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Abstract
In this course, we study moduli problems in algebraic geometry and the construction of moduli spaces

using geometric invariant theory. We start by giving the definitions of coarse and fine moduli spaces, with
an emphasis on examples. We then explain how to construct group quotients in algebraic geometry via
geometric invariant theory. Finally, we apply these techniques to construct moduli spaces of projective
hypersurfaces and moduli spaces of semistable vector bundles on a smooth projective curve.
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1. Introduction

In this course, we study moduli problems in algebraic geometry and constructions of moduli
spaces using geometric invariant theory. A moduli problem is essentially a classification problem:
we want to classify certain geometric objects up to some notion of equivalence (key examples
are vector bundles on a fixed variety up to isomorphism or hypersurfaces in Pn up to projective
transformations). We are also interested in understanding how these objects deform in families
and this information is encoded in a moduli functor. An ideal solution to a moduli problem
is a (fine) moduli space, which is a scheme that represents this functor. However, there are
many simple moduli problems which do not admit such a solution. Often we must restrict
our attention to well-behaved objects to construct a moduli space. Typically the construction
of moduli spaces is given by taking a group quotient of a parameter space, where the orbits
correspond to the equivalence classes of objects.

Geometric invariant theory (GIT) is a method for constructing group quotients in algebraic
geometry and it is frequently used to construct moduli spaces. The core of this course is
the construction of GIT quotients. Eventually we return to our original motivation of moduli
problems and construct moduli spaces using GIT. We complete the course by constructing
moduli spaces of projective hypersurfaces and moduli spaces of (semistable) vector bundles
over a smooth complex projective curve.

Let us recall the quotient construction in topology: given a group G acting on a topological
space X, we can give the orbit space X/G := {G ·x : x ∈ X} the quotient topology, so that the
quotient map π : X → X/G is continuous. In particular, π gives a quotient in the category of
topological spaces. More generally, we can suppose G is a Lie group and X has the structure
of a smooth manifold. In this case, the quotient X/G will not always have the structure of a
smooth manifold (for example, the presence of non-closed orbits, usually gives a non-Hausdorff
quotient). However, if G acts properly and freely, then X/G has a smooth manifold structure,
such that π is a smooth submersion.

In this course, we are interested in actions of an affine algebraic group G (that is, an affine
scheme with a group structure such that multiplication and inversion are algebraic morphisms).
More precisely, we’re interested in algebraic G-actions on an algebraic variety (or scheme of
finite type) X over an algebraically closed field k. As most affine groups are non-compact, their
actions typically have some non-closed orbits. Consequently, the topological quotient X/G will
not be Hausdorff. However one could also ask whether we should relax the idea of having an
orbit space, in order to get a quotient with better geometrical properties. More precisely, we
ask for a categorical quotient in the category of finite type k-schemes; that is, a G-invariant
morphism π : X → Y which is universal (i.e., every other G-invariant morphism X → Z factors
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uniquely through π). With this definition, it is not necessary for Y to be an orbit space and so
we can allow π to identify some orbits in order to get an algebraic quotient.

Geometric invariant theory, as developed by Mumford in [25], shows that for a reductive
group G acting on a quasi-projective scheme X (with respect to an ample linearisation) one
can construct an open subvariety U ⊂ X and a categorical quotient U//G of the G-action on
U which is a quasi-projective scheme. In general, the quotient will not be an orbit space but it
contains an open subscheme V/G which is the orbit space for an open subset V ⊂ U . If X is an
affine scheme, we have that U = X and the categorical quotient is also an affine scheme and if
X is a projective scheme, the categorical quotient is also projective. We briefly summarise the
main techniques involved in GIT.

Let X = SpecA be an affine scheme of finite type over an algebraically closed field k; then
A = O(X) := OX(X) is a finitely generated k-algebra. An algebraic G-action on X induces
G-action on the ring O(X) of regular functions on X. For any G-invariant morphism f : X → Z
of schemes, the image of the associated homomorphism f∗ : O(Z)→ O(X) is contained in the
subalgebra O(X)G of G-invariant functions. In particular, if O(X)G is finitely generated as a
k-algebra, then the associated affine scheme SpecO(X)G is also of finite type over k and the
inclusion O(X)G ↪→ O(X) induces a morphism X → X//G := SpecO(X)G, which is categorical
quotient of the G-action on X. The affine GIT quotient X → X//G identifies any orbits whose
closures meet, but restricts to an orbit space on an open subscheme of so-called stable points.

An important problem in GIT is determining when the ring of invariants O(X)G is finitely
generated; this is known as Hilbert’s 14th problem. For G = GLn over the complex numbers,
Hilbert showed that the invariant ring is always finitely generated. However, for a group G
built using copies of the additive group Ga, Nagata gave a counterexample where O(X)G is
non-finitely generated. Furthermore, Nagata proved for any reductive group G, the ring of
invariants O(X)G is finitely generated. Consequently, (classical) GIT is concerned with the
action of reductive groups; for developments on the theory for non-reductive groups, see [6].

The affine GIT quotient serves as a guide for the general approach: as every scheme is con-
structed by gluing affine schemes, the general theory is obtained by gluing affine GIT quotients.
Ideally, we would to cover X by G-invariant open affine sets and glue the corresponding affine
GIT quotients. The open G-affine sets are given by non-vanishing loci of invariant sections of
a line bundle L on X, to which we have lifted the G-action. However, usually we cannot cover
the whole of X with such open subsets, but rather only an open subset Xss of X of so-called
semistable points. In this case, we have a categorical quotient of Xss which restricts to an orbit
space on the stable locus Xs.

The definitions of (semi)stability are given in terms of the existence of invariant sections of a
line bundle with certain properties. However, as calculating rings of invariants is difficult, one
often instead makes use of a numerical criterion for semistability known as the Hilbert–Mumford
criterion. More precisely, the Hilbert–Mumford criterion reduces the semistability of points in
a projective scheme to the study of the weights of all 1-dimensional subtori Gm ⊂ G.

The techniques of GIT have been used to construct many moduli spaces in algebraic geometry
and finally we return to the construction of some important moduli spaces. The main examples
that we cover in this course are the GIT constructions of moduli spaces of hypersurfaces and
moduli spaces of (semistable) vector bundles on a smooth complex projective curve.

The main references for this course are the books of Newstead [31] and Mukai [24] on moduli
problems and GIT, and the book of Mumford [25] on GIT.

Notation and conventions. Throughout we fix an algebraically closed field k; at certain
points in the text we will assume that the characteristic of the field is zero in order to simplify
the proofs. By a scheme, we always mean a finite type scheme over k. By a variety, we mean
a reduced separated (finite type) scheme over k; in particular, we do not assume varieties are
irreducible. We let O(X) := OX(X) denote the ring of regular functions on a scheme X.
For a projective scheme X with ample line bundle L, we let R(X,L) denote the homogeneous
coordinate ring of X given by taking the direct sum of the spaces of sections of all non-negative
powers of L.
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2. Moduli problems

2.1. Functors of points. In this section, we will make use of some of the language of category
theory. We recall that a morphism of categories C and D is given by a (covariant) functor
F : C → D, which associates to every object C ∈ C an object F (C) ∈ D and to each morphism
f : C → C ′ in C a morphism F (f) : F (C) → F (C ′) in D such that F preserves identity
morphisms and composition. A contravariant functor F : C → D reverses arrows: so F sends
f : C → C ′ to F (f) : F (C ′)→ F (C).

The notion of a morphism of (covariant) functors F,G : C → D is given by a natural trans-
formation η : F → G which associates to every object C ∈ C a morphism ηC : F (C)→ G(C) in
D which is compatible with morphisms f : C → C ′ in C, i.e. we have a commutative square

F (C)

F (f)
��

ηC //G(C)

G(f)
��

F (C ′) ηC′
//G(C ′).

We note that if F and G were contravariant functors, the vertical arrows in this square would
be reversed. If ηC is an isomorphism in D for all C ∈ C, then we call η a natural isomorphism
or simply an isomorphism of functors.

Remark 2.1. The focus of this course is moduli problems, rather than category theory and so
we are doing naive category theory (in the sense that we allow the objects of a category to be
a class). This is analogous to doing naive set theory without a consistent axiomatic approach.
However, for those interested in category theory, this can all be handled in a consistent manner,
where one pays more careful attention to the size of the set of objects. One approach to this
more formal category theory can be found in the book of Kashiwara and Schapira [18]. Strictly
speaking, in this case, one should work with the category of ‘small’ sets.

Let Set denote the category of sets and let Sch denote the category of schemes (of finite type
over k).

Definition 2.2. The functor of points of a schemeX is a contravariant functor hX := Hom(−, X) :
Sch→ Set from the category of schemes to the category of sets defined by

hX(Y ) := Hom(Y,X)
hX(f : Y → Z) := hX(f) : hX(Z) → hX(Y )

g 7→ g ◦ f.

Furthermore, a morphism of schemes f : X → Y induces a natural transformation of functors
hf : hX → hY given by

hf,Z : hX(Z) → hY (Z)
g 7→ f ◦ g.
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Contravariant functors from schemes to sets are called presheaves on Sch and form a cate-
gory, with morphisms given by natural transformations; this category is denoted Psh(Sch) :=
Fun(Schop, Set), the category of presheaves on Sch. The above constructions can be phrased as
follows: there is a functor h : Sch→ Psh(Sch) given by

X 7→ hX (f : X → Y ) 7→ hf : hX → hY .

In fact, there is nothing special about the category of schemes here. So for any category C,
there is a functor h : C → Psh(C).

Example 2.3. For a scheme X, we have that hX(Spec k) := Hom(Spec k,X) is the set of
k-points of X and, for another scheme Y , we have that hX(Y ) is the set of Y -valued points of
X. Let X = A1 be the affine line; then the functor of points hA1 associates to a scheme Y the
set of functions on Y (i.e. morphisms Y → A1). Similarly, for the scheme Gm = A1 − {0}, the
functor hA1 associates to a scheme Y the set of invertible functions on Y .

Lemma 2.4 (The Yoneda Lemma). Let C be any category. Then for any C ∈ C and any
presheaf F ∈ Psh(C), there is a bijection

{natural transformsations η : hC → F} ←→ F (C).

given by η 7→ ηC(IdC).

Proof. Let us first check that this is surjective: for an object s ∈ F (C), we define a natural
transformation η = η(s) : hC → F as follows. For C ′ ∈ C, let ηC′ : hC(C ′) → F (C ′) be the
morphism of sets which sends f : C ′ → C to F (f)(s) (recall that F (f) : F (C)→ F (C ′)). This
is compatible with morphisms and, by construction, ηC(idC) = F (idC)(s) = s.

For injectivity, suppose we have natural transformations η, η′ : hC → F such that ηC(IdC) =
η′C(IdC). Then we claim η = η′; that is, for any C ′ in C, we have ηC′ = η′C′ : hC(C ′)→ F (C ′).
Let g : C ′ → C, then as η is a natural transformation, we have a commutative square

hC(C)

hC(g)
��

ηC //F (C)

F (g)
��

hC(C ′) ηC′
//F (C ′).

It follows that

(F (g) ◦ ηC)(idC) = (ηC′ ◦ hC(g))(IdC) = ηC′(g)

and similarly, as η′ is a natural transformation, that (F (g) ◦ η′C)(idC) = η′C′(g). Hence

ηC′(g) = F (g)(ηC(idC)) = F (g)(η′C(idC)) = η′C′(g)

as required. �

The functor h : C → Psh(C) is called the Yoneda embedding, due to the following corollary.

Corollary 2.5. The functor h : C → Psh(C) is fully faithful.

Proof. We recall that a functor is fully faithful if for every C,C ′ in C, the morphism

HomC(C,C
′)→ HomPsh(C)(hC , hC′)

is bijective. This follows immediately from the Yoneda Lemma if we take F = hC′ . �

Exercise 2.6. Show that if there is a natural isomorphism hC → h′C , then there is a canonical
isomorphism C → C ′.

The presheaves in the image of the Yoneda embedding are known as representable functors.

Definition 2.7. A presheaf F ∈ Psh(C) is called representable if there exists an object C ∈ C
and a natural isomorphism F ∼= hC .
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Question: Is every presheaf F ∈ Psh(Sch) representable by a scheme X?

The question has a negative answer, as we will soon see below. However, we are most
interested in answering this question for special functors F , known as moduli functors, which
classify certain geometric families. Before we introduce these moduli functors, we start with
the naive notion of a moduli problem.

2.2. Moduli problem. A moduli problem is essentially a classification problem: we have a
collection of objects and we want to classify these objects up to equivalence. In fact, we want
more than this, we want a moduli space which encodes how these objects vary continuously in
families; this information is encoded in a moduli functor.

Definition 2.8. A (naive) moduli problem (in algebraic geometry) is a collection A of objects
(in algebraic geometry) and an equivalence relation ∼ on A.

Example 2.9.

(1) Let A be the set of k-dimensional linear subspaces of an n-dimensional vector space and
∼ be equality.

(2) Let A be the set of n ordered distinct points on P1 and ∼ be the equivalence relation
given by the natural action of the automorphism group PGL2 of P1.

(3) Let A to be the set of hypersurfaces of degree d in Pn and ∼ can be chosen to be either
equality or the relation given by projective change of coordinates (i.e. corresponding to
the natural PGLn+1-action).

(4) Let A be the collection of vector bundles on a fixed scheme X and ∼ be the relation
given by isomorphisms of vector bundles.

Our aim is to find a scheme M whose k-points are in bijection with the set of equivalence
classes A/ ∼. Furthermore, we want M to also encode how these objects vary continuously in
‘families’. More precisely, we refer to (A,∼) as a naive moduli problem, because there is often
a natural notion of families of objects over a scheme S and an extension of ∼ to families over
S, such that we can pullback families by morphisms T → S.

Definition 2.10. Let (A,∼) be a naive moduli problem. Then an extended moduli problem is
given by

(1) sets AS of families over S and an equivalence relation ∼S on AS , for all schemes S,
(2) pullback maps f∗ : AS → AT , for every morphism of schemes T → S,

satisfying the following properties:

(i) (ASpec k,∼Spec k) = (A,∼);
(ii) for the identity Id : S → S and any family F over S, we have Id∗F = F ;

(iii) for a morphism f : T → S and equivalent families F ∼S G over S, we have f∗F ∼T f∗G;
(iv) for morphisms f : T → S and g : S → R, and a family F over R, we have an equivalence

(g ◦ f)∗F ∼T f∗g∗F .

For a family F over S and a point s : Spec k → S, we write Fs := s∗F to denote the corre-
sponding family over Spec k.

Lemma 2.11. A moduli problem defines a functor M∈ Psh(Sch) given by

M(S) := {families over S}/ ∼S M(f : T → S) = f∗ :M(S)→M(T ).

We will often refer to a moduli problem simply by its moduli functor. There can be several
different extensions of a naive moduli problem.

Example 2.12. Let us consider the naive moduli problem given by vector bundles (i.e. locally
free sheaves) on a fixed scheme X up to isomorphism. Then this can be extended in two different
ways. The natural notion for a family over S is a locally free sheaf F over X × S flat over S,
but there are two possible equivalence relations:

F ∼′S G ⇐⇒ F ∼= G
F ∼S G ⇐⇒ F ∼= G ⊗ π∗SL for a line bundle L → S
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where πS : X×S → S. For the second equivalence relation, since L → S is locally trivial, there
is a cover Si of S such that F|X×Si ∼= G|X×Si . It turns out that the second notion of equivalence
offers the extra flexibility we will need in order to construct moduli spaces.

Example 2.13. Let A consist of 4 ordered distinct points (p1, p2, p3, p4) on P1. We want to
classify these quartuples up to the automorphisms of P1. We recall that the automorphism group
of P1 is the projective linear group PGL2, which acts as Möbius transformations. We define our
equivalence relation by (p1, p2, p3, p4) ∼ (q1, q2, q3, q4) if there exists an automorphisms f : P1 →
P1 such that f(pi) = qi for i = 1, . . . , 4. We recall that for any 3 distinct points (p1, p2, p3) on
P1, there exists a unique Möbius transformation f ∈ PGL2 which sends (p1, p2, p3) to (0, 1,∞)
and the cross-ratio of 4 distinct points (p1, p2, p3, p4) on P1 is given by f(p4) ∈ P1 − {0, 1,∞},
where f is the unique Möbius transformation that sends (p1, p2, p3) to (0, 1,∞). Therefore, we
see that the set A/ ∼ is in bijection with the set of k-points in the quasi-projective variety
P1 − {0, 1,∞}.

In fact, we can naturally speak about families of 4 distinct points on P1 over a scheme S: this is
given by a proper flat morphism π : X → S such that the fibres π−1(s) ∼= P1 are smooth rational
curves and 4 disjoint sections (σ1, . . . , σ4) of π. We say two families (π : X → S, σ1, . . . , σ4) and
(π′ : X ′ → S, σ′1, . . . , σ

′
4) are equivalent over S if there is an isomorphism f : X → X ′ over S

(i.e. π = π′ ◦ f) such that f ◦ σi = σ′i.
There is a tautological family over the scheme S = P1−{0, 1,∞}: let π : P1−{0, 1,∞}×P1 →

S = P1 − {0, 1,∞} be the projection map and choose sections (σ1(s) = 0, σ2(s) = 1, σ3(s) =
∞, σ4(s) = s). It turns out that this family over P1−{0, 1,∞} encodes all families parametrised
by schemes S (in the language to come, U is a universal family and P1−{0, 1,∞} is a fine moduli
space).

Exercise 2.14. Define an analogous notion for families of n ordered distinct points on P1 and
let the corresponding moduli functor be denoted M0,n (this is the moduli functor of n ordered
distinct points on the curve P1 of genus 0). For n = 3, show that M0,3(Spec k) is a single
element set and so is in bijection with the set of k-points of Spec k. Furthermore, show there is
a tautological family over Spec k.

2.3. Fine moduli spaces. The ideal situation is when there is a scheme that represents our
given moduli functor.

Definition 2.15. Let M : Sch → Set be a moduli functor; then a scheme M is a fine moduli
space for M if it represents M.

Let’s carefully unravel this definition: M is a fine moduli space for M if there is a natural
isomorphism η :M→ hM . Hence, for every scheme S, we have a bijection

ηS :M(S) := {families over S}/ ∼S←→ hM (S) := {morphisms S →M}.

In particular, if S = Spec k, then the k-points of M are in bijection with the set A/ ∼.
Furthermore, these bijections are compatible with morphisms T → S, in the sense that we have
a commutative diagram

M(S)

M(f)

��

ηS //hM (S)

hM (f)

��
M(T ) ηT

//hM (T ).

The natural isomorphism η :M→ hM determines an element U = η−1
M (idM ) ∈M(M); that

is, U is a family over M (up to equivalence).

Definition 2.16. Let M be a fine moduli space for M; then the family U ∈ M(M) corre-
sponding to the identity morphism on M is called the universal family.

This family is called the universal family, as any family F over a scheme S (up to equivalence)
corresponds to a morphism f : S → M and, moreover, as the families f∗U and F correspond
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to the same morphism idM ◦ f = f , we have

f∗U ∼S F ;

that is, any family is equivalent to a family obtained by pulling back the universal family.

Remark 2.17. If a fine moduli space for M exists, it is unique up to unique isomorphism:
that is, if (M,η) and (M ′, η′) are two fine moduli spaces, then they are related by unique
isomorphisms η′M ((ηM )−1(IdM )) : M →M ′ and ηM ′((η

′
M ′)
−1(IdM ′)) : M ′ →M .

We recall that a presheaf F : Sch → Set is said to be a sheaf in the Zariski topology if for
every scheme S and Zariski cover {Si} of S, the natural map

{f ∈ F (S)} −→ {(fi ∈ F (Si))i : fi|Si∩Sj = fj |Sj∩Si for all i, j}
is a bijection. A presheaf is called a separated presheaf if these natural maps are injective.

Exercise 2.18.

(1) Show that the functor of points of a scheme is a sheaf in the Zariski topology. In
particular, deduce that for a presheaf to be representable it must be a sheaf in the
Zariski topology.

(2) Consider the moduli functor of vector bundles over a fixed scheme X, where we say
two families E and F are equivalent if and only if they are isomorphic. Show that
the corresponding moduli functor fails to be a separable presheaf (it may be useful to
consider the second equivalence relation we introduced for families of vector bundles in
Exercise 2.12).

Example 2.19. Let us consider the projective space Pn = Proj k[x0, . . . , xn]. This variety can
be interpreted as a fine moduli space for the moduli problem of lines through the origin in
V := An+1. To define this moduli problem carefully, we need to define a notion of families and
equivalences of families. A family of lines through the origin in V over a scheme S is a line
bundle L over S which is a subbundle of the trivial vector bundle V × S over S (by subbundle
we mean that the quotient is also a vector bundle). Then two families are equivalent if and only
if they are equal.

Over Pn, we have a tautological line bundle OPn(−1) ⊂ V × Pn, whose fibre over p ∈ Pn is
the corresponding line in V . This provides a tautological family of lines over Pn. The dual of
the tautological line bundle is the line bundle OPn(1), known as the Serre twisting sheaf. The
important fact we need about OPn(1) is that it is generated by the global sections x0, . . . , xn.

Given any morphism of schemes f : S → Pn, the line bundle f∗OPn(1) is generated by the
global sections f∗(x0), . . . , f∗(xn). Hence, we have a surjection On+1

S → f∗OPn(1). For locally
free sheaves, pull back commutes with dualising and so

f∗OPn(−1) ∼= (f∗OPn(1))∨.

Dually the above surjection gives an inclusion L := f∗OPn(−1) → On+1
S = V × S which

determines a family of lines in V over S.
Conversely, let L ⊂ V × S be a family of lines through the origin in V over S. Then, dual to

this inclusion, we have a surjection q : V ∨ × S → L∨. The vector bundle V ∨ × S is generated
by the global sections σ0, . . . , σn corresponding to the dual basis for the standard basis on V .
Since q is surjective, the dual line bundle L∨ is generated by the global sections q◦σ0, . . . , q◦σn.
In particular, there is a unique morphism f : S → Pn given by

s 7→ [q ◦ σ0(s) : · · · : q ◦ σn(s)]

such that f∗OPn(−1) = L ⊂ V × S (for details, see [14] II Theorem 7.1).
Hence, there is a bijective correspondence between morphisms S → Pn and families of lines

through the origin in V over S. In particular, Pn is a fine moduli space and the tautological
family is a universal family. The keen reader may note that the above calculations suggests we
should rather think of Pn as the space of 1-dimensional quotient spaces of a n+ 1-dimensional
vector space (a convention that many algebraic geometers use).
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Exercise 2.20. Consider the moduli problem of d-dimensional linear subspaces in a fixed vector
space V = An, where a family over S is a rank d vector subbundle E of V ×S and the equivalence
relation is given by equality. We denote the associated moduli functor by Gr(d, n).

