoprecipitation of the crust carbonate
is apparent.

Soft carbonate muds (allomicrites and soft in-place
micrites): Particularly in the Oxfordian mud mounds of
southern Germany, as well as in the Iberian mounds, a large
part of the micritic material involved in mound formation
must have been soft. This is indicated by the following
observations: Bioturbation fabrics and rare burrows are
present; gravitational debris apron composed exclusively of
microbial clasts (‘tuberoids’), indicates that soft mud was
winnowed and redistributed; and indistinct slump features
occur at the margin of the mounds (Fig. 4). The more clay-
rich Oxfordian and early Kimmeridgian spongiolites con-
tain a large number of the presumed soft-bottom dwelling
brachiopod Lacunosella (BRUGGER & KEUPP in LEINFELDER €t
al. 1994). Alsoknown from these sedimentsis Tremadictyon
radicatum, the only dictyid poriferan species with root
knots, which indicates adaptation to soft substrates (MULLER
1991).

On the other hand, some of these mounds were either
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Fig. 6. Preservation of biofilms and microbial mats in Upper Jurassic mud mounds, in relation to allochthonous sedimentation.

initially indurated or hardened very early, which can be
interpreted from the low accumulation rates involved. This
isevidenced by decimeter to meter-scaled biohermal blocks
which were transported within slumps or debris flows. It
appears that induration of soft muds in the Late Kimmeridgian
mounds was more rapid than in the earlier ones. This may
have been related to the shallower water, a high amount of
peloidal packstone to grainstone fabrics with an elevated
primary porosity, and, possibly, a denser concentration of
microbial mats,

To some extent, the primary soft pure to peloidal car-
bonate muds must represent soft in-place material. This is
obvious for small mud and crust-rich mounds which devel-
oped within clayey to marly successions (Fig. 5). NEUWEILER
& RErmEer (1993) restrict the term automicrites to early
lithified microbialites. Therefore, accumulation of crypto-
crystalline to peloidal, soft in situ carbonate is termed here
‘in-place carbonate muds'. Softin-place muds have a variety
of origins. Among the possible sources are: the products of
borings made by microbes, algae, fungi or higher organisms
attacking the calcified microbial crusts; the excrements of
carbonate crunchers and abraders; the loose skeletal ele-
ments of soft body organisms such as gorgoniaceans; car-

bonate precipitation in flocculated biofilms; or destruction
of incompletely calcified EPS material of microbial films or
mats by altered microchemistry or by feeding organisms.
Therefore, in-place muds appear to be derived from a mix-
ture of destructive and productive in-place processes.
Allomicrites must be, however, important in the forma-
tion of larger mounds. Large mounds only exist within
limestone dominated successions, indicating that a substan-
tial part of the allochthonous material of the bedded facies,
was accumulated in the mud mounds. The carbonate muds
are thought to be derived mainly from the carbonate facto-
ries of the shallower waters. Coccoliths are very rare within
the successions which is interpreted as a primary feature
rather than diagenetic disguise (see BRAcHERT 1992).

The role of microbial mats: Calcified microbial films or
mats, 1.c. automicritic microbial crusts, play an important
role in the formation of mud mounds. The fact that they are
more common in sponge-bearing mounds than in associated
sponge biostromes clearly proves their importance in the
formation of high-relief buildups (Fig. 4) (LEINFELDER et al.
1994). They directly and indirectly contribute to the growth
of the buildup, by producing carbonate as well as by stabil-
izing soft sediments.
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elevated allochthonous sedimentation
mudmound becomes buried by bedded muddy
sediments

ion (cf. 1)
revival of formation of automicrites and in-place
soft muds;
occasional gravitational collapse leads to
"tuberolitic' debris sheets

low rate of allochthon

(horizontal or vertical transport)

trapping of mud and partial stabilisation by
sticky microbial films and mats;

upbuilding of mound;

lack of distinct calcification pattem prevents
recognition of position of former mats and
films

cessation of allochthonous sedimentation
Initiation of mounds growth on initial
hardground; allomicrites and in-place muds

dominance of in-place soft muds and indurated automicrites without crust features

ey crust-type automicrites (calcified biofilms and microbial mats)

_'\,.m\ not preserved biofiims and microbial mats

-~ "\ rigid siliceous sponges

Fig. 7. Formation of spongiolitic mud mounds by microbial automicrites, in-place muds and allochthonous mud. It is assumed that large
Upper Jurassic mud mounds required occasional pulses of allomicritic sedimentation in a transgressive third-order regime characterised
by generally reduced rates of background sedimentation. The series is theoretical and cannot be observed in the field. It is assumed that
in most Jurassic mud mounds automicritic production, in-place sedimentation and allomicritic deposition was variable and changed in

a high-frequency order.