We recall that there is a projective variety Gr(d, n) whose k-points parametrise d-dimensional
linear subspaces of kn, called the Grassmannian variety. Let T ⊂ V × Gr(d, n) be the tauto-
logical family over Gr(d, n) whose fibre over a point in the Grassmannian is the corresponding
linear subspace of V . In this exercise, we will show that the Grassmannian variety Gr(d, n) is
a fine moduli space representing Gr(d, n).

Let us determine the natural isomorphism η : Gr(d, n) → hGr(d,n). Consider a family E ⊂
V ×S over S. As E is a rank d vector bundle, we can pick an open cover {Uα} of S on which E
is trivial, i.e. E|Uα ∼= Uα ×Ad. Then, since we have Uα ×Ad ∼= E|Uα ⊂ V × S|Uα = An ×Uα, we
obtain a homomorphism Uα×Ad ↪→ Uα×An of trivial vector bundles over Uα. This determines
a n × d matrix with coefficients in O(Uα) of rank d; that is, a morphism Uα → Md

n×d(k), to
the variety of n × d matrices of rank d. By taking the wedge product of the d rows in this
matrix, we obtain a morphism fα : Uα → P(∧d(kn)) with image in the Grassmannian Gr(d, n).
Using the fact that the transition functions of E are linear, verify that these morphisms glue to
define a morphism f = fE : S → P(∧d(kn)) such that f∗T = E . In particular, this procedure
determines the natural isomorphism: ηS(E) = fE .

For a comprehensive coverage of the Grassmannian moduli functor and its representability,
see [8] Section 8. The Grassmannian moduli functor has a natural generalisation to the moduli
problem of classifying subsheaves of a fixed sheaf (or equivalently quotient sheaves with a
natural notion of equivalence). This functor is representable by a quot scheme constructed by
Grothendieck [9, 10] (for a survey of the construction, see [33]). Let us mention two special cases
of this construction. Firstly, if we take our fixed sheaf to be the structure sheaf of a scheme X,
then we are considering ideal sheaves and obtain a Hilbert scheme classifying subschemes of X.
Secondly, if we take our fixed sheaf to be a locally free coherent sheaf E over X and consider
quotient line bundles of E , we obtain the projective space bundle P(E) over X (see [14] II §7).

2.4. Pathological behaviour. Unfortunately, there are many natural moduli problems which
do not admit a fine moduli space. In this section, we study some examples and highlight two
particular pathologies which prevent a moduli problem from admitting a fine moduli space,
namely:

(1) The jump phenomena: moduli may jump in families (in the sense that we can have
a family F over A1 such that Fs ∼ Fs′ for all s, s′ ∈ A1 − {0}, but F0 � Fs for
s ∈ A1 − {0}).

(2) The moduli problem may be unbounded (in that there is no family F over a scheme S
which parametrises all objects in the moduli problem).

Example 2.21. We consider the naive moduli problem of classifying endomorphisms of a
n-dimensional k-vector space. More precisely A consists of pairs (V, T ), where V is an n-
dimensional k-vector space and T is an endomorphism of V . We say (V, φ) ∼ (V ′, φ′) if there
exists an isomorphism h : V → V ′ compatible with the endomorphisms i.e. h ◦ φ = φ′ ◦ h. We
extend this to a moduli problem by defining a family over S to be a rank n vector bundle F over
S with an endomorphism φ : F → F . Then we say (F , φ) ∼S (G, φ′) if there is an isomorphism
h : F → G such that h ◦ φ = φ′ ◦ h. Let Endn be the corresponding moduli functor.

For any n ≥ 2, we can construct families which exhibit the jump phenomena. For concrete-
ness, let n = 2. Then consider the family over A1 given by (F = O⊕2

A1 , φ) where for s ∈ A1

φs =

(
1 s
0 1

)
.

For s, t 6= 0, these matrices are similar and so φt ∼ φs. However, φ0 � φ1, as this matrices have
distinct Jordan normal forms. Hence, we have produced a family with the jump phenomenon.

Example 2.22. Let us consider the moduli problem of vector bundles over P1 of rank 2 and
degree 0.
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We claim there is no family F over a scheme S with the property that for any rank 2 degree 0
vector bundle E on P1, there is a k-point s ∈ S such that F|s ∼= E . Suppose such a family F over
a scheme S exists. For each n ∈ N, we have a rank 2 degree 0 vector bundle OP1(n)⊕OP1(−n)
(in fact, by Grothendieck’s Theorem classifying vector bundles on P1, every rank 2 degree 0
vector bundle on P1 has this form). Furthermore, we have

dimH0(P1,OP1(n)⊕OP1(−n)) = dimk(k[x0, x1]n ⊕ k[x0, x1]−n) =

{
2 if n = 0,
n+ 1 if n ≥ 1.

Consider the subschemes Sn := {s ∈ S : dimH0(P1,Fs) ≥ n} of S, which are closed by the
semi-continuity theorem (see [14] III Theorem 12.8). Then we obtain a decreasing chain of
closed subschemes

S = S2 % S3 % S4 % ....

each of which is distinct as OP1(n) ⊕ OP1(−n) ∈ Sn+1 − Sn+2. The existence of this chain
contradicts the fact that S is Noetherian (recall that for us scheme means scheme of finite
type over k). In particular, the moduli problem of vector bundles of rank 2 and degree 0 is
unbounded.

In fact, we also see the jump phenomena: there is a family F of rank 2 degree 0 vector
bundles over A1 = Spec k[s] such that

Fs =

{
O⊕2
P1 s 6= 0
OP1(1)⊕OP1(−1) s = 0.

To construct this family, we note that

Ext1(OP1(1),OP1(−1)) ∼= H1(P1,OP1(−2)) ∼= H0(P1,OP1)∗ ∼= k

by Serre duality. Therefore, there is a family of extensions F over A1 of OP1(1) by OP1(−1)
with the desired property.

In both cases there is no fine moduli space for this problem. To solve these types of phenom-
ena, one usually restricts to a nicer class of objects (we will return to this idea later on).

Example 2.23. We can see more directly that there is no fine moduli space for Endn. Suppose
M is a fine moduli space. Then we have a bijection between morphisms S → M and families
over S up to equivalence. Choose any n × n matrix T , which determines a point m ∈ M .
Then for S = P1 we have that the trivial families (OnP1 , T ) and (OnP1 ⊗ OP1(1), T ⊗ IdOP1 (1))

are non-equivalent families which determine the same morphism P1 →M , namely the constant
morphism to the point m.

2.5. Coarse moduli spaces. As demonstrated by the above examples, not every moduli func-
tor has a fine moduli space. By only asking for a natural transformation M → hM which
is universal and a bijection over Spec k (so that the k-points of M are in bijection with the
equivalence classes A/ ∼), we obtain a weaker notion of a coarse moduli space.

Definition 2.24. A coarse moduli space for a moduli functorM is a scheme M and a natural
transformation of functors η :M→ hM such that

(a) ηSpec k :M(Spec k)→ hM (Spec k) is bijective.
(b) For any scheme N and natural transformation ν : M → hN , there exists a unique

morphism of schemes f : M → N such that ν = hf ◦ η, where hf : hM → hN is the
corresponding natural transformation of presheaves.

Remark 2.25. A coarse moduli space forM is unique up to unique isomorphism: if (M,η) and
(M ′, η′) are coarse moduli spaces for M, then by Property (b) there exists unique morphisms
f : M →M ′ and f ′ : M ′ →M such that hf and hf ′ fit into two commutative triangles:

hM

hf
��

M
ηoo

η′}}

η′ //

η ""

hM ′

hf ′
��

hM ′ hM .
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Since η = hf ′ ◦ hf ◦ η and η = hidM ◦ η, by uniqueness in (b) and the Yoneda Lemma, we have
f ′ ◦ f = idM and similarly f ◦ f ′ = idM ′ .

Proposition 2.26. Let (M,η) be a coarse moduli space for a moduli problem M. Then (M,η)
is a fine moduli space if and only if

(1) there exists a family U over M such that ηM (U) = idM ,
(2) for families F and G over a scheme S, we have F ∼S G ⇐⇒ ηS(F) = ηS(G).

Proof. Exercise. �

Lemma 2.27. Let M be a moduli problem and suppose there exists a family F over A1 such
that Fs ∼ F1 for all s 6= 0 and F0 � F1. Then for any scheme M and natural transformation
η : M → hM , we have that ηA1(F) : A1 → M is constant. In particular, there is no coarse
moduli space for this moduli problem.

Proof. Suppose we have a natural transformation η :M→ hM ; then η sends the family F over
A1 to a morphism f : A1 →M . For any s : Spec k → A1, we have that f ◦ s = ηSpec k(Fs) and,
for s 6= 0, Fs = F1 ∈ M(Spec k), so that f |A1−{0} is a constant map. Let m : Spec k → M be
the point corresponding to the equivalence class for F1 under η. Since the k-valued points of M
are closed (recall M is a scheme of finite type over an algebraically closed field), their preimages
under morphisms must also be closed. Then, as A1−{0} ⊂ f−1(m), the closure A1 of A1−{0}
must also be contained in f−1(m); that is, f is the constant map to the k-valued point m of
M . In particular, the map ηSpec k :M(Spec k) → hM (Spec k) is not a bijection, as F0 6= F1 in
M(Spec k), but these non-equivalent objects correspond to the same k-point m in M . �

In particular, the moduli problems of Examples 2.22 and 2.21 do not even admit coarse
moduli spaces.

2.6. The construction of moduli spaces. The construction of many moduli spaces follows
the same general pattern.

(1) Fix any discrete invariants for our objects - here the invariants should be invariant under
the given equivalence relation (for example, for isomorphism classes of vector bundles
on a curve, one may fix the rank and degree).

(2) Restrict to a reasonable class of objects which are bounded (otherwise, we can’t find a
coarse moduli space). Usually one restricts to a class of stable objects which are better
behaved and bounded.

(3) Find a family F over a scheme P with the local universal property (i.e. locally any other
family is equivalent to a pullback of this family - see below). We call P a parameter
space, as the k-points of P surject onto A/ ∼; however, this is typically not a bijection.

(4) Find a group G acting on P such that p and q lie in the same G-orbit in P if and only
if Fp ∼ Fq. Then we have a bijection P (k)/G ∼= A/ ∼.

(5) Typically this group action is algebraic (see Section 3) and by taking a quotient, we
should obtain our moduli space. The quotient should be taken in the category of schemes
(in terminology to come, it should be a categorical quotient) and this is done using
Mumford’s Geometric Invariant Theory.

Definition 2.28. For a moduli problemM, a family F over a scheme S has the local universal
property if for any other family G over a scheme T and for any k-point t ∈ T , there exists a
neighbourhood U of t in T and a morphism f : U → S such that G|U ∼U f∗F .

In particular, we do not require the morphism f to be unique. We note that, for such a
family to exist, we need our moduli problem to be bounded.

3. Algebraic group actions and quotients

In this section we consider group actions on algebraic varieties and also describe what type
of quotients we would like to have for such group actions.
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3.1. Affine Algebraic groups. An algebraic group (over k) is a group object in the category
of schemes (over k). By a Theorem of Chevalley, every algebraic group is an extension of an
abelian variety (that is, a smooth connected projective algebraic group) by an affine algebraic
group (whose underlying scheme is affine) [22, Theorem 10.25]. In this course, we only work
with affine algebraic groups and cover the results which are most important for our purposes.
A good reference for affine algebraic group schemes is the book (in preparation) of Milne [23].
For those who are interested in discovering more about algebraic groups, see [3, 22, 11].

Definition 3.1. An algebraic group over k is a scheme G over k with morphisms e : Spec k → G
(identity element), m : G×G → G (group law) and i : G → G (group inversion) such that we
have commutative diagrams

G×G×G

m×id
��

id×m // G×G

m

��

Spec k ×G e×id //

∼=
''

G×G

m

��

G× Spec k

∼=
ww

id×eoo

G×G m
// G G

G
(i,id) //

��

G×G
m

��

G
(id,i)oo

��
Spec k e

//G Spec k.e
oo

We say G is an affine algebraic group if the underlying scheme G is affine. We say G is a
group variety if the underlying scheme G is a variety (recall in our conventions, varieties are
not necessarily irreducible).

A homomorphism of algebraic groups G and H is a morphism of schemes f : G → H such
that the following square commutes

G×G mG //

f×f
��

G

f
��

H ×H mH
//H.

An algebraic subgroup of G is a closed subscheme H such that the immersion H ↪→ G is a
homomorphism of algebraic groups. We say an algebraic group G′ is an algebraic quotient of G
if there is a homomorphism of algebraic groups f : G→ G′ which is flat and surjective.

Remark 3.2.

(1) The functor of points hG of an algebraic group has a natural factorisation through
the category of (abstract) groups, i.e, for every scheme X the operations m, e, i equip
Hom(X,G) with a group structure and with this group structure, every map hG(f) :
Hom(X,G) → Hom(Y,G) for f : Y → X is a morphism of groups. In fact, one can
show using the Yoneda lemma that there is an equivalence of categories between the
category of algebraic groups and the category of functors F : Sch→ Grp such that the

composition Sch
F→ Grp → Set is representable. When restricting to the category of

affine k-schemes, this can give a very concrete description of an algebraic group, as we
will see in the examples below.

(2) Let O(G) := OG(G) denote the k-algebra of regular functions on G. Then the above
morphisms of affine varieties correspond to k-algebra homomorphisms m∗ : O(G) →
O(G) ⊗ O(G) (comultiplication) and i∗ : O(G) → O(G) (coinversion) and the identity
element corresponds to e∗ : O(G)→ k (counit). These operations define a Hopf algebra
structure on the k-algebra O(G). Furthermore, there is a bijection between finitely
generated Hopf algebras over k and affine algebraic groups (see [23] II Theorem 5.1).

(3) By a Theorem of Cartier, every affine algebraic group over a field k of characteristic zero
is smooth (see [23] VI Theorem 9.3). Moreover, in Exercise sheet 3, we see that every
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algebraic group is separated. Hence, in characteristic zero, the notion of affine algebraic
group and affine group variety coincide.

(4) In the definition of homomorphisms, we only require a compatibility with the group
law m; it turns out that the compatibility for the identity and group inversion is then
automatic. This is well known in the case of homomorphisms of abstract groups, and
the algebraic case can then be deduced by applying the Yoneda lemma.

(5) For the definition of a quotient group, the condition that the homomorphism is flat is
only needed in positive characteristic, as in characteristic zero this morphism is already
smooth (this follows from the Theorem of Cartier mentioned above and the fact that
the kernel of a homomorphism of smooth group schemes is smooth; see [22] Proposition
1.48)

Example 3.3. Many of the groups that we are already familiar with are affine algebraic groups.

(1) The additive group Ga = Spec k[t] over k is the algebraic group whose underlying variety
is the affine line A1 over k and whose group structure is given by addition:

m∗(t) = t⊗ 1 + 1⊗ t and i∗(t) = −t.
Let us indicate how to show these operations satisfy the group axioms. We only prove
the associativity, the other axioms being similar and easier. We have to show that

(m∗ ⊗ id) ◦m∗ = (id⊗m∗) ◦m∗ : k[t]→ k[t]⊗ k[t]⊗ k[t].

This is a map of k-algebras, so it is enough to check it for t. We have

((m∗ ⊗ id) ◦m∗)(t) = (m∗ ⊗ id)(t⊗ 1 + 1⊗ t) = t⊗ 1⊗ 1 + 1⊗ t⊗ 1 + 1⊗ 1⊗ t
and similarly

((id⊗m∗) ◦m∗)(t) = t⊗ 1⊗ 1 + 1⊗ t⊗ 1 + 1⊗ 1⊗ t
which completes the proof. For a k-algebra R, we have Ga(R) = (R,+); this justifies
the name of the ‘additive group’.

(2) The multiplicative group Gm = Spec k[t, t−1] over k is the algebraic group whose under-
lying variety is the A1 − {0} and whose group action is given by multiplication:

m∗(t) = t⊗ t and i∗(t) = t−1.

For a k-algebra R, we have Gm(R) = (R×, ·); hence, the name of the ‘multiplicative
group’.

(3) The general linear group GLn over k is an open subvariety of An2
cut out by the

condition that the determinant is non-zero. It is an affine variety with coordinate ring
k[xij : 1 ≤ i, j ≤ n]det(xij). The co-group operations are defined by:

m∗(xij) =

n∑
k=1

xik ⊗ xkj and i∗(xij) = (xij)
−1
ij

where (xij)
−1
ij is the regular function on GLn given by taking the (i, j)-th entry of the

inverse of a matrix. For a k-algebra R, the group GLn(R) is the group of invertible
n× n matrices with coefficients in R, with the usual matrix multiplication.

(4) More generally, if V is a finite-dimensional vector space over k, there is an affine algebraic
group GL(V ) which is (non-canonically) isomorphic to GLdim(V ). For a k-algebra R, we
have GL(V )(R) = AutR(V ⊗k R).

(5) Let G be a finite (abstract) group. Then G can be naturally seen as an algebraic group
Gk over k as follows. The group operations on G make the group algebra k[G] into a
Hopf algebra over k, and Gk := Spec(k[G]) is a 0-dimensional variety whose points are
naturally identified with elements of G.

(6) Let n ≥ 1. Put µn := Spec k[t, t−1]/(tn − 1) ⊂ Gm, the subscheme of n-roots of unity.
Write I for the ideal (tn − 1) of R := k[t, t−1]. Then

m∗(tn − 1) = tn ⊗ tn − 1⊗ 1 = (tn − 1)⊗ tn + 1⊗ (tn − 1) ∈ I ⊗R+R⊗ I
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which implies that µn is an algebraic subgroup of Gm. If n is different from char(k),
the polynomial Xn− 1 is separable and there are n distinct roots in k. Then the choice
of a primitive n-th root of unity in k determines an isomorphism µn ' Z/nZ

k
. If

n = char(k), however, we have Xn − 1 = (X − 1)n in k[X], which implies that the
scheme µn is non-reduced (with 1 as only closed point). This is the simplest example of
a non-reduced algebraic group.

A linear algebraic group is by definition a subgroup of GLn which is defined by polynomial
equations; for a detailed introduction to linear algebraic groups, see [1, 15, 40]. For instance,
the special linear group is a linear algebraic group. In particular, any linear algebraic group
is an affine algebraic group. In fact, the converse statement is also true: any affine algebraic
group is a linear algebraic group (see Theorem 3.9 below).

An affine algebraic group G over k determines a group-valued functor on the category of
finitely generated k-algebras given by R 7→ G(R). Similarly, for a vector space V over k,
we have a group valued functor GL(V ) given by R 7→ AutR (V ⊗k R), the group of R-linear
automorphisms. If V is finite dimensional, then GL(V ) is an affine algebraic group.

Definition 3.4. A linear representation of an algebraic group G on a vector space V over k
is a homomorphism of group valued functors ρ : G → GL(V ). If V is finite dimensional, this
is equivalent to a homomorphism of algebraic groups ρ : G → GL(V ), which we call a finite
dimensional linear representation of G.

If G is affine, we can describe a linear representation ρ : G → GL(V ) more concretely in
terms of its associated co-module as follows. The natural inclusion GL(V ) → End(V ) and
ρ : G→ GL(V ) determine a functor G→ End(V ), such that the universal element in G(O(G))
given by the identity morphism corresponds to an O(G)-linear endomorphism of V ⊗k O(G),
which by the universality of the tensor product is uniquely determined by its restriction to a
k-linear homomorphism ρ∗ : V → V ⊗k O(G); this is the associated co-module. If V is finite
dimensional, we can even more concretely describe the associated co-module by considering
the group homomorphism G → End(V ) and its corresponding homomorphism of k-algebras
O(V ⊗k V ∗) → O(G), which is determined by a k-linear homomorphism V ⊗k V ∗ → O(G) or
equivalently by the co-module ρ∗ : V → V ⊗kO(G). In particular, a linear representation of an
affine algebraic group G on a vector space V is equivalent to a co-module structure on V (for
the full definition of a co-module structure, see [23] Chapter 4).

3.2. Group actions.

Definition 3.5. An (algebraic) action of an affine algebraic group G on a scheme X is a
morphism of schemes σ : G×X → X such that the following diagrams commute

Spec k ×X e×idX //

∼=
''

G×X

σ

��

G×G×X idG×σ //

mG×idX
��

G×X

σ

��
X G×X σ

// X.

Suppose we have actions σX : G×X → X and σY : G× Y → Y of an affine algebraic group G
on schemes X and Y . Then a morphism f : X → Y is G-equivariant if the following diagram
commutes

G×X
idG×f //

σX
��

G× Y
σY
��

X
f

// Y.

If Y is given the trivial action σY = πY : G×Y → Y , then we refer to a G-equivariant morphism
f : X → Y as a G-invariant morphism.
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Remark 3.6. If X is an affine scheme over k and O(X) denotes its algebra of regular functions,
then an action of G on X gives rise to a coaction homomorphism of k-algebras:

σ∗ : O(X) → O(G×X) ∼= O(G)⊗k O(X)
f 7→

∑
hi ⊗ fi.

This gives rise to a homomorphism G → Aut(O(X)) where the k-algebra automorphism of
O(X) corresponding to g ∈ G is given by

f 7→
∑

hi(g)fi ∈ O(X)

for f ∈ O(X) with σ∗(f) =
∑
hi ⊗ fi.

Definition 3.7. An action of an affine algebraic group G on a k-vector space V (resp. k-algebra
A) is given by, for each k-algebra R, an action of G(R) on V ⊗k R (resp. on A⊗k R)

σR : G(R)× (V ⊗k R)→ V ⊗k R (resp. σR : G(R)× (A⊗k R)→ A⊗k R)

such that σR(g,−) is a morphism of R-modules (resp. R-algebras) and these actions are func-
torial in R. We say that an action of G on a k-algebra A is rational if every element of A is
contained in a finite dimensional G-invariant linear subspace of A.

Lemma 3.8. Let G be an affine algebraic group acting on an affine scheme X. Then any
f ∈ O(X) is contained in a finite dimensional G-invariant subspace of O(X). Furthermore, for
any finite dimensional vector subspace W of O(G), there is a finite dimensional G-invariant
vector subspace V of O(X) containing W .

Proof. Let σ : O(X)→ O(G)⊗O(X) denote the coaction homomorphism. Then we can write
σ∗(f) =

∑n
i=1 hi ⊗ fi, for hi ∈ O(G) and fi ∈ O(X). Then g · f =

∑
i hi(g)fi and so the vector

space spanned by f1, . . . , fn is a G-invariant subspace containing f . The second statement
follows by applying the same argument to a given basis of W . �

In particular, the action of G on the k-algebra O(X) is rational (that is, every f ∈ O(X) is
contained in a finite dimensional G-invariant linear subspace of O(X)).

One of the most natural actions is the action of G on itself by left (or right) multiplication.
This induces a rational action σ : G→ Aut(O(G)).

Theorem 3.9. Any affine algebraic group G over k is a linear algebraic group.

Proof. As G is an affine scheme (of finite type over k), the ring of regular functions O(G) is a
finitely generated k-algebra. Therefore the vector space W spanned by a choice of generators for
O(G) as a k-algebra is finite dimensional. By Lemma 3.8, there is a finite dimensional subspace
V of O(G) which is preserved by the G-action and contains W .

Let m∗ : O(G)→ O(G)⊗O(G) denote the comultiplication; then for a basis f1, . . . , fn of V ,
we have m∗(fi) ∈ O(G)⊗ V , hence we can write

m∗(fi) =
n∑
j=1

aij ⊗ fj

for functions aij ∈ O(G). In terms of the action σ : G → Aut(O(G)), we have that σ(g, fi) =∑
j aij(g)fj . This defines a k-algebra homomorphism

ρ∗ : O(Matn×n)→ O(G) xij 7→ aij .

To show that the corresponding morphism of affine schemes ρ : G → Matn×n is a closed
embedding, we need to show ρ∗ is surjective. Note that V is contained in the image of ρ∗ as

fi = (IdO(G) ⊗ e∗)m∗(fi) = (IdO(G) ⊗ e∗)
n∑
j=1

aij ⊗ fj =

n∑
j=1

e∗(fj)aij .

Since V generates O(G) as a k-algebra, it follows that ρ∗ is surjective. Hence ρ is a closed
immersion.
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Finally, we claim that ρ : G → Matn×n is a homomorphism of semigroups (recall that a
semigroup is a group without inversion, such as matrices under multiplication) i.e. we want to
show on the level of k-algebras that we have a commutative square

O(Matn×n)
m∗Mat //

ρ∗

��

O(Matn×n)⊗O(Matn×n)

ρ∗⊗ρ∗
��

O(G)
m∗G

//O(G)⊗O(G);

that is, we want to show for the generators xij ∈ O(Matn×n), we have

m∗G(aij) = m∗G(ρ∗(xij)) = (ρ∗ ⊗ ρ∗)(m∗Mat(xij)) = (ρ∗ ⊗ ρ∗)

(∑
k

xik ⊗ xkj

)
=
∑
k

aik ⊗ akj .

To prove this, we consider the associativity identity mG ◦ (id×mG) = mG ◦ (mG× id) and apply
this on the k-algebra level to fi ∈ O(G) to obtain∑

k,j

aik ⊗ akj ⊗ fj =
∑
j

m∗G(aij)⊗ fj

as desired. Furthermore, as G is a group rather than just a semigroup, we can conclude that the
image of ρ is contained in the group GLn of invertible elements in the semigroup Matn×n. �

Tori are a basic class of algebraic group which are used extensively to study the structure of
more complicated algebraic groups (generalising the use of diagonal matrices to study matrix
groups through eigenvalues and the Jordan normal form).

Definition 3.10. Let G be an affine algebraic group scheme over k.

(1) G is an (algebraic) torus if G ∼= Gnm for some n > 0.
(2) A torus of G is a subgroup scheme of G which is a torus.
(3) A maximal torus of G is a torus T ⊂ G which is not contained in any other torus.

For a torus T , we have commutative groups

X∗(T ) := Hom(T,Gm) X∗(T ) := Hom(Gm, T )

called the character group and cocharacter group respectively, where the morphisms are homo-
morphisms of linear algebraic groups. Let us compute X∗(Gm).

Lemma 3.11. The map

θ : Z → X∗(Gm)

n 7→ (t 7→ tn)

is an isomorphism of groups.

Proof. Let us first show that this is well defined. Write m∗ for the comultiplication on O(Gm).
Then m∗(tn) = (t⊗t)n = tn⊗tn shows that θ(n) : Gm → Gm is a morphism of algebraic groups.
Since tatb = ta+b, θ itself is a morphism of groups. It is clearly injective, so it remains to show
surjectivity.

Let φ be an endomorphism ofGm. Write φ∗(t) ∈ k[t, t−1] as
∑
|i|<m ait

i. We have m∗(φ∗(t)) =

φ∗(t)⊗ φ∗(t), which translates into∑
i

ait
i ⊗ ti =

∑
i,j

aiajt
i ⊗ tj .

From this, we deduce that at most one ai is non-zero, say an. Looking at the compatibility
of φ with the unit, we see that necessarily an = 1. This shows that φ = θ(n), completing the
proof. �
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For a general torus T , we deduce from the Lemma that the (co)character groups are finite free
Z-modules of rank dimT . There is a perfect pairing between these lattices given by composition

< , >: X∗(T )×X∗(T )→ Z

where < χ, λ >:= χ ◦ λ.
An important fact about tori is that their linear representations are completely reducible.

We will often use this result to diagonalise a torus action (i.e. choose a basis of eigenvectors for
the T -action so that the action is diagonal with respect to this basis).

Proposition 3.12. For a finite dimensional linear representation of a torus ρ : T → GL(V ),
there is a weight space decomposition

V ∼=
⊕

χ∈X∗(T )

Vχ

where Vχ = {v ∈ V : t · v = χ(t)v ∀t ∈ T} are called the weight spaces and {χ : Vχ 6= 0} are
called the weights of the action.

Proof. To keep the notation simple, we give the proof for T ∼= Gm, where X∗(T ) ∼= Z; the general
case can be obtained either by adapting the proof (with further notation) or by induction on
the dimension of T . The representation ρ has an associated co-module

ρ∗ : V → V ⊗k O(Gm) ∼= V ⊗ k[t, t−1].

and the diagram

V ρ
//

ρ

��

V ⊗ k[t, t−1]

id⊗m∗
��

V ⊗ k[t, t−1]
ρ⊗id

// V ⊗ k[t, t−1]⊗ k[t, t−1]

commutes. From this, it follows easily that, for each integer m, the space

Vm = {v ∈ V : ρ∗(v) = v ⊗ tm}

is a subrepresentation of V .
For v ∈ V , we have ρ∗(v) =

∑
m∈Z fm(v)⊗tm where fm : V → V is a linear map, and because

of the compatibility with the identity element, we find that

v =
∑
m∈Z

fm(v).

If ρ∗(v) =
∑

m∈Z fm(v)⊗ tm, then we claim that fm(v) ∈ Vm. From the diagram above∑
m∈Z

ρ∗(fm(v))⊗ tm = (ρ∗ ⊗ Idk[t,t−1])(ρ
∗(v)) = (IdV ⊗m∗)(ρ∗(v)) =

∑
m∈Z

fm(v)⊗ tm ⊗ tm

and as {tm}m∈Z are linearly independent in k[t, t−1], the claim follows.
Let us show that in fact, the fm form a collection of orthogonal projectors onto the subspaces

Vm. Using the commutative diagram again, we get∑
m∈Z

fm(v)⊗ tm ⊗ tm =
∑
m,n∈Z

fm(fn(v))⊗ tm ⊗ tn,

which again by linear independence of the {tm} shows that fm ◦ fn vanishes if m 6= n and is
equal to fn otherwise; this proves that they are orthogonal idempotents. Hence, the Vm are
linearly independent and this completes the proof. �

This result can be phrased as follows: there is an equivalence between the category of linear
representations of T and X∗(T )-graded k-vector spaces. We note that there are only finitely
many weights of the T -action, for reasons of dimension.
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3.3. Orbits and stabilisers.

Definition 3.13. Let G be an affine algebraic group acting on a scheme X by σ : G×X → X
and let x be a k-point of X.

i) The orbit G ·x of x to be the (set-theoretic) image of the morphism σx = σ(−, x) : G(k)→
X(k) given by g 7→ g · x.

ii) The stabiliser Gx of x to be the fibre product of σx : G→ X and x : Spec k → X.

The stabiliser Gx of x is a closed subscheme of G (as it is the preimage of a closed subscheme
of X under σx : G→ X). Furthermore, it is a subgroup of G.

Exercise 3.14. Using the same notation as above, consider the presheaf on Sch whose S-points
are the set

{g ∈ hG(S) : g · (xS) = xS}
where xS : S → X is the composition S → Spec k → X of the structure morphism of S with
the inclusion of the point x. Describe the presheaf structure and show that this functor is
representable by the stabiliser Gx.

The situation for orbits is clarified by the following result.

Proposition 3.15. Let G be an affine algebraic group acting on a scheme X. The orbits of
closed points are locally closed subsets of X, hence can be identified with the corresponding
reduced locally closed subschemes.

Moreover, the boundary of an orbit G · x − G · x is a union of orbits of strictly smaller
dimension. In particular, each orbit closure contains a closed orbit (of minimal dimension).

Proof. Let x ∈ X(k). The orbit G · x is the set-theoretic image of the morphism σx, hence by
a theorem of Chevalley ([14] II Exercise 3.19), it is constructible, i.e., there exists a dense open
subset U of G · x with U ⊂ G · x ⊂ G · x. Because G acts transitively on G · x through σx, this
implies that every point of G · x is contained in a translate of U . This shows that G · x is open
in G · x, which precisely means that G · x is locally closed. With the corresponding reduced
scheme structure of G · x, there is an action of Gred on G · x which is transitive on k-points. In
particular, it makes sense to talk about its dimension (which is the same at every point because
of the transitive action of Gred).

The boundary of an orbit G ·x is invariant under the action of G and so is a union of G-orbits.
Since G · x is locally closed, the boundary G · x−G · x, being the complement of a dense open
set, is closed and of strictly lower dimension than G · x. This implies that orbits of minimum
dimension are closed and so each orbit closure contains a closed orbit. �

Definition 3.16. An action of an affine algebraic group G on a scheme X is closed if all G-orbits
in X are closed.

Example 3.17. Consider the action of Gm on A2 by t · (x, y) = (tx, t−1y). The orbits of this
action are

• conics {(x, y) : xy = α} for α ∈ A1 − {0},
• the punctured x-axis,
• the punctured y-axis,
• the origin.

The origin and the conic orbits are closed whereas the punctured axes both contain the origin
in their orbit closures. The dimension of the orbit of the origin is strictly smaller than the
dimension of Gm, indicating that its stabiliser has positive dimension.

Example 3.18. Let Gm act on An by scalar multiplication: t · (a1, . . . , an) = (ta1, . . . , tan). In
this case, there are two types of orbits:

• punctured lines through the origin,
• the origin.

The origin is the only closed orbit, which has dimension zero. Furthermore, every orbit contains
the origin in its closure.
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Exercise 3.19. In Examples 3.17 and 3.18, write down the coaction homomorphism explicitly.

Proposition 3.20. Let G be an affine algebraic group acting on a scheme X. For x ∈ X(k),
we have

dim(G) = dim(Gx) + dim(G · x)

Proof. Since the dimension is a topological invariant of a scheme, we can assume G and X are
reduced. The orbit G · x, which we see as a locally closed subscheme of X according to the
previous proposition, is reduced by definition. This implies that the morphism σx : G → G · x
is flat at every generic point of G · x (every k-scheme is flat over k), hence, by the openess of
the flat locus of σx (EGA IV3 11.1.1), there exists a dense open set U such that σ−1

x (U)→ U is
flat. Using the transitive action of G on G · x (which is well defined because G is reduced), we
deduce that σx is flat. Moreover, by definition, the fibre of σx at x is the stabiliser Gx. We can
thus apply the dimension formula for fibres of a flat morphism [14, Proposition III.9.5], which
yields

dim(Gx) = dim(G)− dim(G · x)

as required. �

Proposition 3.21. Let G be an affine algebraic group acting on a scheme X by a morphism
σ : G×X → X. Then the dimension of the stabiliser subgroup (resp. orbit) viewed as a function
X → N is upper semi-continuous (resp. lower-semi-continuous); that is, for every n, the sets

{x ∈ X : dimGx ≥ n} and {x ∈ X : dim(G · x) ≤ n}
are closed in X.

Proof. Consider the graph of the action

Γ = (prX , σ) : G×X → X ×X
and the fibre product P

P
ϕ //� _

��

X� _

∆
��

G×X Γ //X ×X,
where ∆ : X → X × X is the diagonal morphism; then the k-points of the fibre product P
consists of pairs (g, x) such that g ∈ Gx. The function on P which sends p = (g, x) ∈ P to the
dimension of Pϕ(p) := ϕ−1(ϕ(p)) is upper semi-continuous (cf. [14] III 12.8 or EGA IV 13.1.3);
that is, for all n

{p ∈ P : dimPϕ(p) ≥ n}
is closed in P . By restricting to the closed subscheme X ∼= {(e, x) : x ∈ X} ⊂ P , we conclude
that the dimension of the stabiliser of x is upper semi-continuous; that is,

{x ∈ X : dimGx ≥ n}
is closed in X for all n. Using the previous proposition, we deduce the statement for dimensions
of orbits. �

Lemma 3.22. Let G be an affine algebraic group acting on a scheme X over k.

i) If G is an affine group variety and Y and Z are subschemes of X such that Z is closed,
then

{g ∈ G : gY ⊂ Z}
is closed.

ii) If X is a variety, then for any subgroup H ⊂ G the fixed point locus

XH = {x ∈ X : H · x = x}
is closed in X.

Proof. Exercise. (Hint: express these subsets as intersections of preimages of closed subschemes
under morphisms associated to the action.) �
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3.4. First notions of quotients. Let G be an affine algebraic group acting on a scheme X
over k. In this section and §3.5, we introduce different types of quotients for the action of G on
X; the main references for these sections are [4], [25] and [31].

The orbit space X/G = {G · x : x ∈ X} for the G-action on X, may not always admit the
structure of a scheme. Instead we ask for a universal quotient in the category of schemes (of
finite type over k).

Definition 3.23. A categorical quotient for the action of G on X is a G-invariant morphism
ϕ : X → Y of schemes which is universal; that is, every other G-invariant morphism f : X → Z
factors uniquely through ϕ so that there exists a unique morphism h : Y → Z such that
f = ϕ ◦ h. Furthermore, if the preimage of each k-point in Y is a single orbit, then we say ϕ is
an orbit space.

As ϕ is constant on orbits, it is also constant on orbit closures. Hence, a categorical quotient
is an orbit space only if the action of G on X is closed; that is, all the orbits G · x are closed.

Remark 3.24. The categorical quotient has nice functorial properties in the following sense:
if ϕ : X → Y is G-invariant and we have an open cover Ui of Y such that ϕ| : ϕ−1(Ui)→ Ui is
a categorical quotient for each i, then ϕ is a categorical quotient.

Exercise 3.25. Let ϕ : X → Y be a categorical quotient of a G-action on X.

i) If X is connected, show that Y is connected.
ii) If X is irreducible, show that Y is irreducible.
iii) If X is reduced, show that Y is reduced.

Example 3.26. We consider the action of Gm on An as in Example 3.18. As the origin is in the
closure of every single orbit, any G-invariant morphism An → Z must be a constant morphism.
Therefore, we claim that the categorical quotient is the structure map ϕ : An → Spec k to
the point Spec k. This morphism is clearly G-invariant and any other G-invariant morphism
f : An → Z is a constant morphism to z ∈ Z(k). Therefore, there is a unique morphism
z : Spec k → Z such that f = z ◦ ϕ.

We now see the sort of problems that may occur when we have non-closed orbits. In Example
3.18 our geometric intuition tells us that we would ideally like to remove the origin and then
take the quotient of Gm acting on An−{0}. In fact, we already know what we want this quotient
to be: the projective space Pn−1 = (An − {0})/Gm which is an orbit space for this action.

3.5. Second notions of quotient. Let G be an affine algebraic group acting on a scheme X
over k. The group G acts on the k-algebra O(X) of regular functions on X by

g · f(x) = f(g−1 · x)

and we denote the subalgebra of invariant functions by

O(X)G := {f ∈ O(X) : g · f = f for all g ∈ G}.
Similarly if U ⊂ X is a subset which is invariant under the action of G (that is, g · u ∈ U for all
u ∈ U and g ∈ G), then G acts on OX(U) and we write OX(U)G for the subalgebra of invariant
functions.

The following notion of a good quotient came out of geometric invariant theory; more pre-
cisely, we will later see that GIT quotients are good quotients. However, it is clear that many
of the properties of a good quotient are desirable. Furthermore, we will soon see that a good
quotient is a categorical quotient.

Definition 3.27. A morphism ϕ : X → Y is a good quotient for the action of G on X if

i) ϕ is G-invariant.
ii) ϕ is surjective.
iii) If U ⊂ Y is an open subset, the morphism OY (U) → OX(ϕ−1(U)) is an isomorphism

onto the G-invariant functions OX(ϕ−1(U))G.
iv) If W ⊂ X is a G-invariant closed subset of X, its image ϕ(W ) is closed in Y .
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v) If W1 and W2 are disjoint G-invariant closed subsets, then ϕ(W1) and ϕ(W2) are disjoint.
vi) ϕ is affine (i.e. the preimage of every affine open is affine).

If moreover, the preimage of each point is a single orbit then we say ϕ is a geometric quotient.

Exercise 3.28. Assuming that ii) holds, prove that conditions iv) and v) together are equivalent
to:

v)′ If W1 and W2 are disjoint G-invariant closed subsets, then the closures of ϕ(W1) and
ϕ(W2) are disjoint.

Remark 3.29. In fact, surjectivity is a consequence of iii) and iv): condition iii) shows that ϕ
is dominant (i.e. the image of ϕ is dense in Y ) and condition iv) shows that the image of ϕ is
closed in Y .

Proposition 3.30. Let G be an affine algebraic group acting on a scheme X and suppose we
have a morphism ϕ : X → Y satisfying properties i), iii), iv) and v) in the definition of good
quotient. Then ϕ is a categorical quotient. In particular, any good quotient is a categorical
quotient.

Proof. Property i) of the definition of a good quotient states that ϕ is G-invariant and so we
need only prove that it is universal with respect to all G-invariant morphisms from X. Let
f : X → Z be a G-invariant morphism; then we will construct a unique morphism h : Y → Z
such that f = h ◦ ϕ by taking a finite affine open cover Ui of Z (we can take the cover to be
finite as Z is of finite type over k), then using this cover to define a cover of Y by open subsets
Vi, and finally by locally defining morphisms hi : Vi → Ui which glue to give h.

Since Wi := X − f−1(Ui) is G-invariant and closed in X, its image ϕ(Wi) ⊂ Y is closed by
iv). Let Vi := Y − ϕ(Wi) be the open complement; then by construction, we have an inclusion
ϕ−1(Vi) ⊂ f−1(Ui). As Ui cover Z, the intersection ∩i Wi is empty. We claim by property
v) of the good quotient ϕ, we have ∩iϕ(Wi) = ∅; that is, Vi are an open cover of Y . To see
this, suppose for a contradiction that the intersection ∩iϕ(Wi) is non-empty; then as we are
working with finite type schemes, this intersection has a closed point, which is a k-point as k
is algebraically closed. Let W be a closed G-orbit in the preimage of the k-point p ∈ ∩iϕ(Wi).
Then by property v), we must have W ∩Wi 6= ∅ for each i, since ϕ(W ) ∩ ϕ(Wi) 6= ∅. Since
W is a single G-orbit and each Wi is G-invariant, we must have W ⊂Wi and thus W ⊂ ∩iWi,
which gives a contradiction.

Since f isG-invariant the homomorphismOZ(Ui)→ OX(f−1(Ui)) has image inOX(f−1(Ui))
G.

Therefore, there is a unique morphism h∗i which makes the following square commute

OZ(Ui)

f∗

��

h∗i //OY (Vi)

ϕ∗∼=
��

OX(f−1(Ui))
G //OX(ϕ−1(Vi))

G

where the isomorphism on the right hand side of this square is given by property iii) of the good
quotient ϕ. Since Ui is affine, the k-algebra homomorphism OZ(Ui) → OY (Vi) corresponds to
a morphism hi : Vi → Ui (see [14] I Proposition 3.5). By construction

f |ϕ−1(Vi) = hi ◦ ϕ|ϕ−1(Vi) : ϕ−1(Vi)→ Ui

and hi = hj on Vi∩Vj ; therefore, we can glue the morphisms hi to obtain a morphism h : Y → Z
such that f = h ◦ ϕ. Since the morphisms hi are unique, it follows that h is also unique. �

Example 3.31. We consider the action of Gm on A2 as in Example 3.17. As the origin is
in the closure of the punctured axes {(x, 0) : x 6= 0} and {(0, y) : y 6= 0}, all three orbits
will be identified by the categorical quotient. The smooth conic orbits {(x, y) : xy = α} for
α ∈ A1 − {0} are closed. These conic orbits are parametrised by A1 − {0} and the remaining
three orbits will all be identified in the categorical quotient. Therefore, we may naturally expect
that ϕ : A2 → A1 given by (x, y) 7→ xy is a categorical quotient. In fact, we will prove that
this is a good quotient and therefore also a categorical quotient. This morphism is clearly
G-invariant and surjective, which shows parts i) and ii).
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For iii), let U ⊂ A1 be an open subset and consider the morphism

ϕ∗ : OA1(U)→ OA2(ϕ−1(U)).

For U = A1, we have ϕ∗ : C[z]→ C[x, y] given by z 7→ xy. We claim that this is an isomorphism
on the ring of Gm-invariant functions. The action of t ∈ Gm on O(A2) = C[x, y] is given by

t ·

∑
i,j

aijx
iyj

 =
∑
i,j

aijt
j−ixiyj .

Therefore, the invariant subalgebra is

C[x, y]C
∗

=

∑
ij

aijx
iyj : aij = 0 ∀i 6= j

 = C[xy]

as required. Now suppose we have an open subset U ( A1; then U = A1 − {a1, . . . , an} and
OA1(U) = C[z](f) where f(z) = (z − a1) · · · (z − an) ∈ C[z]. Then ϕ−1(U) is the non-vanishing

locus of F (x, y) := f(xy) ∈ C[x, y] and OA2(ϕ−1(U)) = C[x, y]F . In particular, we can directly
verify that

OA2(ϕ−1(U))Gm = (C[x, y]F )Gm =
(
C[x, y]Gm

)
F

= C[xy]F ∼= C[z]f = OA1(U).