However, although the abundance of crusts is often high,
it does not appear high enough to be responsible for the
stabilization of large mounds which show features indica-
tive of large amounts of soft material. Crusts never form
entire horizons and are very rare in some mounds. This
suggests that uncalcified microbial films or mats also played
an important role in mound stabilization. Another hint for
such interpretation is that epibenthic fauna is not only
restricted to microbial crusts, butoccurs within the supposed
soft muds, indicating that they were partly stabilized. Also,
gradual transitions from muddy micrites to indistinct micritic
crusts exist. These crusts are only identifiable by a slightly
different weathering behavior, but otherwise represent the
same macroscopic and microscopic fabric as the surround-

ing micrites. Moreover, in the Upper Kimmeridgian mounds,
fabrics composed of a large amount of allochthonous grains
(see KocH in LEINFELDER et al. 1994) form domal structures
which only rarely are transected by thin microbial crusts. It
must be assumed that uncalcified mats helped in the
stabilization of these domes.

Obviously, the widespread autoprecipitation of carbon-
ate in the EPS of microbial mats or films, which resultsin the
typical crust-diagnostic features, could beinhibited. A likely
explanation is that allochthonous sedimentation was slightly
elevated in these cases, whereas the crust bioherms of Iberia
are always related to horizons of complete sediment starva-
tion (LEINFELDER el al. 1993b), giving time for autoprecip-
itation of carbonate within mats (provided other factors, e.g.
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slightly elevated alkalinity of sea waler, were favorable as
well). The sticky mats will have trapped allochthonous fine
particles, which resulted in a general sedimentary fabric
identical to simple muds (Fig. 6). The existence of microbial
mats which did not become calcified but rather trapped
particles is easily verified in intertidal to supratidal laminoid
fenestral limestones ('loferites’), which are widespread in the
Upper Jurassic (e.g. Fursich & Scumipr-Krrmer 1980,
LEINFELDER 1994). Here the former existence of subhorizontal
mats is only detectable by the preservation of fenestrae
which is related to the rapid cementation in this shallow
environment. The sediment itself is normally a homogene-
ous micrite and shows no differences from other micritic
carbonates, e.g. lagoonal limestones.

Whenever a mat was completely clogged by allo-
chthonous sediment, the EPS could not fulfil its tasks as a
protective host substrate and nutrient reservoir for the micro-
bial associations, and a new biofilm had to be developed on
the top of the new surface. The stickiness of the former films,

and possibly, a more rapid cementation (though without
crust-diagnostic features) helped to stabilize the mounds.
Theoretically, there should be a positive correlation between
the richness of microbial crusts and the amount of non-crust
type automicrites. Thus muds which contain few microbial
crusts (but do incorporate non-calcified microbial mats or
films) should be largely allomicrites, although this remains
Lo be proven by data in the future,

Fig. 7 shows a conceptual model of the formation of
Upper Jurassic mud mounds in relation to the variable
amount of automicrites, allomicrites and crusts.

4 CONTROLLING FACTORS

Many of the factors controlling Upper Jurassic mud
mounds are of general importance in controlling the compo-
sition and distribution of Jurassic reefs as a whole. These
factors were discussed in LEiNFELDER 1993, Krupp et al.
1993, LeNreLDER et al. 1994. The distribution and growth



patterns of reefs, including mud mounds, clearly indicate
that they are related to phases of reduced allochthonous
sedimentation. They are particularly related to phases of
rising sea level (transgression and early highstand). As for
mud mounds, phases of slightly elevated (but not high)
allochthonous carbonate sedimentation helps in the building
of mounds which were stabilized by microbial mats trapping
allomicrites, whereas a very reduced background sedimen-
tation results in the formation of crust-rich, largely auto-
micritic mounds (Fig. 7), provided other, partly unknown,
preconditions for the formation of crusts existed. Among the
possible causes are slightly increased alkalinity or other
chemical sea water characteristics, and the low to moderate
abundance of grazing organisms. Upper Jurassic mud mounds
may have occurred at all water depths below fair weather
wave base, but were mostabundant in mid-ramp to the upper
part of outer homoclinal ramp settings. In distally steepened
ramp settings, mud mounds frequencies diminish in favor of
pure microbial crust reefs. This is explained by the longer
resistence time of allochthonous material in homoclinal
ramps, where it can be swept towards mounds with sticky
surfaces by weak, irregular contour currents. Allochthonous
material was easily bypassed towards distal settings in
distally steepened ramps, and thus had the opportunity to
contribute to the accumulation of mud mounds. However, if
no shallow-water carbonate factory existed in homoclinal
ramps, as may be assumed for the Iberian example, the rate
of allochthonous carbonate sedimentation will fall to zero.
This may have prevented accumulation of allomicrites and
suggests that automicrite production alone rarely accounts
for mud mound formation (Fig. 8). The Middle and Upper
Jurassic Iberian ramp is largely dominated by sponge
biostromes rich in automicrites, whereas mound structures
are very rare (cf. KRAUTTER in LEINFELDER et al. 1994,
REHFELD-KIEFER in LEINFELDER et al. 1994).