For v)′, we note that any G-invariant closed subvariety in A2 is either a finite union of orbit
closures or the entire space A2. Therefore, we can assume that the disjoint G-invariant closed
subsets W1 and W2 are both a finite union of orbit closures and even just that Wi = G · pi are
disjoint for i = 1, 2. Since we have already determined the orbit closures, we see that there are
two cases two consider: either p1 and p2 both do not lie on the axes in A2 (and so their orbits
correspond to disjoint conics {(x, y) : xy = αi} and ϕ(W1) = α1 6= α2 = ϕ(W2)) or one of the
points, say p1 lies on an axis, so that ϕ(W1) = 0, and the second point p2 cannot also lie on an
axis as we assumed the closures of the orbits were disjoint, so ϕ(W2) 6= 0.

Trivially vi) holds, as any morphism of affine schemes is affine.
Finally, we note that ϕ is not a geometric quotient, as ϕ−1(0) is a union of 3 orbits.

Corollary 3.32. Let G be an affine algebraic group acting on a scheme X and let ϕ : X → Y
be a good quotient; then:

a) G · x1 ∩G · x2 6= φ if and only if ϕ(x1) = ϕ(x2).
b) For each y ∈ Y , the preimage ϕ−1(y) contains a unique closed orbit. In particular, if

the action is closed (i.e. all orbits are closed), then ϕ is a geometric quotient.

Proof. a). As ϕ is constant on orbit closures, it follows that ϕ(x1) = ϕ(x2) if G · x1∩G · x2 6= φ.
By property v) of the good quotient ϕ, we get the converse. For b), suppose we have two distinct
closed orbits W1 and W2 in ϕ−1(y), then the fact that their images under ϕ are both equal to
y contradicts property v) of the good quotient ϕ. �

Corollary 3.33. If ϕ : X → Y is a good (resp. geometric) quotient, then for every open
U ⊂ Y the restriction ϕ| : ϕ−1(U) → U is also a good (resp. geometric) quotient of G acting
on ϕ−1(U).

Proof. Exercise. �

Remark 3.34. The definition of good and geometric quotients are local in the target; thus if
ϕ : X → Y is G-invariant and we have a cover of Y by open sets Ui such that ϕ| : ϕ−1(Ui)→ Ui
are all good (respectively geometric) quotients, then so is ϕ : X → Y . We leave the proof as an
exercise.
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3.6. Moduli spaces and quotients. Let us give one result about the construction of moduli
spaces using group quotients. For a moduli problem M, a family F over a scheme S has the
local universal property if for any other family G over a scheme T and for any k-point t ∈ T ,
there exists a neighbourhood U of t in T and a morphism f : U → S such that G|U ∼U f∗F .

Proposition 3.35. For a moduli problemM, let F be a family with the local universal property
over a scheme S. Furthermore, suppose that there is an algebraic group G acting on S such
that two k-points s, t lie in the same G-orbit if and only if Ft ∼ Fs. Then

a) any coarse moduli space is a categorical quotient of the G-action on S;
b) a categorical quotient of the G-action on S is a coarse moduli space if and only if it is

an orbit space.

Proof. For any scheme M , we claim that there is a bijective correspondence

{natural transformations η :M→ hM} ←→ {G-invariant morphisms f : S →M}

given by η 7→ ηS(F), which is G-invariant by our assumptions about the G-action on S. The
inverse of this correspondence associates to a G-invariant morphism f : S → M and a family
G over T a morphism ηT (G) : T →M by using the local universal property of F over S. More
precisely, we can cover T by open subsets Ui such that there is a morphism hi : Ui → S and
h∗iF ∼Ui G|Ui . For u ∈ Ui ∩ Uj , we have

Fhi(u) ∼ (h∗iF)u ∼ Gu ∼ (h∗jF)u ∼ Fhj(u)

and so by assumption hi(u) and hj(u) lie in the same G-orbit. Since f is G-invariant, we can
glue the compositions f ◦hi : Ui →M to a morphism ηT (G) : T →M . We leave it to the reader
to verify that this determines a natural transformation η (that is, this is functorial with respect
to morphisms) and that these correspondences are inverse to each other.

Hence, if (M,η : M → hM ) is a coarse moduli space, then ηS(F) : S → M is G-invariant
and universal amongst all G-invariant morphisms from S, by the universality of η. This proves
statement a). Furthermore, the G-invariant morphism ηS(F) : S →M is an orbit space if and
only if ηSpec k is bijective. This proves statement b). �

4. Affine Geometric Invariant Theory

In this section we consider an action of an affine algebraic group G on an affine scheme X of
finite type over k and show that this action has a good quotient when G is linearly reductive.
The main references for this section are [25] and [31] (for further reading, see also [2], [4] and
[32]).

Let X be an affine scheme of finite type over k; then the ring of regular functions O(X) is
a finitely generated k-algebra. Conversely, for any finitely generated k-algebra A, the spectrum
of prime ideals SpecA is an affine scheme of finite type over k.

The action of an affine algebraic group G on an affine scheme X given by a morphism

σ : G×X → X

corresponds to a homomorphism of k-algebras σ∗ : O(X)→ O(G×X) ∼= O(G)⊗kO(X), which
gives a G-co-module structure on the (typically infinite dimensional) k-vector space O(X). This
co-module structure in turn determines a linear representation G→ GL(O(X)). Concretely, on
the level of k-points, the action of g ∈ G(k) on f ∈ O(X) is given by

(g · f)(x) = f(g−1 · x).

The ring of G-invariant regular functions on X is

O(X)G := {f ∈ O(X) : σ∗(f) = 1⊗ f}.

Any G-invariant morphism ϕ : X → Z of schemes induces a homomorphism ϕ∗ : O(Z)→ O(X)
whose image is contained in the subalgebra of G-invariant regular functions O(X)G. This leads
us to an interesting problem in invariant theory which was first considered by Hilbert.
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4.1. Hilbert’s 14th problem. For a rational action of an affine algebraic group G on a finitely
generated k-algebra A, Hilbert asked whether the algebra of G-invariants AG is finitely gener-
ated.

The answer to Hilbert’s 14th problem is negative in this level of generality: Nagata gave
an example of an action of an affine algebraic group (constructed using copies of the additive
groups) for which the ring of invariants is not finitely generated (see [27] and [29]). However,
for reductive groups (which we introduce below), the answer is positive due to a Theorem of
Nagata. The proof of this result is beyond the scope of this course. However, we will prove that
for a rational action of a ‘linearly reductive’ group on an algebra, the subalgebra of invariants is
finitely generated, using a Reynolds operator, which essentially mimics Hilbert’s 19th century
proof that, over the complex numbers, a rational action of the general linear group GLn on an
algebra has a finitely generated invariant subalgebra.

4.2. Reductive groups. In this section, we will give the definition of a reductive group, a lin-
early reductive group and a geometrically reductive group, and explain the relationship between
these different notions of reductivity.

Our starting point is the Jordan decomposition for affine algebraic groups over k. We first
recall the Jordan decomposition for GLn: an element g ∈ GLn(k) has a decomposition

g = gssgu = gugss

where gss is semisimple (or, equivalently, diagonalisable, as k is algebraically closed) and gu is
unipotent (that is, g − In is nilpotent).

For any affine algebraic group G, we would like to have an analogous decomposition, and
we can hope to make use of the fact that G admits a faithful linear representation G ↪→ GLn.
However, this would require the decomposition to be functorial with respect to closed immersions
of groups.

Definition 4.1. Let G be an affine algebraic group over k. An element g is semisimple (resp.
unipotent) if there is a faithful linear representation ρ : G ↪→ GLn such that ρ(g) is diagonalisable
(resp. unipotent).

Theorem 4.2 (Jordan decomposition, see [23] X Theorem 2.8 and 2.10). Let G be an affine
algebraic group over k. For every g ∈ G(k), there exists a unique semisimple element gss and a
unique unipotent element gu such that

g = gssgu = gugss.

Furthermore, this decomposition is functorial with respect to group homomorphisms. In particu-
lar, if g ∈ G(k) is semisimple (resp. unipotent), then for all linear representations ρ : G→ GLn,
the element ρ(g) is semisimple (resp. unipotent).

Let ρ : G → GL(V ) be a linear representation of an affine algebraic group G on a vector
space V and let ρ∗ : V → O(G)⊗k V denote the associated co-module. Then a vector subspace
V ′ ⊂ V is G-invariant if ρ∗(V ′) ⊂ O(G)⊗kV ′ and a vector v ∈ V is G-invariant if ρ∗(v) = 1⊗v.
We let V G denote the subspace of G-invariant vectors.

Definition 4.3. An affine algebraic group G is unipotent if every non-trivial linear representa-
tion ρ : G→ GL(V ) has a non-zero G-invariant vector.

Proposition 4.4. For an affine algebraic group G, the following statements are equivalent.

i) G is unipotent.
ii) For every representation ρ : G→ GL(V ) there is a basis of V such that ρ(G) is contained

in the subgroup U ⊂ GL(V ) consisting of upper triangular matrices with diagonal entries
equal to 1.

iii) G is isomorphic to a subgroup of a standard unipotent group Un ⊂ GLn consisting of
upper triangular matrices with diagonal entries equal to 1.
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Proof. i) ⇐⇒ ii): If e1, . . . , en is a basis of V such that ρ(G) ⊂ U, then e1 is fixed by ρ.
Conversely if ρ : G → GL(V ) is a representation of a unipotent group G, then we can proceed
by induction on the dimension of V . As U is unipotent, the linear subspace of G-fixed points
V G is non-zero; let e1, · · · em be a basis of V G. Then there is a basis em+1, . . . , en of V/V G

such that the induced representation has image in the upper triangular matrices with diagonal
entries equal to 1. By choosing lifts em+i ∈ V of em+i, we get the desired basis of V .

ii) ⇐⇒ iii): As every affine algebraic group G has a faithful representation ρ : G → GLn,
we see that ii) implies iii). Conversely, any subgroup of Un is unipotent (see [23] XV Theorem
2.4). �

Remark 4.5. If G is a unipotent affine algebraic group, then every g ∈ G(k) is unipotent. The
converse is true if in addition G is smooth (for example, see [23] XV Corollary 2.6 or SGA3
XVII Corollary 3.8).

Example 4.6.

(1) The additive group Ga is unipotent, as we have an embedding Ga ↪→ U2 given by

c 7→
(

1 c
0 1

)
.

(2) In characteristic p, there is a finite subgroup αp ⊂ Ga where we define the functor of
points of αp by associating to a k-algebra R,

αp(R) := {c ∈ Ga(R) : cp = 0}.

This is represented by the scheme Spec k[t]/(tp) and so αp is a unipotent group which
is not smooth.

Definition 4.7. An algebraic subgroup H of an affine algebraic group G is normal if the
conjugation action H ×G→ G given by (h, g) 7→ ghg−1 factors through H ↪→ G.

Definition 4.8. An affine algebraic group G over k is reductive if it is smooth and every smooth
unipotent normal algebraic subgroup of G is trivial.

Remark 4.9. In fact, one can define reductivity by saying that the unipotent radical ofG (which
is the maximal connected unipotent normal algebraic subgroup of G) is trivial; however, to
define the unipotent radical carefully, we would need to prove that, for a group G, the subgroup
generated by two smooth algebraic subgroups of G is also algebraic (see [22] Proposition 2.24).

Exercise 4.10. Show that the general linear group GLn and the special linear group SLn
are reductive. [Hint: if we have a non-trivial smooth connected unipotent normal algebraic
subgroup U ⊂ GLn, then there exists g ∈ U(k) ⊂ GLn(k) whose Jordan normal form has a
r × r Jordan block for r > 1 (as g is unipotent). Using normality of U , find another element
g′ ∈ U(k) such that the product gg′ is not unipotent.]

Definition 4.11. An affine algebraic group G is

(1) linearly reductive if every finite dimensional linear representation ρ : G→ GL(V ) is com-
pletely reducible; that is the representation decomposes as a direct sum of irreducibles.

(2) geometrically reductive if, for every finite dimensional linear representation ρ : G →
GL(V ) and every non-zero G-invariant point v ∈ V , there is a G-invariant non-constant
homogeneous polynomial f ∈ O(V ) such that f(v) 6= 0.

Example 4.12. Any algebraic torus (Gm)r is linearly reductive by Proposition 3.12.

Exercise 4.13. Show directly that the additive group Ga is not geometrically reductive. [Hint:
there is a representation ρ : Ga → GL2 and a G-invariant point v ∈ A2 such that every non-
constant G-invariant homogeneous polynomial in two variables vanishes at v].

Proposition 4.14. For an affine algebraic group G, the following statements are equivalent.

i) G is linearly reductive.



26 VICTORIA HOSKINS

ii) For any finite dimensional linear representation ρ : G → GL(V ), any G-invariant
subspace V ′ ⊂ V admits a G-stable complement (i.e. there is a subrepresentation V ′′ ⊂
V such that V = V ′ ⊕ V ′′).

iii) For any surjection of finite dimensional G-representations φ : V →W , the induced map
on G-invariants φG : V G →WG is surjective.

iv) For any finite dimensional linear representation ρ : G → GL(V ) and every non-zero
G-invariant point v ∈ V , there is a G-invariant linear form f : V → k such that
f(v) 6= 0.

v) For any finite dimensional linear representation ρ : G → GL(V ) and any surjective
G-invariant linear form f : V → k, there is v ∈ V G such that f(v) 6= 0.

Proof. The equivalence i) ⇐⇒ ii) is clear, as we are working with finite dimensional represen-
tations.

ii) =⇒ iii): Let f : V → W be a surjection of finite dimensional G-representations and
V ′ := ker(f) ⊂ V . Then, by assumption, V ′ has a G-stable complement V ′′ ∼= W . Since both
V ′ and V ′′ are G-invariant, V G = (V ′)G ⊕ (V ′′)G and so fG : V G → (V ′′)G ∼= WG is surjective.

iii) =⇒ ii): Let ρ : G→ GL(V ) be a finite dimensional linear representation and V ′ ⊂ V a
G-invariant subspace. Then we have a surjection

φ : Hom(V, V ′)→ Hom(V ′, V ′)

of finite dimensional G-representations and so by iii) the identity map id′V lifts to G-equivariant
morphism f : V → V ′ splitting the inclusion V ′ ⊂ V . More precisely, V ′ has G-stable comple-
ment V ′′ := kerf .

iv) ⇐⇒ v): We can identify V G with the space of G-invariant linear forms V ∨ → k

V G = HomG(k, V ) = HomG(V ∨, k).

iii) =⇒ iv): Let V be a finite dimensional linear G-representation and v ∈ V G be a non-zero
G-invariant vector. Then v determines a G-invariant linear form φ : V ∨ → k. By letting G act
trivially on k, we can view φ as a surjection of G-representations and so by iii), the fixed point
1 ∈ k = kG has a lift f ∈ (V ∨)G = HomG(V, k) such that f(v) = 1.

iv) =⇒ iii): Let φ : V → W be a finite dimensional G-representation. Then we want to
prove that φG is surjective: i.e. lift any non-zero w ∈ WG to a point v ∈ V G. By iv), there
exists a G-invariant form f : W → k such that f(w) 6= 0. Then f ◦ φ : V → k is a G-invariant
surjective form on V and so by v) ⇐⇒ iv), there exists v ∈ V G such that (f ◦ φ)(v) 6= 0. By
suitably rescaling v ∈ V G so that (f ◦ φ)(v) = f(w), we get the desired lift. �

Exercise 4.15. Prove that any finite group of order not divisible by the characteristic of k is
linearly reductive. [Hint: consider averaging over the group.]

We summarise the main results relating the different notions of reductivity in the following
theorem, whose proof is beyond the scope of this course.

Theorem 4.16. (Weyl, Nagata, Mumford, Haboush)

i) Every linearly reductive group is geometrically reductive.
ii) In characteristic zero, every reductive group is linearly reductive.

iii) A smooth affine algebraic group is reductive if and only if it is geometrically reductive.

In particular, for smooth affine algebraic group schemes, we have

linearly reductive =⇒ geometrically reductive ⇐⇒ reductive

and all three notions coincide in characteristic zero.

Statement i) follows immediately from the definition of geometrically reductive and Propo-
sition 4.14. There are several proofs of Statement ii); the earliest goes back to Weyl, where
he first reduces to k = C, and then uses the representation theory of compact Lie groups (this
argument is known an Weyl’s unitary trick; see Proposition 4.18). An alternative approach is to
use Lie algebras (for example, see the proof that SLn is linearly reductive in characteristic zero
in [24] Theorem 4.43). Statement iii) was conjectured by Mumford after Nagata proved that
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every geometrically reductive group is reductive [29], and the converse statement was proved
by Haboush [12].

Remark 4.17. In positive characteristic, the groups GLn, SLn and PGLn are not linearly
reductive for n > 1; see [28].

We will now sketch the proof that over the complex numbers every reductive group is linearly
reductive.

Proposition 4.18. Every reductive group G over C is linearly reductive.

Proof. We let K ⊂ G(C) be a maximal compact subgroup.
Step 1. For a compact Lie subgroup K, we claim that every finite dimensional representation
of the Lie group K is completely reducible. Let us sketch the proof of this claim. Let V be a
finite dimensional representation of K (i.e. there is a morphism ρ : K → GL(V ) of Lie groups);
then analogously to Proposition 4.14 above, it suffices to prove that every K-invariant subspace
W ⊂ V has a K-stable complement. There is a K-invariant Hermitian inner product on V ,
as we can take any Hermitian inner product h on V and integrate over the compact group K
using a Haar measure dµ on K to obtain a K-invariant Hermitian inner product

hK(v1, v2) :=

∫
K
h(k · v1, k · v2)dµ(k).

Then, we define the K-stable complement of W ⊂ V to be the orthogonal complement of
W ⊂ V with respect to this K-invariant Hermitian inner product.
Step 2. For G reductive and a maximal compact subgroup K ⊂ G(C), the elements of K
are Zariski dense in G. We prove this statement in Lemma 4.19 below. The proof works with
the Lie algebras k and g(C), using the fact that the exponential map exp : g(C) → G(C) is
holomorphic, the fact that g(C) = kC as G(C) is reductive (for a proof see, for example, [34]
Theorem 2.7) and the Identity Theorem from complex analysis.
Step 3. For any finite dimensional linear representation ρ : G → GL(V ), we claim that
V G = V K , where K is a maximal compact of G. As K ⊂ G is a subgroup, we have V G ⊂ V K .
To prove the reverse inclusion, let v ∈ V K and consider the morphism

σ : G→ V

given by g 7→ ρ(g) · v. Then σ−1(v) ⊂ G is Zariski closed. Since v ∈ V K , we have K ⊂ σ−1(v)
and so also K ⊂ σ−1(v). However, as K ⊂ G is Zariski dense, it follows that G ⊂ σ−1(v); that
is, v ∈ V G as required.
Step 4. The reductive group G is linearly reductive. By Proposition 4.14, it suffices to show
for every surjective homomorphism of finite dimensional linear G-representations φ : V → W ,
the induced homomorphism φG on invariant subspaces is also surjective. By Step 3, this is
equivalent to showing that φK is surjective, which follows by Step 1. �

Lemma 4.19. Over the complex numbers, let G be a reductive group and K ⊂ G(C) be a
maximal compact subgroup. Then the elements of K are Zariski dense in G.

Proof. If this is not the case, then there exists a function f ∈ O(G) which is not identically zero
such that f(K) = 0. On the level of Lie algebras, as G(C) is a complex reductive group and
K ⊂ G(C) a maximal compact subgroup, we have

g(C) = k⊗R C
(see [34] Theorem 2.7). Furthermore, the exponential map exp : g(C) → G(C) is holomorphic
and maps k to K. Therefore, h := f ◦ exp : g(C) → C is holomorphic and vanishes on k.
However, if V is a real vector space and l : V ⊗R C → C is holomorphic with l(V ⊗R R) = 0,
then l is identically zero (the proof of this follows from the Identity Theorem in complex analysis
when V has dimension 1 and, for higher dimensional V , we can view l as a function in a single
variable xi by fixing all other variables and by applying this argument for each i, we deduce
that l = 0). In particular, h : g(C) → C is identically zero and, as the exponential map is a
local homeomorphism, we deduce that f is identically zero which is a contradiction. �
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4.3. Nagata’s theorem. In this section, when we talk of a group G acting on a k-algebra A,
we will always mean that the group G acts by k-algebra homomorphisms. We recall that a
G-action on a k-algebra A is rational if every element of A is contained in a finite dimensional
G-invariant linear subspace of A. In particular, if A = O(X) and the G-action on A comes from
an algebraic action of an affine algebraic group G on X, then this action is rational by Lemma
3.8.

Theorem 4.20 (Nagata). Let G be a geometrically reductive group acting rationally on a finitely
generated k-algebra A. Then the G-invariant subalgebra AG is finitely generated.

As every reductive group is geometrically reductive, we can use Nagata’s theorem for reductive
groups. In the following section, we will prove this result for linearly reductive groups using
Reynolds operators (so in characteristic zero this also proves Nagata’s theorem). Nagata also
gave a counterexample of a non-reductive group action for which the ring of invariants is not
finitely generated (see [27] and [29]).

4.4. Reynolds operators. Given a linearly reductive group G, for any finite dimensional linear
representation ρ : G → GL(V ), we can write V = V G ⊕W where W is the direct sum of all
non-trivial irreducible subrepresentations. This gives a canonical G-complement W to V G and
a unique projection pV : V → V G. This projection motivates the following definition.

Definition 4.21. For a group G acting on a k-algebra A, a linear map RA : A → AG is
called a Reynolds operator if it is a projection onto AG and, for a ∈ AG and b ∈ A, we have
RA(ab) = aRA(b).

Lemma 4.22. Let G be a linearly reductive group acting rationally on a finitely generated
k-algebra A; then there exists a Reynolds operator RA : A→ AG.

Proof. Since A is finitely generated, it has a countable basis. Therefore, we can write A as
an increasing union of finite dimensional G-invariant vector subspaces An ⊂ A using the fact
that the action is rational. More precisely, if we label our basis elements a1, a2, . . . , then we
iteratively construct the subsets An by letting An be the finite dimensional G-invariant subspace
containing a1, . . . , an and a basses of An−1 and aj · An−1 for j = 1, . . . , n. Then A =

⋃
n≥1An.

Since G is linearly reductive and each An is a finite dimensional G-representation, we can write

An = AGn ⊕A′n
where A′n is the direct sum of all non-trivial irreducible G-subrepresentations of An. We let
Rn : An → AGn be the canonical projection onto the direct factor AGn .

For m > n, we have a commutative square

An� _

��

Rn
// AGn� _

��
Am

Rm
// AGm,

as we have A′n ⊂ A′m and AGn ⊂ AGm. Hence, we have a linear map RA : A → AG given by the
compatible projections Rn : An → AGn for each n.