The partial to complete disappearance of reefal macro-
fauna in many of the Jurassic microbial crust reefs, even in
those formed in fairly shallow water, is explained by fluctua-
tions in bottom water oxygenation as a result of sea level -
circulation feedback by LEINFELDER (1993) and LEINFELDER
et al. (1993a,b). This interpretation is based on the occur-
rence of dysaerobic elements. The reduction of macrofauna
in some but not all Upper Jurassic mud mounds is more
difficult to assess. If mud mounds grew under high back-
ground sedimentation rates, the softness of the substrate and
clogging of filtering apparatuses would have prevented
macrofauna from growing. However, the abundance of
crusts and encrusting microorganisms as well as the possible
correlation of mud mound development with third order
transgressive phases shows that background sedimentation
was generally low, though somtimes fluctuating. Influx of
allomicritic material is thought to have occurred during
storms and sea level falls of fourth and higher order. The
sometimes exclusive occurrence of elements indicating
dysaerobic conditions (e.g. Terebella, Chondrites, authigenic
glauconite, disperse and framboidal pyrite) and thick irregu-
lar levels of pure thrombolitic crusts suggests that oxygen
depletion also struck some mud mounds. Similar conclu-
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sions based on enrichment of high nutrient dependent organ-
ismsbelow and above small mounds were drawn by BRACHERT
(1992) who suggested that the demise of mounds was related
to enhanced oxygen depletion. However, the moderate di-
versity of the fauna in most Upper Jurassic mud mounds
shows that oxygen depletion was rare.

5 CONCLUSIONS

*Many Upper Jurassic buildups are mud mounds. They
are dominated by cryptocrystalline material, a variable
amount of which represents primary soft mud. Macrofauna
occurs in variable quantities but did not form a rigid frame-
work. Most mounds are siliceous sponge - microbial crust
mud mounds, but coral mud mounds occur occasionally.

* Hard automicrites, most of which are of the crust-type,
were important in the formation of mud mounds, by contrib-
uting to the mound material and stabilizing soft arcas. In
comparison with modern counterparts (cf. RErmNer 1993)
their microfabrics suggest that they represent precipitates
within the extracellulary polymeric substance ol organic
films or mats largely produced by microbial activity. The
formation of some automicrites appears to have been related
to the decay of organic material in interstitial waters,

* Bioturbation, the existence of gravitational debrites
composed of crust-fragment and other features indicate the
existence of soft mud which includes both allomicrites and
mud produced in-place within the mound by a combination
of biodestruction and bioproduction. Softin-place mud must
be assumed for bioturbated, micritic, crust-rich carbonate
mud mounds developing within clay-dominated successions.
Soft mud, both in-place and allochthonous, is thought to
represent a major constituent of Oxfordian mounds but may
have become less abundant towards the Late Kimmeridgian.

* Low abundance of calcarcous crusts in some mounds
or parts of mounds, together with features indicating soft
mud suggest that uncalcified microbial films and mats also
played a major role in stabilizing soft sediment areas as well
as trapping allomicrites. Early cementation of soft mud is
obvious in transported mud mound blocks, and may have
commenced within microbial mats. Comparison with
supratidal Jurassic loferites suggests that mats which trapped
particles do not show a distinct precipitation fabric although
they may have hardened very early. This is in contrast with
the microbial crusts which formed under zero background
sedimentation and show distinct features which make them
discernible from the overlying and underlying micritic
sediments.

* Upper Jurassic mud mounds largely developed during
third-order TST and carly HST, when allochthonous sedi-
mentation was strongly reduced. It is assumed that allo-
chthonous material was imported during storms or high-
frequency regressions, and swept towards the sticky sur-
faces of the mounds by contour currents. Phases of very
reduced or zero sedimentation allowed for the development
of microbial crust and other automicrites and facilitated
early diagenetic hardening at the sea floor.