It remains to check that for a ∈ AG and b ∈ A, we have RA(ab) = aRA(b). Pick n such
that a, b ∈ An and pick m ≥ n such that a(An) ⊂ Am. Then consider the homomorphism of
G-representations given by left multiplication by a

la : An → Am.

We can write An = AGn ⊕A′n, where A′n = W1⊕· · ·⊕Wr is a direct sum of non-trivial irreducible
subrepresentations Wi ⊂ An. Since G acts by algebra homomorphisms and a ∈ AG, we have
la(A

G
n ) ⊂ AGm. By Schur’s Lemma, the image of each irreducible Wi under la is either zero

or isomorphic to Wi. Therefore, we have la(Wi) ⊂ A′m and so la(A
′
n) ⊂ A′m. In particular,
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if we write b = bG + b′ for bG ∈ AGn and b′ ∈ A′n, then ab = la(b) = la(b
G) + la(b

′), where
la(b

G) = abG ∈ AGm and la(b
′) = ab′ ∈ A′m. Hence,

RA(ab) = abG = aRA(b)

as required. �

In fact, the arguments used in the final part of this proof, give the following result.

Corollary 4.23. Let A and B be k-algebras with a rational action of a linearly reductive group
G, which have Reynolds operators RA : A → AG and RB : B → BG. Then any G-equivariant
homomorphism h : A→ B of these k-algebras commutes with the Reynolds operators: RB ◦h =
h ◦RA.

Lemma 4.24. Let A be a k-algebra with a rational G-action and suppose that A has a Reynolds
operator RA : A → AG. Then for any ideal I ⊂ AG, we have IA ∩ AG = I. More generally, if
{Ij}j∈J are a set of ideals in AG, then we have

(
∑
j∈J

IjA) ∩AG =
∑
j∈J

Ij .

In particular, if A is noetherian, then so is AG.

Proof. Clearly, I ⊂ IA∩AG. Conversely, let x ∈ IA∩AG; then we can write x =
∑n

l=1 ilxl for
il ∈ I and xl ∈ A. As RA is a Reynolds operator,

x = RA(x) = RA

(
n∑
l=1

ilxl

)
=

n∑
l=1

ilRA(xl) ∈ I.

Now suppose that A is Noetherian and consider a chain I1 ⊂ I2 ⊂ · · · of ascending ideals
in AG. Then I1A ⊂ I2A ⊂ · · · is a chain of ascending ideals in A and so must stabilise as
A is Noetherian. However, as In = InA ∩ AG, it follows that the chain of ideals In must also
stabilise. �

Theorem 4.25 (Hilbert, Mumford). Let G be a linearly reductive group acting rationally on a
finitely generated k-algebra A. Then AG is finitely generated.

Proof. Let us first reduce to the case where A is a polynomial algebra and the G-action is linear.
Let V be a finite dimensional G-invariant vector subspace of A containing a set of generators
for A as a k-algebra; the existence of V is guaranteed as our action is rational. As V contains
generators for A as an algebra, we have a G-equivariant surjection of k-algebras

O(V ∨) = Sym∗(V )→ A.

Since G is linearly reductive, both algebras admit a Reynolds operator by Lemma 4.22 and,
moreover, these Reynolds operators commute with this surjection by Corollary 4.23. Therefore,
we have a surjection (Sym∗(V ))G → AG and so to prove AG is finitely generated, it suffices to
assume that A is a polynomial algebra with a linear G-action.

Let A = Sym∗(V ) where V is a finite dimensional G-representation. Then A is naturally a
graded k-algebra, where the grading is by homogeneous degree A = ⊕nAn = ⊕n≥0 Symn V . As
theG-action on A is linear, the invariant subalgebra AG is also graded AG = ⊕nAGn . By Hilbert’s
basis theorem, A is Noetherian and so by Lemma 4.24, the invariant ring AG is also Noetherian.
Hence, the ideal AG+ = ⊕n>0A

G
n ⊂ AG is finitely generated. We then use the following technical

but not difficult result: for a graded k-algebra B = ⊕n≥0Bn and b1, . . . , bm ∈ B homogeneous
elements of positive degree, the following statements are equivalent:

(1) B is generated by b1, . . . , bm as a B0-algebra; that is, B = B0[b1, . . . bm];
(2) B+ := ⊕n>0Bn is generated by b1, . . . , bm as an ideal; that is B+ = Bb1 + · · ·+Bbm.

By applying this to AG and the finitely generated ideal AG+ = ⊕n>0A
G
n , we deduce that AG is

a finitely generated k-algebra. �
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Nagata gave an example of an action of a product of additive groups Gra on an affine space
An such that the algebra of invariants fails to be finitely generated; see [27] and [29]. From this
example, one can produce an affine scheme X with a Ga-action such that O(X)Ga is not finitely
generated. More generally, a theorem of Popov states that for any non-reductive group G there
is an affine scheme X such that O(X)G is not finitely generated. Let us quickly outline the proof
following [25] Theorem A.1.0. As G is non-reductive, we can pick a surjective homomorphism
from the unipotent radical Ru(G) of G onto Ga, which defines an action of Ru(G) on X such
that the algebra of invariants is not finitely generated. Then we can take the Borel construction
associated to Ru(G) ⊂ G

Y := G×Ru(G) X := (G×X)/Ru(G)

which is locally trivial over G/Ru(G) with fibre X and there is a natural G-action on Y where

O(Y )G ∼= O(X)Ru(G)

is not finitely generated. In fact Y is affine (and so O(Y ) is finitely generated) as G→ G/Ru(G)
has a local section by a result of Rosenlicht and so the fibre bundle Y → G/Ru(G) also has a
local section.

Theorem 4.26 (Popov). An affine algebraic group G over k is reductive if and only if for
every rational G-action on a finitely generated k-algebra A, the subalgebra AG of G-invariants
is finitely generated.

4.5. Construction of the affine GIT quotient. Let G be a reductive group acting on an
affine scheme X. We have seen that this induces an action of G on the coordinate ring O(X),
which is a finitely generated k-algebra. By Nagata’s Theorem, the subalgebra of invariants
O(X)G is finitely generated.

Definition 4.27. The affine GIT quotient is the morphism ϕ : X → X//G := SpecO(X)G of
affine schemes associated to the inclusion ϕ∗ : O(X)G ↪→ O(X).

Remark 4.28. The double slash notation X//G used for the GIT quotient is a reminder that
this quotient is not necessarily an orbit space and so it may identify some orbits. In nice cases,
the GIT quotient is also a geometric quotient and in this case we shall often write X/G instead
to emphasise the fact that it is an orbit space.

We will soon prove that the reductive GIT quotient is a good quotient. In preparation for
proving that the GIT quotient is a good quotient, we need the following lemma.

Lemma 4.29. Let G be a geometrically reductive group acting on an affine scheme X. If
W1 and W2 are disjoint G-invariant closed subsets of X, then there is an invariant function
f ∈ O(X)G which separates these sets i.e.

f(W1) = 0 and f(W2) = 1.

Proof. As Wi are disjoint and closed, we have

(1) = I(∅) = I(W1 ∩W2) = I(W1) + I(W2)

and so we can write 1 = f1 + f2, where fi ∈ I(Wi). Then f1(W1) = 0 and f1(W2) = 1. By
Lemma 3.8, the function f1 is contained in a finite dimensional G-invariant linear subspace V
of O(X); therefore, so we can choose a basis h1, . . . , hn of V . This basis defines a morphism
h : X → An by

h(x) = (h1(x), . . . , hn(x)).

For each i, the function hi is a linear combination of translates of f1, so we have

hi =

ni∑
l=1

cil gil · f1

for constants cil and group elements gil. Then hi(x) =
∑ni

l=1 cil f1(g−1
il · x) and, as Wi are G-

invariant subsets and f1 takes the value 0 (resp. 1) on W1 (resp. W2), it follows that h(W1) = 0
and h(W2) = v 6= 0.
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As the functions g · hi also belong to V , we can write them in terms of our given basis as

g · hi =

n∑
j=1

aij(g)hj .

This defines a representation G → GLn given by g 7→ (aij(g)) such that h : X → An is G-
equivariant with respect to the G-action on X and the G-action on An via this representation
G → GLn. Therefore v = h(W2) is a non-zero G-invariant point. Since G is geometrically
reductive, there is a non-constant homogeneous polynomial P ∈ k[x1, . . . , xn]G such that P (v) 6=
0 and P (0) = 0. Then f = cP ◦ h is the desired invariant function where c = 1/P (v). �

Theorem 4.30. Let G be a reductive group acting on an affine scheme X. Then the affine
GIT quotient ϕ : X → X//G is a good quotient and, moreover, X//G is an affine scheme.

Proof. As G is reductive and so also geometrically reductive, it follows from Nagata’s Theorem
that the algebra of G-invariant regular functions on X is a finitely generated k-algebra. Hence
Y := X//G = SpecO(X)G is an affine scheme of finite type over k. Since the affine GIT quotient
is defined by taking the morphism of affine schemes associated to the inclusion O(X)G ↪→ O(X),
it is G-invariant and affine: this gives part i) and vi) in the definition of good quotient.

To prove ii), we take y ∈ Y (k) and want to construct x ∈ X(k) whose image under ϕ : X → Y
is y. Let my be the maximal ideal in O(Y ) = O(X)G of the point y and choose generators
f1, . . . , fm of my. Since G is reductive, we claim that it follows that

m∑
i=1

fiO(X) 6= O(X).

For a linearly reductive group, this claim follows from Lemma 4.24 as(
m∑
i=1

fiO(X)

)
∩ O(X)G =

m∑
i=1

fiO(X)G 6= O(X)G.

For a proof for geometrically reductive groups, see [31] Lemma 3.4.2. Then, as
∑m

i=1 fiO(X)
is not equal to O(X), it is contained in some maximal idea mx ⊂ O(X) corresponding to a
closed point x ∈ X(k). In particular, we have that fi(x) = 0 for i = 1, . . . ,m and so ϕ(x) = y
as required. Therefore, every closed point is in the image of ϕ and as the image of ϕ is a
constructible subset by Chevalley’s Theorem, we can conclude that ϕ is surjective.

For f ∈ O(X)G, the open sets U = Yf form a basis of the open subsets of Y . Therefore, to

prove iii), it suffices to consider open sets U of the form Yf for f ∈ O(X)G. Let f ∈ O(X)G;

then OY (Yf ) = (O(X)G)f is the localisation of O(X)G with respect to f and

OX(ϕ−1(Yf ))G = OX(Xf )G = (O(X)f )G = (O(X)G)f = OY (Yf )

as localisation with respect to an invariant function commutes with taking G-invariants. Hence
the image of the inclusion homomorphism OY (Yf ) = (O(X)G)f → OX(ϕ−1(Yf )) = O(X)f is

OX(ϕ−1(Yf ))G = (O(X)f )G which proves iii).
By Remark 3.28, given the surjectivity of ϕ, properties iv) and v) are equivalent to v)′ and

so it suffices to prove v)′. By Lemma 4.29, for any two disjoint G-invariant closed subsets
W1 and W2 in X, there is a function f ∈ O(X)G such that f(W1) = 0 and f(W2) = 1.
Since O(X)G = O(Y ), we can view f as a regular function on Y with f(ϕ(W1)) = 0 and
f(ϕ(W2)) = 1. Hence, it follows that

ϕ(W1) ∩ ϕ(W2) = ∅

which finishes the proof. �

Corollary 4.31. Suppose a reductive group G acts on an affine scheme X and let ϕ : X →
Y := X//G be the affine GIT quotient. Then

ϕ(x) = ϕ(x′) ⇐⇒ G · x ∩G · x′ 6= ∅.
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Furthermore, the preimage of each point y ∈ Y contains a unique closed orbit. In particular, if
the action of G on X is closed, then ϕ is a geometric quotient.

Proof. As ϕ is a good quotient, this follows immediately from Corollary 3.32 �

Example 4.32. Consider the action of G = Gm on X = A2 by t · (x, y) = (tx, t−1y) as in
Example 3.17. In this case O(X) = k[x, y] and O(X)G = k[xy] ∼= k[z] so that Y = A1 and the
GIT quotient ϕ : X → Y is given by (x, y) 7→ xy. The three orbits consisting of the punctured
axes and the origin are all identified and so the quotient is not a geometric quotient.

Example 4.33. Consider the action of G = Gm on An by t · (x1, . . . , xn) = (tx1, . . . , txn) as
in Example 3.18. Then O(X) = k[x1, . . . , xn] and O(X)G = k so that Y = Spec k is a point
and the GIT quotient ϕ : X → Y = Spec k is given by the structure morphism. In this case all
orbits are identified and so this good quotient is not a geometric quotient.

Remark 4.34. We note that the fact that G is reductive was used several times in the proof,
not just to show the ring of invariants is finitely generated. In particular, there are non-reductive
group actions which have finitely generated invariant rings but for which other properties listed
in the definition of good quotient fail. For example, consider the additive group Ga acting on
X = A4 by the linear representation ρ : Ga → GL4

s 7→


1 s

1
1 s

1

 .

Even though Ga is non-reductive, the invariant ring is finitely generated: one can prove that

k[x1, x2, x3, x4]Ga = k[x2, x4, x1x4 − x2x3].

However the GIT ‘quotient’ map X → X//Ga = A3 is not surjective: its image misses the
punctured line {(0, 0, λ) : λ ∈ k∗} ⊂ A3. For further differences, see [6].

4.6. Geometric quotients on open subsets. As we saw above, when a reductive group G
acts on an affine scheme X in general a geometric quotient (i.e. orbit space) does not exist
because the action is not necessarily closed. For finite groups G, every good quotient is a
geometric quotient as the action of a finite group is always closed. In this section, we define an
open subset Xs of ‘stable’ points in X for which there is a geometric quotient.

Definition 4.35. We say x ∈ X is stable if its orbit is closed in X and dimGx = 0 (or
equivalently, dimG · x = dimG). We let Xs denote the set of stable points.

Proposition 4.36. Suppose a reductive group G acts on an affine scheme X and let ϕ : X →
Y := X//G be the affine GIT quotient. Then Xs ⊂ X is an open and G-invariant subset,
Y s := ϕ(Xs) is an open subset of Y and Xs = ϕ−1(Y s). Moreover, ϕ : Xs → Y s is a geometric
quotient.

Proof. We first show that Xs is open by showing for every x ∈ Xs(k) there is an open neigh-
bourhood of x in Xs. By Lemma 3.21, the set X+ := {x ∈ X : dimGx > 0} of points with
positive dimensional stabilisers is a closed subset of X. If x ∈ Xs, then by Lemma 4.29 there is
a function f ∈ O(X)G such that

f(X+) = 0 and f(G · x) = 1.

Then x ∈ Xf (k) and we claim that Xf ⊂ Xs so that Xf is an open neighbourhood of x in Xs.
Since all points in Xf have stabilisers of dimension zero, it remains to check that their orbits
are closed. Suppose z ∈ Xf (k) has a non-closed orbit so w /∈ G · z belongs to the orbit closure
of z; then w ∈ Xf (k) too as f is G-invariant and so w must have stabiliser of dimension zero.
However, by Proposition 3.15 the boundary of the orbit G · z is a union of orbits of strictly
lower dimension and so the orbit of w must be of dimension strictly less than that of z which
contradicts the fact that w has zero dimensional stabiliser. Hence, Xs is an open subset of X,
and is covered by sets of the form Xf as above.
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Since ϕ(Xf ) = Yf is open in Y and also Xf = ϕ−1(Yf ), it follows that Y s is open in Y and
also Xs = ϕ−1(ϕ(Xs)). Then ϕ : Xs → Y s is a good quotient by Corollary 3.33. Furthermore,
the action of G on Xs is closed and so ϕ : Xs → Y s is a geometric quotient by Corollary
3.32. �

Example 4.37. We can now calculate the stable set for the action of G = Gm on X = A2 as
in Examples 3.17 and 4.32. The closed orbits are the conics {xy = α} for α ∈ A1−{0} and the
origin, but the origin has a positive dimensional stabiliser. Thus

Xs = {(x, y) ∈ A2 : xy 6= 0} = Xxy.

In this example, it is clear why we need to insist that dimGx = 0 in the definition of stability:
so that the stable set is open. In fact this requirement should also be clear from the proof of
Proposition 4.36.

Example 4.38. We may also consider which points are stable for the action of G = Gm on An
as in Examples 3.18 and 4.33. The only closed orbit is the origin, whose stabiliser is positive
dimensional, and so Xs = ∅. In particular, this example shows that the stable set may be
empty.

Example 4.39. ConsiderG = GL2 acting on the spaceM2×2 of 2×2 matrices with k-coefficients
by conjugation. The characteristic polynomial of a matrix A is given by

charA(t) = det(xI −A) = x2 + c1(A)x+ c2(A)

where c1(A) = −Tr(A) and c2(A) = det(A) and is well defined on the conjugacy class of a
matrix. The Jordan canonical form of a matrix is obtained by conjugation and so lies in the
same orbit of the matrix. The theory of Jordan canonical forms says there are three types of
orbits:

• matrices with characteristic polynomial with distinct roots α, β. These matrices are
diagonalisable with Jordan canonical form(

α 0
0 β

)
.

These orbits are closed and have dimension 2. The stabiliser of the above matrix is the
subgroup of diagonal matrices which is 2 dimensional.
• matrices with characteristic polynomial with repeated root α for which the minimum

polynomial is equal to the characteristic polynomial. These matrices are not diagonal-
isable and their Jordan canonical form is(

α 1
0 α

)
.

These orbits are also 2 dimensional but are not closed: for example

lim
t→0

(
t 0
0 t−1

)(
α 1
0 α

)(
t−1 0
0 t

)
=

(
α 0
0 α

)
.

• matrices with characteristic polynomial with repeated root α for which the minimum
polynomial is x− α. These matrices have Jordan canonical form(

α 0
0 α

)
.

Since scalar multiples of the identity commute with everything, their stabilisers are
equal to the full group GL2 and their orbits are simply a point, which is closed and zero
dimensional.

We note that every orbit of the second type contains an orbit of the third type and so will be
identified in the quotient. Clearly there are two G-invariant functions on M2×2: the trace and
determinant, and so

k[tr,det] ⊂ O(M2×2)GL2 .
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We claim that these are the only G-invariant functions on M2×2. To see this we note that from
the above discussion about Jordan normal forms and orbit closures, a G-invariant function on
M2×2 is completely determined by its values on the diagonal matrices D2 ⊂ M2×2. Hence the
ring of GL2-invariants on M2×2 is contained in the ring O(D2) ∼= k[x11, x22]. In fact, using the
GL2-action we can permute the diagonal entries; therefore,

O(M2×2)GL2 ⊂ k[x11, x22]S2 = k[x11 + x22, x11x22],

as the symmetric polynomials are generated by the elementary symmetric polynomials. These
elementary symmetric polynomials correspond to the trace and determinant respectively, and
we see there are no additional invariants. Hence

k[tr,det] = O(M2×2)GL2

and the affine GIT quotient is given by

ϕ = (tr, det) : M2×2 → A2.

The subgroup GmI2 fixes every point and so there are no stable points for this action.

Example 4.40. More generally, we can consider G = GLn acting on Mn×n by conjugation. If
A is an n× n matrix, then the coefficients of its characteristic polynomial

charA(t) = det(tI −A) = tn + c1(A)tn−1 + · · ·+ cn(A)

are all G-invariant functions. As in Example 4.39 above, we can use the theory of Jordan normal
forms as above to describe the different orbits and the closed orbits correspond to diagonalisable
matrices. By a similar argument to above, we have

k[c1, . . . , cn] ⊂ O(Mn×n)GLn ⊂ O(Dn)Sn ∼= k[x11, . . . , xnn]Sn = k[σ1, . . . , σn]

where σi is the ith elementary symmetric polynomial in the xjs. Hence, we conclude these are
all equalities and the affine GIT quotient is given by

ϕ : Mn×n → An

A 7→ (c1(A), . . . , cn(A)).

Again as every orbit contains a copy of Gm in its stabiliser subgroup, there are no stable points.

Remark 4.41. In situations where there is a non-finite subgroup H ⊂ G which is contained in
the stabiliser subgroup of every point for a given action of G on X, the stable set is automatically
empty. Hence, for the purposes of GIT, it is better to work with the induced action of the group
G/H. In the above example, this would be equivalent to considering the action of the special
linear group on the space of n× n matrices by conjugation.

5. Projective GIT quotients

In this section we extend the theory of affine GIT developed in the previous section to
construct GIT quotients for reductive group actions on projective schemes. The idea is that we
would like construct our GIT quotient by gluing affine GIT quotients. In order to do this we
would like to cover our scheme X by affine open subsets which are invariant under the group
action and glue the affine GIT quotients of these affine open subsets of X. However, it may not
be possible to cover all of X by such compatible open invariant affine subsets.

For a projective scheme X with an action of a reductive group G, there is not a canonical way
to produce an open subset of X which is covered by open invariant affine subsets. Instead, this
will depend on a choice of an equivariant projective embedding X ↪→ Pn, where G acts on Pn by
a linear representation G→ GLn+1. We recall that a projective embedding of X corresponds to
a choice of a (very) ample line bundle L on X. We will shortly see that equivariant projective
embeddings are given by an ample linearisation of the G-action on X, which is a lift of the
G-action to a ample line bundle on X such that the projection to X is equivariant and the
action on the fibres is linear.

In this section, we will show for a reductive group G acting on a projective scheme X and a
choice of ample linearisation of the action, there is a good quotient of an open subset of semistable
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points in X. Furthermore, this quotient is itself projective and restricts to a geometric quotient
on an open subset of stable points. The main reference for the construction of the projective
GIT quotient is Mumford’s book [25] and other excellent references are [4, 24, 31, 32, 42].

5.1. Construction of the projective GIT quotient.

Definition 5.1. Let X be a projective scheme with an action of an affine algebraic group G.
A linear G-equivariant projective embedding of X is a group homomorphism G→ GLn+1 and
a G-equivariant projective embedding X ↪→ Pn. We will often simply say that the G-action on
X ↪→ Pn is linear to mean that we have a linear G-equivariant projective embedding of X as
above.

Suppose we have a linear action of a reductive group G on a projective scheme X ⊂ Pn.
Then the action of G on Pn lifts to an action of G on the affine cone An+1 over Pn. Since the
projective embedding X ⊂ Pn is G-equivariant, there is an induced action of G on the affine
cone X̃ ⊂ An+1 over X ⊂ Pn. More precisely, we have

O(An+1) = k[x0, . . . , xn] =
⊕
r≥0

k[x0, . . . , xn]r =
⊕
r≥0

H0(Pn,OX(r))

and if X ⊂ Pn is the closed subscheme associated to a homogeneous ideal I(X) ⊂ k[x0, . . . , xn],

then X̃ = SpecR(X) where R(X) = k[x0, . . . , xn]/I(X).
The k-algebras O(An+1) and R(X) are graded by homogeneous degree and, as the G-action

on An+1 is linear it preserves the graded pieces, so that the invariant subalgebra

O(An+1)G =
⊕
r≥0

k[x0, . . . , xn]Gr

is a graded algebra and, similarly, R(X)G = ⊕r≥0R(X)Gr . By Nagata’s theorem, R(X)G is
finitely generated, as G is reductive. The inclusion of finitely generated graded k-algebras
R(X)G ↪→ R(X) determines a rational morphism of projective schemes

X 99K ProjR(X)G

whose indeterminacy locus is the closed subscheme of X defined by the homogeneous ideal
R(X)G+ := ⊕r>0R(X)Gr .

Definition 5.2. For a linear action of a reductive group G on a projective scheme X ⊂ Pn,
we define the nullcone N to be the closed subscheme of X defined by the homogeneous ideal
R(X)G+ in R(X) (strictly speaking the nullcone is really the affine cone Ñ over N). We define
the semistable set Xss = X − N to be the open subset of X given by the complement to the
nullcone. More precisely, x ∈ X is semistable if there exists a G-invariant homogeneous function
f ∈ R(X)Gr for r > 0 such that f(x) 6= 0. By construction, the semistable set is the open subset
which is the domain of definition of the rational map

X 99K ProjR(X)G.

We call the morphisms Xss → X//G := ProjR(X)G the GIT quotient of this action.

Theorem 5.3. For a linear action of a reductive group G on a projective scheme X ⊂ Pn, the
GIT quotient ϕ : Xss → X//G is a good quotient of the G-action on the open subset Xss of
semistable points in X. Furthermore, X//G is a projective scheme.

Proof. We let ϕ : Xss → Y := X//G denote the projective GIT quotient. By construction
X//G is the projective spectrum of the finitely generated graded k-algebra R(X)G. We claim
that ProjR(X)G is projective over SpecR(X)G0 = Spec k. If R(X)G is finitely generated by
R(X)G1 as a k-algebra, this result follows immediately from [14] II Corollary 5.16. If not, then as
R(X)G is a finitely generated k-algebra, we can pick generators f1, . . . , fr in degrees d1, . . . , dr.
Let d := d1 · . . . · dr; then

(R(X)G)(d) =
⊕
l≥0

R(X)Gdl



36 VICTORIA HOSKINS

is finitely generated by (R(X)G)
(d)
1 as k-algebra and so Proj

(
(R(X)G)(d)

)
is projective over

Spec k. Since X//G := ProjR(X)G ∼= Proj
(
(R(X)G)(d)

)
(see [14] II Exercise 5.13), we can

conclude that X//G is projective.
For f ∈ RG+, the open affine subsets Yf ⊂ Y form a basis of the open sets on Y . Since

f ∈ R(X)G+ ⊂ R(X)+, we can also consider the open affine subset Xf ⊂ X and, by construction

of ϕ, we have that ϕ−1(Yf ) = Xf . Let X̃f (respectively Ỹf ) denote the affine cone over Xf

(respectively Yf ). Then

O(Yf ) ∼= O(Ỹf )0
∼= ((R(X)G)f )0

∼= ((R(X)f )0)G ∼= (O(X̃f )0)G ∼= O(Xf )G

and so the corresponding morphism of affine schemes ϕf : Xf → Yf ∼= SpecO(Xf )G is an affine
GIT quotient, and so also a good quotient by Theorem 4.30. The morphism ϕ : Xss → Y is
obtained by gluing the good quotients ϕf : Xf → Yf . Since Yf cover Y (and Xf cover Xss)
and being a good quotient is local on the target Remark 3.34, we can conclude that ϕ is also a
good quotient. �

We recall that as ϕ : Xss → X//G is a good quotient, for two semistable points x1, x2 in Xss,
we have

G · x1 ∩G · x2 ∩Xss 6= ∅ ⇐⇒ ϕ(x1) = ϕ(x2).

Furthermore, the preimage of each point in X//G contains a unique closed orbit. The presence
of non-closed orbits in the semistable locus will prevent the good quotient ϕ : Xss → X//G
from being a geometric quotient.

We can now ask if there is an open subset Xs of Xss on which this quotient becomes a
geometric quotient. For this we want the action to be closed on Xs. This motivates the
definition of stability (see also Definition 4.35).

Definition 5.4. Consider a linear action of a reductive group G on a closed subscheme X ⊂ Pn.
Then a point x ∈ X is

(1) stable if dimGx = 0 and there is a G-invariant homogeneous polynomial f ∈ R(X)G+
such that x ∈ Xf and the action of G on Xf is closed.

(2) unstable if it is not semistable.

We denote the set of stable points by Xs and the set of unstable points by Xus := X−Xss = N .

We emphasise that, somewhat confusingly, unstable does not mean not stable, but this ter-
minology has long been accepted by the mathematical community.

Lemma 5.5. The stable and semistable sets Xs and Xss are open in X.

Proof. By construction, the semistable set is open in X as it is the complement to the nullcone
N , which is closed. To prove that the stable set is open, we consider the subset Xc := ∪Xf

where the union is taken over f ∈ R(X)G+ such that the action of G on Xf is closed; then
Xc is open in X and it remains to show Xs is open in Xc. By Proposition 3.21, the function
x 7→ dimGx is an upper semi-continuous function on X and so the set of points with zero
dimensional stabiliser is open. Hence, we have open inclusions Xs ⊂ Xc ⊂ X. �

Theorem 5.6. For a linear action of a reductive group G on a closed subscheme X ⊂ Pn, let
ϕ : Xss → Y := X//G denote the GIT quotient. Then there is an open subscheme Y s ⊂ Y such
that ϕ−1(Y s) = Xs and that the GIT quotient restricts to a geometric quotient ϕ : Xs → Y s.

Proof. Let Yc be the union of Yf for f ∈ R(X)G+ such that the G-action on Xf is closed and
let Xc be the union of Xf over the same index set so that Xc = ϕ−1(Yc). Then ϕ : Xc → Yc
is constructed by gluing ϕf : Xf → Yf for f ∈ R(X)G+ such that the G-action on Xf is closed.
Each ϕf is a good quotient and as the action on Xf is closed, ϕf is also a geometric quotient
by Corollary 3.32. Hence ϕ : Xc → Yc is a geometric quotient by Remark 3.34.

By definition, Xs is the open subset ofXc consisting of points with zero dimensional stabilisers
and we let Y s := ϕ(Xs) ⊂ Yc. It remains to prove that Y s is open. As ϕ : Xc → Yc is a geometric
quotient and Xs is a G-invariant subset of X, ϕ−1(Y s) = Xs and also Yc−Y s = ϕ(Xc−Xs). As
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Xc−Xs is closed in Xc, property iv) of good quotient gives that ϕ(Xc−Xs) = Yc−Y s is closed
in Yc and so Y s is open in Yc. Since Yc is open in Y , we can conclude that Y s ⊂ Y is open.
Finally, the geometric quotient ϕ : Xc → Yc restricts to a geometric quotient ϕ : Xs → Y s by
Corollary 3.33. �

Remark 5.7. We see from the proof of this theorem that to get a geometric quotient we do
not have to impose the condition dimGx = 0 and in fact in Mumford’s original definition of
stability this condition was omitted. However, the modern definition of stability, which asks for
zero dimensional stabilisers, is now widely accepted. One advantage of the modern definition
is that if the semistable set is nonempty, then the dimension of the geometric quotient equals
its expected dimension. A second advantage of the modern definition of stability is that it is
better suited to moduli problems.

Example 5.8. Consider the linear action of G = Gm on X = Pn by

t · [x0 : x1 : · · · : xn] = [t−1x0 : tx1 : · · · : txn].

In this case R(X) = k[x0, . . . , xn] which is graded into homogeneous pieces by degree. It is
easy to see that the functions x0x1, . . . , x0xn are all G-invariant. In fact, we claim that these
functions generate the ring of invariants. To prove the claim, suppose we have f ∈ R(X); then

f =
∑

m=(m0,...,mn)

a(m)xm0
0 xm1

1 . . . xmnn

and, for t ∈ Gm,

t · f =
∑

m=(m0,...,mn)

a(m)tm0−m1−···−mnxm0
0 xm1

1 . . . xmnn .

Then f is G-invariant if and only if a(m) = 0 for all m = (m0, . . . ,mn) such that m0 6=
∑n

i=1mi.
If m satisfies m0 =

∑n
i=1mi, then

xm0
0 xm1

1 . . . xmnn = (x0x1)m1 . . . (x0xn)mn ;

that is, if f is G-invariant, then f ∈ k[x0x1, . . . x0xn]. Hence

R(X)G = k[x0x1, . . . , x0xn] ∼= k[y0, . . . , yn−1]

and after taking the projective spectrum we obtain the projective variety X//G = Pn−1. The
explicit choice of generators for R(X)G allows us to write down the rational morphism

ϕ : X = Pn 99K X//G = Pn−1

[x0 : x1 : · · · : xn] 7→ [x0x1 : · · · : x0xn]

and its clear from this description that the nullcone

N = {[x0 : · · · : xn] ∈ Pn : x0 = 0 or (x1, · · · , xn) = 0}

is the projective variety defined by the homogeneous ideal I = (x0x1, · · · , x0xn). In particular,

Xss =
n⋃
i=1

Xx0xi = {[x0 : · · · : xn] ∈ Pn : x0 6= 0 and (x1, . . . , xn) 6= 0} ∼= An − {0}

where we are identifying the affine chart on which x0 6= 0 in Pn with An. Therefore

ϕ : Xss = An − {0} 99K X//G = Pn−1

is a good quotient of the action on Xss. As the preimage of each point in X//G is a single orbit,
this is also a geometric quotient. Moreover, every semistable point is stable as all orbits are
closed in An − {0} and have zero dimensional stabilisers.
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In general it can be difficult to determine which points are semistable and stable as it is
necessary to have a description of the graded k-algebra of invariant functions. The ideal situation
is as above where we have an explicit set of generators for the invariant algebra which allows
us to write down the quotient map. However, finding generators and relations for the invariant
algebra in general can be hard. We will soon see that there are other criteria that we can use
to determine (semi)stability of points.

Lemma 5.9. Let G be a reductive group acting linearly on X ⊂ Pn. A k-point x ∈ X(k) is
stable if and only if x is semistable and its orbit G · x is closed in Xss and its stabiliser Gx is
zero dimensional.

Proof. Suppose x is stable and x′ ∈ G · x ∩ Xss; then ϕ(x′) = ϕ(x) and so x′ ∈ ϕ−1(ϕ(x)) ⊂
ϕ−1(Y s) = Xs. As G acts on Xs with zero-dimensional stabiliser, this action must be closed as
the boundary of an orbit is a union of orbits of strictly lower dimension. Therefore, x′ ∈ G · x
and so the orbit G · x is closed in Xss.

Conversely, we suppose x is semistable with closed orbit in Xss and zero dimensional sta-
biliser. As x is semistable, there is a homogeneous f ∈ R(X)G+ such that x ∈ Xf . As G · x
is closed in Xss, it is also closed in the open affine set Xf ⊂ Xss. By Proposition 3.21, the
G-invariant set

Z := {z ∈ Xf : dimGz > 0}

is closed in Xf . Since Z is disjoint from G · x and both sets are closed in the affine scheme Xf ,

by Lemma 4.29, there exists h ∈ O(Xf )G such that

h(Z) = 0 and h(G · x) = 1.

We claim that from the function h, we can produce a G-invariant homogeneous polynomial
h′ ∈ R(X)G+ such that x ∈ Xfh′ and Xfh′ is disjoint from Z, as then all orbits in Xfh′ have
zero dimensional stabilisers and so must be closed in Xfh′ (as the closure of an orbit is a union
of lower dimensional orbits), in which case we can conclude that x is stable. The proof of the
above claim follows from Lemma 5.10 below and uses the fact that G is geometrically reductive.
More precisely, we have that O(Xf ) = O(X̃f )0 is a quotient of A := (k[x0, . . . , xn]f )0 and we

take I to be the kernel. Then hr = h′/fs ∈ AG/(I ∩AG) for some homogeneous polynomial h′

and positive integers r and s. �

Lemma 5.10. Let G be a geometrically reductive group acting rationally on a finitely generated
k-algebra A. For a G-invariant ideal I of A and a ∈ (A/I)G, there is a positive integer r such
that ar ∈ AG/(I ∩AG).

Proof. Let b ∈ A be an element whose image in A/I is a and we can assume a 6= 0. As the
action is rational, b is contained in a finite dimensional G-invariant linear subspace V ⊂ A
spanned by the translates g · b. Then b /∈ V ∩ I as a 6= 0; however, g · b− b ∈ V ∩ I for all g ∈ G
as a is G-invariant. Therefore dimV = dim(V ∩ I) + 1 and every element in V can be uniquely
written as λb+b′ for λ ∈ k and b′ ∈ V ∩I. Consider the linear projection l : V → k onto the line
spanned by b, which is G-equivariant. In terms of the dual representation V ∨, the projection l
corresponds to a non-zero fixed point l∗ and so, as G is geometrically reductive, there exists a
G-invariant homogeneous function F ∈ O(V ∨) of positive degree r which is not vanishing at l∗.
We can take a basis of V (and dual basis of V ∨) where the first basis vector corresponds to b.
Then the coefficient λ of xr1 in F is non-zero. Consider the algebra homomorphism

O(V ∨) = Sym∗ V → A

and let b0 ∈ AG be the image of F ∈ O(V ∨)G. Then b0 − λbr ∈ I, as this belongs to the ideal
generated by a choice of basis vectors for V ∩ I. Hence ar ∈ AG/(I ∩AG) as required. �

Remark 5.11. If G is linearly reductive, then taking G-invariants is exact, and so we can take
r = 1 in the above lemma.
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5.2. A description of the k-points of the GIT quotient.

Definition 5.12. Let G be a reductive group acting linearly on X ⊂ Pn. A k-point x ∈ X(k)
is said to be polystable if it is semistable and its orbit is closed in Xss. We say two semistable
k-points are S-equivalent if their orbit closures meet in Xss. We write this equivalence relation
on Xss(k) as ∼S-equiv. and let Xss(k)/ ∼S-equiv. denote the S-equivalence classes of semistable
k-points.

By Lemma 5.9 above, every stable k-point is polystable.

Lemma 5.13. Let G be a reductive group acting linearly on X ⊂ Pn and let x ∈ X(k) be a
semistable k-point; then its orbit closure G · x contains a unique polystable orbit. Moreover, if
x is semistable but not stable, then this unique polystable orbit is also not stable.

Proof. The first statement follows from Corollary 3.32: ϕ is constant on orbit closures and the
preimage of a k-point under ϕ contains a orbit which is closed in Xss; this is the polystable
orbit. For the second statement we note that if a semistable orbit G · x is not closed, then the
unique closed orbit in G · x has dimension strictly less than G · x by Proposition 3.15 and so
cannot be stable. �

Corollary 5.14. Let G be a reductive group acting linearly on X ⊂ Pn. For two semistable
points x, x′ ∈ Xss, we have ϕ(x) = ϕ(x′) if and only if x and x′ are S-equivalent. Moreover,
there is a bijection of sets

X//G(k) ∼= Xps(k)/G(k) ∼= Xss(k)/ ∼S-equiv.

where Xps(k) is the set of polystable k-points.

5.3. Linearisations. An abstract projective scheme X does not come with a pre-specified
embedding in a projective space. However, an ample line bundle L on X (or more precisely
some power of L) determines an embedding of X into a projective space. More precisely, the
projective scheme X and ample line bundle L, determine a finitely generated graded k-algebra

R(X,L) :=
⊕
r≥0

H0(X,L⊗r).

We can choose generators of this k-algebra: si ∈ H0(X,L⊗ri) for i = 0, , ..n, where ri ≥ 1. Then
these sections determine a closed immersion

X ↪→ P(r0, . . . , rn)

into a weighted projective space, by evaluating each point of X at the sections si. In fact, if
we replace L by L⊗m for m sufficiently large, then we can assume that the generators si of the
finitely generated k-algebra

R(X,L⊗m) =
⊕
r≥0

H0(X,L⊗mr)

all lie in degree 1. In this case, the sections si of the line bundle L⊗m determine a closed
immersion

X ↪→ Pn = P(H0(X,L⊗m)∗)

given by evaluation x 7→ (s 7→ s(x)).
Now suppose we have an action of an affine algebraic group G on X; then we would like to do

everything above G-equivariantly, by lifting the G-action to L such that the above embedding
is equivariant and the action of G on Pn is linear. This idea is made precise by the notion of a
linearisation.

Definition 5.15. Let X be a scheme and G be an affine algebraic group acting on X via a
morphism σ : G×X → X. Then a linearisation of the G-action on X is a line bundle π : L→ X
over X with an isomorphism of line bundles

π∗XL = G× L ∼= σ∗L,
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where πX : G × X → X is the projection, such that the induced bundle homomorphism
σ̃ : G× L→ L defined by

G× L

idG×π

##

∼= %%

σ̃

&&σ∗L

��

//L

π
��

G×X σ
//X.

induces an action of G on L; that is, we have a commutative square of bundle homomorphisms

G×G× L
µG×idL

��

idG×σ̃ //G× L
σ̃
��

G× L
σ̃

//L.

We say that a linearisation is (very) ample if the underlying line bundle is (very) ample.

Let us unravel this definition a little. Since σ̃ : G × L → L is a homomorphism of vector
bundles, we have

i) the projection π : L→ X is G-equivariant,
ii) the action of G on the fibres of L is linear: for g ∈ G and x ∈ X, the map on the fibres

Lx → Lg·x is linear.

Remark 5.16.

(1) The notion of a linearisation can also be phrased sheaf theoretically: a linearisation of
a G-action on X on an invertible sheaf L is an isomorphism

Φ : σ∗L → π∗XL,

where πX : G×X → X is the projection map, which satisfies the cocycle condition:

(µ× idX)∗Φ = π∗23Φ ◦ (idG × σ)∗Φ

where π23 : G×G×X → G×X is the projection onto the last two factors. If π : L→ X
denotes the line bundle associated to the invertible sheaf L, then the isomorphism Φ
determines a bundle isomorphism of line bundles over G×X:

Φ : (G×X)×πX ,X,π L→ (G×X)×σ,X,π L

and then we obtain σ̃ := πX ◦ Φ. The cocycle condition ensures that σ̃ is an action.
(2) The above notion of a linearisation of a G-action on X can be easily modified to larger

rank vector bundles (or locally free sheaves) over X. However, we will only work with
linearisations for line bundles (or equivalently invertible sheaves).

Exercise 5.17. For an action of an affine algebraic group G on a scheme X, the tensor product
of two linearised line bundles has a natural linearisation and the dual of a linearised line bundle
also has a natural linearisation. By an isomorphism of linearisations, we mean an isomorphism
of the underlying line bundles that is G-equivariant; that is, commutes with the actions of G on
these line bundles. We let PicG(X) denote the group of isomorphism classes of linearisations of
a G-action on X. There is a natural forgetful map α : PicG(X)→ Pic(X).

Example 5.18. (1) Let us consider X = Spec k with necessarily the trivial G-action. Then
there is only one line bundle π : A1 → Spec k over Spec k, but there are many linearisa-
tions. In fact, the group of linearisations of X is the character group of G. If χ : G→ Gm
is a character of G, then we define an action of G on A1 by acting by G × A1 → A1.
Conversely, any linearisation is given by a linear action of G on A1; that is, by a group
homomorphism χ : G→ GL1 = Gm.



MODULI PROBLEMS AND GEOMETRIC INVARIANT THEORY 41

(2) For any scheme X with an action of an affine algebraic group G and any character
χ : G→ Gm, we can construct a linearisation on the trivial line bundle X ×A1 → X by

g · (x, z) = (g · x, χ(g)z).

More generally, for any linearisation σ̃ on L → X, we can twist the linearisation by a
character χ : G→ Gm to obtain a linearisation σ̃χ.

(3) Not every linearisation on a trivial line bundle comes from a character. For example,
consider G = µ2 = {±1} acting on X = A1 − {0} by (−1) · x = x−1. Then the
linearisation on X × A1 → X given by (−1) · (x, z) = (x−1, xz) is not isomorphic to a
linearisation given by a character, as over the fixed points +1 and −1 in X, the action
of −1 ∈ µ2 on the fibres is given by z 7→ z and z 7→ −z respectively.

(4) The natural actions of GLn+1 and SLn+1 on Pn inherited from the action of GLn+1 on
An+1 by matrix multiplication can be naturally linearised on the line bundle OPn(1). To
see why, we note that the trivial rank n+1-vector bundle on Pn has a natural linearisation
of GLn+1 (and also SLn+1). The tautological line bundle OPn(−1) ⊂ Pn × An+1 is
preserved by this action and so we obtain natural linearisations of these actions on
OPn(±1). However, the action of PGLn+1 on Pn does not admit a linearisation onOPn(1)
(see Exercise Sheet 9), but we can always linearise any G-action on Pn to OPn(n + 1)
as this is isomorphic to the nth exterior power of the cotangent bundle, and we can lift
any action on Pn to its cotangent bundle.

Lemma 5.19. Let G be an affine algebraic group acting on a scheme X via σ : G ×X → X
and let σ̃ : G × L → L be a linearisation of the action on a line bundle L over X. Then there
is a natural linear representation G→ GL(H0(X,L)).

Proof. We construct the co-module H0(X,L)→ O(G)⊗kH0(X,L) defining this representation
by the composition

H0(X,L)
σ∗ //H0(G×X,σ∗L) ∼= H0(G×X,G× L) ∼= H0(G,OG)⊗H0(X,L)

where the final isomorphism follows from the Künneth formula and the middle isomorphism is
defined using the isomorphism G× L ∼= σ∗L. �

Remark 5.20. Suppose that X is a projective scheme and L is a very ample linearisation.
Then the natural evaluation map

H0(X,L)⊗k OX → L

is G-equivariant. Moreover, this evaluation map induces a G-equivariant closed embedding

X ↪→ P(H0(X,L)∗)

such that L is isomorphic to the pullback of the Serre twisting sheaf O(1) on this projective
space. In this case, we see that we have an embedding of X as a closed subscheme of a
projective space P(H0(X,L)∗) such that the action of G on X comes from a linear action of G
on H0(X,L)∗. In particular, we see that a linearisation naturally generalises the setting of G
acting linearly on X ⊂ Pn.