* Some Upper Jurassic mud mounds grew directly below
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fair weather wave base (coral mounds), although the major-
ity of them grew in homoclinal to near level-bottom mid to
upper outer ramp settings. The latter characteristically con-
tain siliceous sponges in very variable quantitics. Rare
phasesof oxygen depletion occasionally prevented the growth
of macroorganisms,

* Future research on Jurassic mud mounds will have to
focus on clearer identification of automicrites versus
allomicrites and on the detection of features indicative of
primary hard versus soft material as well as the detection of
carly diagenetic hardening,

Part 1V
EPIFLUORESCENCE-MICROSCOPY
OF SELECTED AUTOMICRITES FROM LOWER
CARNIAN CIPIT-BOULDERS OF THE CASSIAN
FORMATION (SEELAND ALPE, DOLOMITES)
F. Neuweiler and 1. Reitner

I INTRODUCTION

The Carnian 'Cipit-boulders' of the Central Dolomites
arc well-known to sedimentologists and palcontologists
because of the exceptionally high quality of preservation.
The sediments of the Cassian Formation (Middle to Upper
Triassic) represent various depositional environments rang-
ing from a backreef arca, rimmed carbonate platform, slope

and distal basinal subenvironments (Forsici & WenDT 1976).
'Cipit boulders' (Ricirioren 1860) are typical for large parts
of the basin and reach sizes of up 10 several hundred cubic
meters (Forsicn & Wenpr 1977). Their origin is most
probably related to an accumulation of boulders and blocks
along the active platform margin and episodic basinward
displacement by gravity mass movements (olisthostromes).
Paleontological work on the Cassian formation has focused
on taxonomy, paleoecology and paleobiology (Cuir 1974;
Fursicn & WEeNDT 1977; Keuppetal. 1989; MoLLER-WILLE &
Rerrver 1993) Sedimentological work has been concerned
with facies, reef types, and palcogeography (Forsicn &
WEeNDT 1976; WeENDT & Forsicnt 1980; WeNDT 1982), se-
quence stratigraphy (BoseLiint 1984) and detailed analyses
of diagenetic pathways (Scierer 1977) combined with the
depositional history (Russo ct al. 1991),

Many of the Cipit boulders contain accretionary organo-
micrites analogous to those described as dense micritic/
[enestral microbialites from Lower Cretaceous mud mounds
(NEuwEILER 1993). These organic structures have been de-
scribed as ‘algal crusts', e.g. Forsici & Wennr (1977), Russo
et al. (1991) or as 'encrusting thrombolitic associations of
bacteria’ by Krupe et al. (1989). Meanwhile an organic film
mediated mineralization is suggested for such structures,
independent of light and linked with sites and episodes of
extremely reduced sediment supply (Rermnver 1993; Neu-
weILER 1993). Curr et al. (1990) and MoOLLER-WILLE &
Rermver (1993) used fluorescence microscopy o detect the
relative amounts of organic residues in order to study the

Lower Carnian automicrites (organomicrites) from the Cassian Formation, Seeland Alpe
(Dolomites). Fluorescence microscopy with incident light; high performance wide-bandpass filter

Organomicrite/sponge boundstone mainly consists of the thalamid coralline sponge Cryptocoelia (S),
thrombolitic (1), and massive (m) automicritic fabrics. Note bioclastic packstone deposits at upperrightcorner

Thin section of organomicrite/sponge boundstone: The basal parts consist of cauliflower-like structures
generated by non-lithistid demosponges which grade into thrombolites with distinct stromatolitic microfabric
(). This stage 1s followed by inreasing sediment supply resulting in massive automicrites (m), clearly
separated [rom pure allochem deposition (lighter arcas). Note irregular surfaces of massive automicrites and
their geometric control related to precursor thrombolites. + for orientation in Fig. 3. Thrombolite is4 mm thick.
Detail of Fig. 2. Bright fluorescence of thrombolite considered the main locus of enclosed organic substances
(c.g. aromates). Internal variation of fluorescence illustrates the primary rhythmicity of accretion. Note the
episodic occurrence of microfenestral intervals. Distinct fluorescence halo (arrows) are present within
sediments cnriched in allochems. This fabrics suggests both, that automicrite still formed within interstitial
pore space and that the benthic microbial system provided the source of reactive organic matter (acidic organic
macromolecules?). Allochems correspond 1o organomicritic intraclasts, micritic intraclast (micritization of

Organomicrite with incorporated allochems within interpillar pockets (p) and at outer marginal sites (arrows).
Alter allochem deposition the automicrite was produced within the interstitial pores. Scale bar = 100 pm.

Cryptocoelia (s) and massive organomicrites (m) form a boundstone texture resulting in larger sedimentary

Detail of fig. 5 with fluorescence halo (arrow) and complete automicritic bridges across former sedimentary

Plate
BP 450-490 nm/LP 520 (blue, no. 487709).

Fig. 1.

ol the hand specimen. Polished slab; scale bar = 5 cm.
Fig. 2.
Fig. 3.

bioclasts) and angular bioclasts. Scale bar = 400 pm.
Fig. 4.
Fig. 5.

pockets (p). x for orientation in Figs. 6 and 7; width of figure = 17 mm.
Fig. 6.

pockets; scale bar = 400 um,
Fig. 7.

Detail of fig. 6, illustrating the common bright fluorescence of organomicrites and horizontal chamber layers
of Cryptocoelia. Note the microgranular microstructure of Cryptocoelia chamber layers; scale bar= 100 um.
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