5.4. Projective GIT with respect to an ample linearisation. Let G be a reductive group
acting on a projective scheme X and let L be an ample linearisation of the G-action on X.
Then consider the graded finitely generated k-algebra

R := R(X,L) :=
⊕
r≥0

H0(X,L⊗
r
)

of sections of powers of L. Since each line bundle L⊗r has an induced linearisation, there is
an induced action of G on the space of sections H0(X,L⊗

r
) by Lemma 5.19. We consider the

graded algebra of G-invariant sections

RG =
⊕
r≥0

H0(X,L⊗
r
)G.
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The subalgebra of invariant sections RG is a finitely generated k-algebra and ProjRG is projec-
tive over RG0 = kG = k following a similar argument to above.

Definition 5.21. For a reductive group G acting on a projective scheme X with respect to an
ample line bundle, we make the following definitions.

1) A point x ∈ X is semistable with respect to L if there is an invariant section σ ∈
H0(X,L⊗

r
)G for some r > 0 such that σ(x) 6= 0.

2) A point x ∈ X is stable with respect to L if dim G ·x = dim G and there is an invariant
section σ ∈ H0(X,L⊗

r
)G for some r > 0 such that σ(x) 6= 0 and the action of G on

Xσ := {x ∈ X : σ(x) 6= 0} is closed.

We let Xss(L) and Xs(L) denote the open subset of semistable and stable points in X respec-
tively. Then we define the projective GIT quotient with respect to L to be the morphism

Xss → X//LG := ProjR(X,L)G

associated to the inclusion R(X,L)G ↪→ R(X,L).

Exercise 5.22. We have already defined notions of semistability and stability when we have a
linear action of G on X ⊂ Pn. In this case, the action can naturally be linearised using the line
bundle OPn(1). Show that the two notions of semistability agree; that is,

X(s)s = X(s)s(OPn(1)|X).

Theorem 5.23. Let G be a reductive group acting on a projective scheme X and L be an ample
linearisation of this action. Then the GIT quotient

ϕ : Xss(L)→ X//LG = Proj
⊕
r≥0

H0(X,L⊗
r
)G

is a good quotient and X//LG is a projective scheme with a natural ample line bundle L′ such
that ϕ∗L′ = L⊗n for some n > 0. Furthermore, there is an open subset Y s ⊂ X//LG such that
ϕ−1(Y s) = Xs(L) and ϕ : Xs(L)→ Y s is a geometric quotient for the G-action on Xs(L).

Proof. As L is ample, for each σ ∈ R(X,L)G+, the open set Xσ is affine and the above GIT
quotient is obtained by gluing affine GIT quotients (we omit the proof as it is very similar to
that of Theorem 5.3 and Theorem 5.6). �

Remark 5.24. In fact, the graded homogeneous ring R(X,L)G also determines an ample line
bundle L′ on its projectivisation X//LG such that R(X//LG,L

′) ∼= R(X,L)G. Furthermore,
φ∗(L′) = L⊗r for some r > 0 (for example, see [4] Theorem 8.1 for a proof of this statement).

Remark 5.25 (Variation of geometric invariant theory quotient). We note that the GIT
quotient depends on a choice of linearisation of the action. One can study how the semistable
locus Xss(L) and the GIT quotient X//LG vary with the linearisation L; this area is known
as variation of GIT. A key result in this area is that there are only finitely many distinct GIT
quotients produced by varying the ample linearisation of a fixed G-action on a projective normal
variety X (for example, see [5] and [41]).

Remark 5.26. For an ample linearisation L, we know that some positive power of L is very
ample. By definition Xss(L) = Xss(L⊗n) and Xs(L) = Xs(L⊗n) and X//LG ∼= X//L⊗nG (as
abstract projective schemes), we can assume without loss of generality that L is very ample
and so X ⊂ Pn and G acts linearly. However, we note that the induced ample line bundles on
X//LG and X//L⊗nG are different, and so these GIT quotients come with different embeddings
into (weighted) projective spaces.

Definition 5.27. We say two semistable k-points x and x′ in X are S-equivalent if the orbit
closures of x and x′ meet in the semistable subset Xss(L). We say a semistable k-point is
polystable if its orbit is closed in the semistable locus Xss(L).
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Corollary 5.28. Let x and x′ be k-points in Xss(L); then ϕ(x) = ϕ(x′) if and only if x and x′

are S-equivalent. Moreover, we have a bijection of sets

(X//LG)(k) ∼= Xps(L)(k)/G(k) ∼= Xss(L)(k)/ ∼S-equiv.

where Xps(L)(k) is the set of polystable k-points.

5.5. GIT for general varieties with linearisations. In this section, we give a more gen-
eral theorem of Mumford for constructing GIT quotients of reductive group actions on quasi-
projective schemes with respect to (not necessarily ample) linearisations.

Definition 5.29. Let X be a quasi-projective scheme with an action by a reductive group G
and L be a linearisation of this action.

1) A point x ∈ X is semistable with respect to L if there is an invariant section σ ∈
H0(X,L⊗

r
)G for some r > 0 such that σ(x) 6= 0 and Xσ = {x ∈ X : σ(x) 6= 0} is affine.

2) A point x ∈ X is stable with respect to L if dim G ·x = dim G and there is an invariant
section σ ∈ H0(X,L⊗

r
)G for some r > 0 such that σ(x) 6= 0 and Xσ is affine and the

action of G on Xσ is closed.

The open subsets of stable and semistable points with respect to L are denoted Xs(L) and
Xss(L) respectively.

Remark 5.30. If X is projective and L is ample, then this agrees with Definition 5.21 as Xσ

is affine for any non-constant section σ (see [14] III Theorem 5.1 and II Proposition 2.5).

In this setting, the GIT quotient X//LG is defined by taking the projective spectrum of the
ring R(X,L)G of G-invariant sections of powers of L. One proves that ϕ : Xss(L) → Y :=
X//LG is a good quotient by locally showing that this morphism is obtained by gluing affine
GIT quotients ϕσ : Xσ → Yσ in exactly the same way as Theorem 5.3. Then similarly to
Theorem 5.6, one proves that this restricts to a geometric quotient on the stable locus. In
particular, we have the following result.

Theorem 5.31. (Mumford) Let G be a reductive group acting on a quasi-projective scheme X
and L be a linearisation of this action. Then there is a quasi-projective scheme X//LG and a
good quotient ϕ : Xss(L) → X//LG of the G-action on Xss(L). Furthermore, there is an open
subset Y s ⊂ X//LG such that ϕ−1(Y s) = Xs(L) and ϕ : Xs(L) → Y s is a geometric quotient
for the G-action on Xs(L).

The only part of this theorem which remains to be proved is the statement that the GIT
quotient X//LG is quasi-projective. To prove this, one notes that the GIT quotient comes with
an ample line bundle L′ which can be used to give an embedding of X into a projective space.

6. Criteria for (semi)stability

Let us suppose that we have a reductive group G acting on a projective scheme X with respect
to an ample linearisation L. In order to determine the GIT semistable locus Xss(L) ⊂ X, we
need to calculate the algebra of G-invariant sections of all powers of L. In practice, there are
very few examples in which one can compute these rings of invariants by hand (or even with
the aid of a computer). In this section, we will give alternative criteria for determining the
semistability of a point. The main references for the material covered in this section are [4],
[25], [31] and [42].

We first observe that we can simplify our situation by assuming that X ⊂ Pn and the G-action
is linear. Indeed, by replacing L by some power L⊗r, we get an embedding

X ⊂ Pn = P(H0(X,L⊗r)∗)

such that OPn(1)|X = L⊗r and G acts linearly on Pn. Furthermore, by Remark 5.26, we have

an agreement of (semi)stable sets X(s)s(L) = X(s)s(L⊗r).
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6.1. A topological criterion. Let G be a reductive group acting linearly on a projective
scheme X ⊂ Pn. Then as G acts via G → GLn+1, the action of G lifts to the affine cones
X̃ ⊂ An+1. We let R(X) = O(X̃) denote the homogeneous coordinate ring of X.

Proposition 6.1. Let x ∈ X(k) and choose a non-zero lift x̃ ∈ X̃(k) of x. Then:

i) x is semistable if and only if 0 /∈ G · x̃;

ii) x is stable if and only if dimGx̃ = 0 and G · x̃ is closed in X̃.

Proof. i) If x is semistable, then there is a G-invariant homogeneous polynomial f ∈ R(X)G

which is non-zero at x. We can view f as a G-invariant function on X̃ such that f(x̃) 6= 0. As
invariant functions are constant on orbits and also their closures we see that f(G · x̃) 6= 0 and
so there is a function which separates the closed subschemes G · x̃ and 0; therefore, these closed
subschemes are disjoint.

For the converse, suppose that G · x̃ and 0 are disjoint. Then as these are both G-invariant
closed subsets of the affine variety X̃ and G is geometrically reductive, there exists a G-invariant
polynomial f ∈ O(X̃)G which separates these subsets

f(G · x̃) = 1 and f(0) = 0

by Lemma 4.29. In fact, we can take f to be homogeneous: if we decompose f into homogeneous
elements f = f0 + · · · + fr, then as the action is linear, each fi must be G-invariant and, in
particular, there is at least one G-invariant homogeneous polynomial fi which does not vanish
on G · x̃. Hence, x is semistable.

ii) If x is stable, then dimGx = 0 and there is a G-invariant homogeneous polynomial
f ∈ R(X)G such that x ∈ Xf and G · x is closed in Xf . Since Gx̃ ⊂ Gx, the stabiliser of x̃ is

also zero dimensional. We can view f as a function on X̃ and consider the closed subscheme

Z := {z ∈ X̃ : f(z) = f(x̃)}

of X̃. It suffices to show that G · x̃ is a closed subset of Z. The projection map X̃ − {0} → X
restricts to a surjective finite morphism π : Z → Xf . The preimage of the closed orbit G · x
in Xf under π is closed and G-invariant and, as π is also finite, the preimage π−1(G · x) is a
finite number of G-orbits. Since π is finite, the finite number of G-orbits in the preimage of
G ·x all have dimension equal to dimG, and so these orbits must be closed in the preimage (see
Proposition 3.15). Hence G · x̃ is closed in Z.

Conversely suppose that dimGx̃ = 0 and G · x̃ is closed in X̃; then 0 /∈ G · x̃ = G · x̃ and
so x is semistable by i). As x is semistable there is a non-constant G-invariant homogeneous
polynomial f such that f(x) 6= 0. As above, we consider the finite surjective morphism

π : Z := {z ∈ X̃ : f(z) = f(x̃)} → Xf .

Since π(G · x̃) = G ·x and π is finite, x has zero dimensional stabiliser group and G ·x is closed in
Xf . Since this holds for all f such that f(x) 6= 0, it follows that G · x is closed in Xss = ∪fXf .
Hence x is stable by Lemma 5.9. �

6.2. The Hilbert–Mumford Criterion. Suppose we have a linear action of a reductive group
G on a projective scheme X ⊂ Pn as above. In this section, we give a numerical criterion which
can be used to determine (semi)stability of a point x.

Following the topological criterion above, we see that to determine semistability, it is impor-
tant to understand the closure of an orbit. One way to study the closure of an orbit is by using
1-parameter subgroups of G.

Definition 6.2. A 1-parameter subgroup (1-PS) of G is a non-trivial group homomorphism
λ : Gm → G.

Fix x ∈ X(k) and a 1-PS λ : Gm → G. Then we let λx : Gm → X be the morphism given by

λx(t) = λ(t) · x.
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We have a natural embedding of Gm = A1−{0} ↪→ P1 given by t 7→ [1 : t]. Since X is projective,
it is proper over Spec k and so, by the valuative criterion for properness, the morphism λx :
Gm → X extends uniquely to a morphism λ̂x : P1 → X:

Gm� _

��

λx //X

��
P1 //

∃!λ̂x

;;

Spec k.

We use suggestive notation for the specialisations of this extended morphism at the zero and
infinity points of P1:

lim
t→0

λ(t) · x := λ̂x([1 : 0]) and lim
t→∞

λ(t) · x := λ̂x([0 : 1]).

In fact, we can focus on the specialisation at zero, as

lim
t→∞

λ(t) · x = lim
t→0

λ−1(t) · x.

Let y := limt→0 λ(t) · x; then y is fixed by the action of λ(Gm); therefore, on the fibre over y
of the line bundle O(1) := OPn(1)|X , the group λ(Gm) acts by a character t 7→ tr.

Definition 6.3. We define the Hilbert-Mumford weight of the action of the 1-PS λ on x ∈ X(k)
to be

µO(1)(x, λ) = r

where r is the weight of the λ(Gm) on the fibre O(1)y over y := limt→0 λ(t) · x.

From this definition, it is not so straight forward to compute this Hilbert–Mumford weight;
therefore, we will rephrase this in terms of the weights for the action on the affine cone. Recall
that OPn(1) is the dual of the tautological line bundle on Pn. Let An+1 be the affine cone over

Pn; then OPn(−1) is the blow up of An+1 at the origin. Pick a non-zero lift x̃ ∈ X̃ of x ∈ X.
Then we can consider the morphism

λx̃ := λ(−) · x̃ : Gm → X̃

which may no longer extend to P1, as X̃ is not proper. If it extends to zero (or infinity), we
will denote the limits by

lim
t→0

λ(t) · x̃ (or lim
t→∞

λ(t) · x̃).

Any point in the boundary λx̃(Gm)− λx̃(Gm) must be equal to either of these limit points.
The action of the 1-PS λ(Gm) on the affine cone An+1 is linear, and so diagonalisable by

Proposition 3.12; therefore, we can pick a basis e0, ..., en of kn+1 such that

λ(t) · ei = triei for ri ∈ Z.

We call the integers ri the λ-weights of the action on An+1. For x ∈ X(k) we can pick x̃ ∈ X̃(k)
lying above this point and write x̃ =

∑n
i=0 xiei with respect to this basis; then

λ(t) · x̃ =
n∑
i=0

trixiei

and we let λ-wt(x) := {ri : xi 6= 0} be the λ-weights of x (note that this does not depend on
the choice of lift x̃).

Definition 6.4. We define the Hilbert-Mumford weight of x at λ to be

µ(x, λ) := −min{ri : xi 6= 0}.

We will soon show that this definition agrees with the above definition. However, we first
note some useful properties of the Hilbert–Mumford weight.

Exercise 6.5. Show that the Hilbert–Mumford weight has the following properties.

(1) µ(x, λ) is the unique integer µ such that limt→0 t
µλ(t) · x̃ exists and is non-zero.
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(2) µ(x, λn) = nµ(x, λ) for positive n.
(3) µ(g · x, gλg−1) = µ(x, λ) for all g ∈ G.
(4) µ(x, λ) = µ(y, λ) where y = limt→0 λ(t) · x.

Lemma 6.6. The two definitions of the Hilbert–Mumford weight agree:

µO(1)(x, λ) = µ(x, λ).

Proof. Pick a non-zero lift x̃ in the affine cone which lies over x. Then we assume that we have
taken coordinates on An+1 as above so that the action of λ(t) is given by

λ(t) · x̃ = λ(t) · (x0, . . . , xn) = (tr0x0, . . . , t
rnxn).

Since µ(x, λ) + ri ≥ 0 for all i such that xi 6= 0, with equality for at least one i with xi 6= 0, we
see that

ỹ := lim
t→0

tµ(x,λ)λ(t) · x̃ = (y0, . . . , yn)

exists and is non-zero. More precisely, we have

yi =

{
xi if ri = −µ(x, λ)
0 else.

Therefore, λ(t) · ỹ = t−µ(x,λ)ỹ. Furthermore, ỹ lies over y := limt→0 λ(t) · x and the weight of
the λ-action on ỹ is −µ(x, λ). Since OPn(−1) is the blow up of An+1 at 0, we see that −µ(x, λ)
is the weight of the λ(Gm)-action on O(−1)y. Hence, the weight of the λ(Gm)-action on O(1)y
is µ(x, λ) and this completes the proof of the claim. �

From the second definition of the Hilbert–Mumford weight, we easily deduce the following
lemma.

Lemma 6.7. Let λ be a 1-PS of G and let x ∈ X(k). We diagonalise the λ(Gm)-action on the
affine cone as above and let x̃ =

∑n
i=0 xiei be a non-zero lift of x.

i) µ(x, λ) < 0 ⇐⇒ x̃ =
∑

ri>0 xiei ⇐⇒ limt→0 λ(t) · x̃ = 0.
ii) µ(x, λ) = 0 ⇐⇒ x̃ =

∑
ri≥0 xiei and there exists ri = 0 such that xi 6= 0 ⇐⇒

limt→0 λ(t) · x̃ exists and is non-zero.
iii) µ(x, λ) > 0 ⇐⇒ x̃ =

∑
ri
xiei and there exists ri < 0 such that xi 6= 0 ⇐⇒

limt→0 λ(t) · x̃ does not exist.

Remark 6.8. We can use λ−1 to study limt→∞ λ(t) · x̃ as

lim
t→0

λ−1(t) · x̃ = lim
t→∞

λ(t) · x̃.

Then it follows that

i) µ(x, λ−1) < 0 ⇐⇒ x̃ =
∑

ri<0 xiei ⇐⇒ limt→∞ λ(t) · x̃ = 0.

ii) µ(x, λ−1) = 0 ⇐⇒ x̃ =
∑

ri≤0 xiei and there exists ri = 0 such that xi 6= 0 ⇐⇒
limt→∞ λ(t) · x̃ exists and is non-zero.

iii) µ(x, λ−1) > 0 ⇐⇒ x̃ =
∑

ri
xiei and there exists ri > 0 such that xi 6= 0 ⇐⇒

limt→∞ λ(t) · x̃ does not exist.

Following the discussion above and the topological criterion (see Proposition 6.1), we have
the following results for (semi)stability with respect to the action of the subgroup λ(Gm) ⊂ G.

Lemma 6.9. Let G be a reductive group acting linearly on a projective scheme X ⊂ Pn. Suppose
x ∈ X(k); then

i) x is semistable for the action of λ(Gm) if and only if µ(x, λ) ≥ 0 and µ(x, λ−1) ≥ 0.
ii) x is stable for the action of λ(Gm) if and only if µ(x, λ) > 0 and µ(x, λ−1) > 0.

Proof. For i), by the topological criterion x is semistable for λ(Gm) if and only if 0 /∈ λ(Gm) · x̃,

where and x̃ ∈ X̃(k) is a point lying over x. Since any point in the boundary λ(Gm) · x̃ −
λ(Gm) · x̃ is either

lim
t→0

λ(t) · x̃ or lim
t→∞

λ(t) · x̃ = lim
t→0

λ−1(t) · x̃,
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it follows from Lemma 6.7 that x is semistable if and only if

µ(x, λ) ≥ 0 and µ(x, λ−1) ≥ 0.

For ii), by the topological criterion x is stable for λ(Gm) if and only if dimλ(Gm)x̃ = 0 and
λ(Gm) · x̃ is closed. The orbit is closed if and only if the boundary is empty; that is, if and only
if both limits

lim
t→0

λ(t) · x̃ and lim
t→∞

λ(t) · x̃ = lim
t→0

λ−1(t) · x̃

do not exist, i.e.
µ(x, λ) > 0 and µ(x, λ−1) > 0.

Furthermore, if these inequalities hold, then λ(Gm) cannot fix x̃ (as otherwise the above limits
would both exist) and so we must have that dimλ(Gm)x̃ = 0. �

Exercise 6.10. Let Gm act on P2 by t · [x : y : z] = [tx : y : t−1z]. For every point x ∈ P2

and the 1-PS λ(t) = t, calculate µ(x, λ±1) and then by using Lemma 6.9 above or otherwise,
determine Xs and Xss.

If x is (semi)stable for G, then it is (semi)stable for all subgroups H of G as every G-invariant
function is also H-invariant. Hence, for a k-point x, we have

x is semistable =⇒ µ(x, λ) ≥ 0 ∀ 1-PS λ of G,

x is stable =⇒ µ(x, λ) > 0 ∀ 1-PS λ of G.

The Hilbert-Mumford criterion gives the converse to these statements; the idea is that because
G is reductive it has enough 1-PSs to detect points in the closure of an orbit (see Theorem 6.13
below).

Theorem 6.11. (Hilbert–Mumford Criterion) Let G be a reductive group acting linearly on a
projective scheme X ⊂ Pn. Then, for x ∈ X(k), we have

x ∈ Xss ⇐⇒ µ(x, λ) ≥ 0 for all 1-PSs λ of G,
x ∈ Xs ⇐⇒ µ(x, λ) > 0 for all 1-PSs λ of G.

Remark 6.12. A 1-PS is primitive if it is not a multiple of any other 1-PS. By Exercise 6.5
ii), it suffices to check the Hilbert–Mumford criterion for primitive 1-PSs of G.

It follows from the topological criterion given in Proposition 6.1 and also from Lemma 6.9,
that the Hilbert–Mumford criterion is equivalent to the following fundamental theorem in GIT.

Theorem 6.13. [Fundamental Theorem in GIT] Let G be a reductive group acting on an affine
space An+1. If x ∈ An+1 is a closed point and y ∈ G · x, then there is a 1-PS λ of G such that
limt→0 λ(t) · x = y.

The proof of the above fundamental theorem relies on a decomposition theorem of Iwahori
which roughly speaking says there is an abundance of 1-PSs of reductive groups [17]. The proof
of this theorem essentially follows from ideas of Mumford [25] §2.1 and we delay the proof until
the end of this section.

Example 6.14. We consider the action of G = Gm on X = Pn as in Example 5.8. As the
group is a 1-dimensional torus, we need only calculate µ(x, λ) and µ(x, λ−1) for λ(t) = t as was
the case in Lemma 6.9. Suppose x̃ = (x0, . . . , xn) lies over x = [x0 : · · · : xn] ∈ Pn. Then

lim
t→0

λ(t) · x̃ = (t−1x0, tx1 . . . , txn)

exists if and only if x0 = 0. If x0 = 0, then µ(x, λ) = −1 and otherwise µ(x, λ) > 0. Similarly

lim
t→0

λ−1(t) · x̃ = (tx0, t
−1x1 . . . , t

−1xn)

exists if and only if x1 = · · · = xn = 0. If x1 = · · · = xn = 0, then µ(x, λ) = −1 and otherwise
µ(x, λ) > 0. Therefore, the GIT semistable set and stable coincide:

Xss = Xs = {[x0 : · · · : xn] : x0 6= 0 and (x1, . . . , xn) 6= 0} ⊂ Pn.
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6.3. The Hilbert–Mumford Criterion for ample linearisations. In this section we con-
sider the following more general set up: suppose X is a projective scheme with an action by a
reductive group G and ample linearisation L.

Definition 6.15. The Hilbert–Mumford weight of a 1-PS λ and x ∈ X(k) with respect to L is

µL(x, λ) := r

where r is the weight of the λ(Gm)-action on the fibre Ly over the fixed point y = limt→0 λ(t) ·x.

Remark 6.16. We note that when X ⊂ Pn and the action of G is linear that this definition is
consistent with the old definition; that is,

µOPn (1)|X (x, λ) = µ(x, λ).

Exercise 6.17. Fix x ∈ X and a 1-PS λ of G; then show µ•(x, λ) : PicG(X) → Z is a group
homomorphism where PicG(X) is the group of G-linearised line bundles on X.

Theorem 6.18. (Hilbert–Mumford Criterion for ample linearisations) Let G be a reductive
group acting on a projective scheme X and L be an ample linearisation of this action. Then,
for x ∈ X(k), we have

x ∈ Xss(L)⇐⇒ µL(x, λ) ≥ 0 for all 1-PSs λ of G,
x ∈ Xs(L)⇐⇒ µL(x, λ) > 0 for all 1-PSs λ of G.

Proof. (Assuming Theorem 6.11) As L is ample, there is n > 0 such that L⊗n is very ample.
Then since

µL
⊗n

(x, λ) = nµL(x, λ)

it suffices to prove the statement for L very ample. If L is very ample then it induces a G-
equivariant embedding i : X ↪→ Pn such that L ∼= i∗OPn(1). Then we can just apply the first
version of the Hilbert–Mumford criterion (cf. Theorem 6.11 and Remark 6.16). �

6.4. Proof of the Fundamental Theorem in GIT. In order to complete our proof of the
Hilbert–Mumford Theorem, it suffices to prove the following slightly weaker version of the
Fundamental Theorem in GIT.

Theorem 6.19. Let G be a reductive group acting linearly on An and let z ∈ An be a k-point.
If 0 lies in the orbit closure of z, then there exists a 1-PS λ of G such that limt→0 λ(t) · z = 0.

Proof. Suppose that 0 ∈ G · z; then we will split the proof into 6 steps.
Step 1. We claim there is an irreducible (but not complete and not necessarily smooth)

curve C1 ⊂ G · z which contains 0 in its closure. To prove the existence of this curve, we use
an argument similar to Bertini’s Theorem and obtain the curve by intersecting hyperplanes in
a projective completion Pn of An; the argument is given in Lemma 6.20 below.

Step 2. We claim that there is a smooth projective curve C, a rational map p : C 99K G
and a k-point c0 ∈ C such that limc→c0 p(c) · z = 0. To prove this claim, we consider the
action morphism σz : G→ An given by g 7→ g · z and find a curve C2 in G which dominates C1

under σz (see Lemma 6.21 below) and then let C be a projective completion of the normalisation

C̃2 → C2; then the rational map p : C 99K G is defined by the morphism C̃2 → C2 → G. Finally,
as the morphism C̃2 → C1 is dominant it extends to their smooth projective completions and,
as 0 lies in the closure of C1, we can take a preimage c0 ∈ C of zero under this extension. Then
limc→c0 p(c) · z = limc→c0 σz(p(c)) = 0.

Step 3. Since C is a smooth proper curve, the completion of the local ring OC,c0 of the curve
at c0 is isomorphic to the formal power series ring k[[t]], whose field of fractions is the field of
Laurent series k((t)). As the rational map p : C 99K G is defined in a punctured neighbourhood
of c0, it induces a morphism

q : K := Spec k((t)) ∼= Spec FracÔC,c0 → Spec FracOC,c0 → G

such that limt→0[q(t) · z] = 0. In Step 5, we will relate this K-valued point of G to a 1-PS.
Step 4. Let R := Spec k[[t]] and K := Spec k((t)); then there is a natural morphism K → R

and so the R-valued points of G form a subgroup of the K-valued points (i.e. G(R) ⊂ G(K))



MODULI PROBLEMS AND GEOMETRIC INVARIANT THEORY 49

whose limit as t → 0 exists. More precisely, the natural map Spec k → R induces a morphism
G(R)→ G(k) given by taking the specialisation as t→ 0.

There is a morphism K → Gm = Spec k[s, s−1] induced by the homomorphism k[s, s−1] →
k((t)) given by s 7→ t. For a 1-PS λ, we define its Laurent series expansion < λ >∈ G(K) to be
the composition of the natural morphism K → Gm with λ.

Step 5. We will use without proof the Cartan-Iwahori decomposition for G which states that
every double coset in G(K) for the subgroup G(R) is represented by a Laurent series expansion
< λ > of 1-PS of G (for example, see [25] §2.1). Therefore, as q ∈ G(K), there exists li ∈ G(R)
for i = 1, 2 and a 1-PS λ of G such that

l1 · q =< λ > ·l2
and the 1-PS λ is non-trivial, as q is not an R-valued point of G.

Step 6. Let gi := li(0) ∈ G; then following the equality in Step 5, we have

0 = g1 · 0 = lim
t→0

l1(t) · lim
t→0

(q(t) · z) = lim
t→0

[(< λ > ·l2)(t) · z] .

We claim that limt→0 λ(t) ·g2 ·z = 0 and so λ′ := g−1
2 λg2 is a 1-PS of G with limt→0 λ

′(t) ·z = 0,
which would complete the proof of the theorem. To prove the claim, we use the fact that the
action of the 1-PS λ on V = An decomposes into weight spaces Vr for r ∈ Z. Since l2 ∈ G(R)
and g2 = limt→0 l2(0), we can write l2(t) · z = g2 · z + ε(t), where ε(t) only involves strictly
positive powers of t. Then with respect to the weight space decomposition, we have

g2 · z + ε(t) =
∑
r∈Z

(g2 · z)r + ε(t)r.

Since limt→0[(< λ > ·l2)(t) · z] = 0, it follows that (g2 · z)r = 0 for r ≤ 0, which proves the claim
and completes our proof. �

Lemma 6.20. With the notation and assumptions of the previous theorem, there exists an
irreducible curve C1 ⊂ G · z which contains the origin in its closure.

Proof. Fix an embedding An ↪→ Pn and let p ∈ Pn denote the image of the origin. Let Y denote
the closure of G · z in Pn. We claim there exists a complete curve C ′1 in Y containing the point
p ∈ Pn and which is not contained entirely in the boundary Z := Y − G · z. Assuming this
claim, we obtain the desired curve C1 ⊂ G · z, by removing points of C ′1 that lie in Z. To
prove the claim, let d = dimY ; then we can assume d > 1 as otherwise Y is already a curve.
Then also n > 1. In the following section, we will see that hyperplanes in Pn are parametrised
by Pn = P(k[x0, . . . , xn]1) and the space of hyperplanes containing p is a closed codimension 1
subspace Hp ⊂ Pn. Let H be the non-empty open subset of the product of (d− 1)-copies of Hp
consisting of hypersurfaces (H1, . . . ,Hd−1) such that

(1) ∩iHi ∩ Y is a curve (generically, dim∩d−1
i=1Hi ∩ Y = dimY − (d− 1) = 1 and so this is a

non-empty open condition), and
(2) ∩iHi ∩ Y is not entirely contained in Z (this is also a non-empty open condition, as

Z ( Y is a closed subscheme).

Hence, H is a non-empty open subset of (Hp)d−1, which has dimension (n− 1)(d− 1) > 0, and
so the desired curve exists: we take C ′1 := ∩iHi ∩ Y , for (H1, . . . ,Hd−1) ∈ Hp 6= ∅. �

Lemma 6.21. With the notation and assumptions of the previous theorem, there exists a curve
C2 ⊂ G that dominates the curve C1 ⊂ G · z under the action morphism σz : G→ G · z.

Proof. Let η be the generic point of C1. As η is not a geometric point and the above arguments
about the existence of curves requires an algebraically closed field, we pick a geometric point η
over η corresponding to a choice of an algebraically closed finite field extension of k(C1). We
let σ−1

z (C1)η and σ−1
z (C1)η be the base change of the preimage to k(C1) and its fixed algebraic

closure. Then by Lemma 6.20, there exists a curve C ′2 ⊂ σ−1
z (C1)η. The curve C ′2 maps to a

curve C2 ⊂ σ−1
z (C1)η under the finite map σ−1

z (C1)η → σ−1
z (C1)η. By construction, C2 is a

curve in σ−1
z (C1) ⊂ G which dominates C1 under σz. �
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7. Moduli of projective hypersurfaces

In this section, we will consider the moduli problem of classifying hypersurfaces of a fixed
degree d in a projective space Pn up to linear change of coordinates on Pn; that is, up to the
action of the automorphism group PGLn+1 of Pn. To avoid some difficulties associated with
fields of positive characteristic, we assume that the characteristic of k is coprime to d.

7.1. The moduli problem. A non-zero homogeneous degree d polynomial F in n+1 variables
x0, . . . , xn determines a projective degree d hypersurface (F = 0) in Pn. If F is irreducible then
the associated hypersurface is an irreducible closed subvariety of Pn of codimension 1. If F
is reducible, then the associated hypersurface is a union of irreducible subvarieties of Pn of
codimension 1 counted with multiplicities. For example, the polynomial F (x0, x1) = xd0 gives a
degree d reducible hypersurface in P1: the d-fold point.

Hypersurfaces of degree d in Pn are parametrised by points in the space k[x0, . . . , xn]d − {0}
of non-zero degree d homogeneous polynomials in n+ 1 variables. This variety has dimension(

n+ d
d

)
.

As any non-zero scalar multiple of a homogeneous polynomial F defines the same hypersurface,
the projectivisation of this space

Yd,n = P(k[x0, . . . , xn]d)

is a smaller dimensional parameter space for these hypersurfaces.
The automorphism group PGLn+1 of Pn acts naturally on Yd,n = P(k[x0, . . . , xn]d) as follows.

The linear representation GLn+1 → GL(kn+1) given by acting by left multiplication induces a
linear action of GLn+1 on Pn. Consequently, there is an induced GLn+1-action on the homoge-
neous coordinate ring R(Pn) = k[x0, . . . , xn] which preserves the graded pieces k[x0, . . . , xn]d.
This determines a linear action of GLn+1 on P(k[x0, . . . , xn]d) by

(g · F )(p) = F (g−1 · p)
for g ∈ GLn+1, F ∈ k[x0, . . . , xn]d and p ∈ An+1 (we note that the inverse here makes this a
left action). This descends to an action

PGLn+1 × P(k[x0, . . . , xn]d)→ P(k[x0, . . . , xn]d).

One may expect that a moduli space for degree d hypersurfaces in Pn is given by a categor-
ical quotient of this action and we will soon show that this is the case, by proving that Yd,n
parametrises a family with the local universal property. However, the PGLn+1-action on Yn,d
is not linear, but the actions of GLn+1 and SLn+1 are both linear. Since we have a surjection
SLn+1 → PGLn+1 with finite kernel, the SLn+1-orbits are the same as the PGLn+1-orbits, and
the only small changes is that for SLn+1 there is now a global finite stabiliser group, but from the
perspective of GIT finite groups do not matter. Therefore, we will work with the SLn+1-action.

To prove the tautological family over Yd,n has the local universal property in order to apply
Proposition 3.35, we need to introduce a notion of families of hypersurfaces. Let us start
formulating a reasonable notion of families of hypersurfaces. One natural idea for a family
of hypersurfaces over S is that we have a closed subscheme X ⊂ S × Pn such that Xs =
X ∩ {s} × Pn is a degree d hypersurface. For S = Ar = Spec k[z1, . . . , zr], this is given by
H ∈ k[z1, . . . , zr, x0, . . . , xn] which is homogeneous of degree d in the variables x0, . . . , xn and
is non-zero at each point s ∈ S. In this case, a family of hypersurfaces is given by a degree
d homogeneous polynomial in n + 1 variables with coefficients in O(S). In fact, we can take
this as a local definition for our families and generalise this notion to allow coefficients in an
arbitrary line bundle L over S.

Definition 7.1. A family of degree d hypersurfaces in Pn over S is a line bundle L over S and
a tuple of sections

σ := (σi0...in : ij ≥ 0,
n∑
j=0

ij = d)
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of L such that for each k-point s ∈ S, the polynomial

F (L, σ, s) :=
∑
i0...in

σi0...in(s)xi00 . . . x
in
n

is non-zero.

We note that to make sense of this final sentence, we must trivialise L locally at s. Then the
tuple of constants σ(s) are determined up to multiplication by a non-zero scalar. In particular,
we can determine whether F (L, σ, s) is non-zero and the associated hypersurface is uniquely
determined. We denote the family by (L, σ) and the hypersurface over a k-point s by (L, σ)s :
F (L, σ, s) = 0.

Definition 7.2. We say two families (L, σ) and (L′, σ′) of degree d hypersurfaces in Pn over S
are equivalent over S if there exists an isomorphism φ : L→ L′ of line bundles and g ∈ GLn+1

such that φ ◦ σ = g · σ′.

We note that with this definition of equivalence the families (L, σ) and (L, λσ) are equivalent
for any non-zero scalar λ.

Exercise 7.3. Show that Yd,n = P(k[x0, . . . , xn]d) parametrises a tautological family of degree
d hypersurfaces in Pn with the local universal property. Deduce that any coarse moduli space
for hypersurfaces is a categorical quotient of SLn+1 acting on Yd,n as above.

Since SLn+1 is reductive, we can take a projective GIT quotient of the action on Yd,n which
is a good (and categorical) quotient of the semistable locus Y ss

d,n. There are now two problems
to address:

(1) determine the (semi)stable points in Yd,n;
(2) geometrically interpret (semi)stability of points in terms of properties of the correspond-

ing hypersurfaces.

For small values of d and n, we shall see that it is possible to give a full solution to the above
two problems, although as both values get larger the problem becomes increasingly difficult.

7.2. Singularities of hypersurfaces.

Definition 7.4. A point p in Pn is a singular point of a projective hypersurface defined by a
polynomial F ∈ k[x0, . . . , xn]d if

F (p̃) = 0 and
∂F

∂xi
(p̃) = 0 for i = 0, . . . , n,

where p̃ ∈ An+1 − {0} is a lift of p ∈ Pn. We say a hypersurface is non-singular (or smooth) if
it has no singular points.

Remark 7.5.

(1) By using the Euler formula

n∑
i=0

xi
∂F

∂xi
= d F

and the fact that d is coprime to the characteristic of k, we see that p ∈ Pn is a singular
point of F if and only if all partial derivatives ∂F/∂xi vanish at p.

(2) If we consider F as a function F : An+1 → k, then we can consider its derivative
dp̃F : Tp̃An+1 → TF (p̃)k ∼= k at p̃ ∈ An+1 − {0}. The corresponding point p ∈ Pn is a
singular point of F if and only if this derivative dp̃F is zero.

(3) Let σg : An+1 → An+1 denote the action of g ∈ G. By the chain rule, we have dg·p̃(g·F ) =
dp̃F ◦ dg·p̃σg−1 , where dpσg−1 is invertible (as σ is an action). Hence dg·p̃(g · F ) = 0 if
and only if dp̃F ; in other words p is a singular point of the hypersurface F = 0 if and
only if g · p is a singular point of the hypersurface g · F = 0 for any g ∈ G.
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The resultant polynomial of a collection of polynomials is a function in the coefficients of
these polynomials which vanishes if and only if these polynomials all have a common root; for
the existence of the resultant and how to compute it, see [7] Chapter 13 1.A.

Definition 7.6. For a polynomial F ∈ k[x0, . . . , xn]d, we define the discriminant ∆(F ) of F to
be the resultant of the polynomials ∂F/∂xi.

Then ∆ is a homogeneous polynomial in R(Yd,n) and is non-zero at F if and only if F defines
a smooth hypersurface. It follows from Remark 7.5 that ∆ is SLn+1-invariant.

Example 7.7. If d = 1, then Y1,n
∼= (Pn)∨ and as the only SLn+1-invariant homogeneous

polynomials are the constants:

k[x0, . . . , xn]SLn+1 = k,

there are no semistable points for the action of SLn+1 on Y1,n. In particular, the discriminant
∆ is constant on Y1,n. Alternatively, as the action of SLn+1 on Pn is transitive, to show
Y ss

1,n
∼= (Pn)ss = ∅, it suffices to show a single point x = [1 : 0 : · · · : 0] ∈ Pn is unstable. For this,

one can use the Hilbert-Mumford criterion: it is easy to check that if λ(t) = diag(t, t−1, 1, . . . , 1),
then µ(x, λ) < 0.

For d > 1, the discriminant is a non-constant SLn+1-invariant homogeneous polynomial on
Yd,n and as it is non-zero for all smooth hypersurfaces we have:

Proposition 7.8. For d > 1, every smooth degree d hypersurface in Pn is semistable for the
action of SLn+1 on Yd,n.

To determine whether a semistable point is stable we can check whether its stabiliser subgroup
is finite.

Example 7.9. If d = 2, then we are considering the space Y2,n of quadric hypersurfaces in Pn.
Given F =

∑
i,j aijxixj ∈ k[x0, . . . , xn]2, we can associate to F a symmetric (n + 1) × (n + 1)

matrix B = (bij) where bij = bji = aij and bii = 2aii. This procedure defines an isomorphism
between Y2,n and the space P(Sym(n+1)×(n+1)(k)) where Sym(n+1)×(n+1)(k) denotes the space of

symmetric (n+1)×(n+1) matrices. The discriminant ∆ on Y2,n corresponds to the determinant
on P(Sym(n+1)×(n+1)(k)); thus F is smooth if and only if its associated matrix is invertible. In
fact if F corresponds to a matrix B of rank r + 1, then F is projectively equivalent to the
quadratic form

x2
0 + · · ·+ x2

r .

As all non-singular quadratic forms F (x0, . . . , xn) are equivalent to x2
0 + · · ·+x2

n (after a change
of coordinates), we see that these points cannot be stable: the stabiliser of x2

0 + · · · + x2
n is

equal to the special orthogonal group SO(n + 1) which is positive dimensional. Moreover, the
discriminant generates the ring of invariants (for example, see [31] Example 4.2) and so the
semistable locus is just the set of non-singular quadratic forms. In this case, the GIT quotient
consists of a single point and this represents the fact that all non-singular quadratic forms are
projectively equivalent to x2

0 + · · ·+ x2
n.

The projective automorphism group of a hypersurface is the subgroup of the automorphism
group PGLn+1 of Pn which leaves this hypersurface invariant. For d > 2, the projective automor-
phism group of any irreducible degree d hypersurface is finite; this is a classical but non-trivial
result (see [20] Lemma 14.2). As PGLn+1 is a quotient of SLn+1 by a finite subgroup, this
implies the stabiliser subgroup of a point in Yd,n corresponding to an irreducible hypersurface
is finite dimensional. Since every smooth hypersurface is irreducible, the stabiliser group of a
smooth hypersurface is finite. In fact, one can also check that for d > 2, the orbit of a smooth
hypersurface is closed and so the following result holds.

Proposition 7.10 ([25] §4.3). For d > 2, every degree d smooth hypersurface is stable.
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7.3. The Hilbert–Mumford criterion for hypersurfaces. To determine the (semi)stable
points for the action of SLn+1 on Yd,n, we can use the Hilbert–Mumford criterion. Any 1-PS of
SLn+1 is conjugate to a 1-PS of the form

λ(t) =


tr0

tr1

. . .

trn


where ri are integers such that

∑n
i=0 ri = 0 and r0 ≥ r1 ≥ · · · ≥ rn. Then the action of λ is

diagonal with respect to the basis of the affine cone over Yd,n given by the monomials

xI = xi00 x
i1
1 . . . x

in
n ,

for I = (i0, . . . , in) a tuple of non-negative integers which sum to d. Furthermore, the weight of
each monomial xI for the action of λ is −

∑n
j=0 rjij , where the negative sign arises as we act

by the inverse of λ(t).
Let F =

∑
aIxI ∈ k[x0, . . . , xn]d − {0}, where I = (i0, . . . , in) is a tuple of non-negative

integers which sum to d and xI , and let pF ∈ Yd,n be the corresponding class. Then

µ(pF , λ) = −min{−
n∑
j=0

rjij : I = (i0, . . . , in) and aI 6= 0}

= max{
n∑
j=0

rjmj : I = (i0, . . . , in) and aI 6= 0}.

For general (d, n), there is not always a clean description of the semistable locus. However
for certain small values, we shall see that this has a nice description. In §7.4 below we discuss
the case when n = 1; in this case, a degree d hypersurface corresponds to d unordered points
(counted with multiplicity) on P1. Then in §7.5 we discuss the case when (d, n) = (3, 2); that
is, cubic curves in the projective plane P2. Both of these classical examples were studied by
Hilbert and can also be found in [25] and [31].

7.4. Binary forms of degree d. A binary form of degree d is a degree d homogeneous poly-
nomial in two variables x, y. The set of zeros of a binary form F determine d points (counted
with multiplicity) in P1. In this section we study the action of SL2 on

Yd,1 = P(k[x, y]d) ∼= Pd.

Our aim is to describe the (semi)stable locus and the GIT quotient.
One method to determine the semistable and stable locus is to compute the ring of invariants

R(Yd,1)SL2 for this action. For d ≤ 6, the ring of invariants is known due to classical computa-
tions in invariant theory going back to Hilbert and later work of Schur. For general values of
d, the ring of invariants is still unknown today, which shows how difficult it can be in general
to determine the ring of invariants. For d = 8, a list of generators of the ring of invariants
is given by work of von Gall (1880) and Shioda (1967) [38]. For d = 9, 10, generators for the
ring of invariants were calculated by Brouwer and Popoviciu in (2010). Instead, we will use
the Hilbert–Mumford criterion to obtain a complete description of the semistable locus, which
bypasses the need to calculate the ring of invariants.

Remark 7.11. If d = 1, then this corresponds to the action of SL2 on P1, for which there are
no semistable points as the only invariant functions are constant (see also Example 7.7).

Henceforth, we assume d ≥ 2 and use the Hilbert–Mumford criterion for semistability. We
fix the maximal torus T ⊂ SL2 given by the diagonal matrices

T =

{(
t 0
0 t−1

)
: t ∈ C∗

}
.
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Any primitive 1-PS of G is conjugate to the 1-PS of T given by

λ(t) =

(
t 0
0 t−1

)
.

If F (x, y) =
∑

i aix
d−iyi ∈ k[x, y]d − {0} lies over pF ∈ Yd,1, then

λ(t) · F (x, y) =
∑

t2i−daix
d−iyi

and

µ(pF , λ) = −min{2i− d : ai 6= 0} = max{d− 2i : ai 6= 0} = d− 2i0,

where i0 is the smallest integer for which ai 6= 0. Hence

(1) µ(pF , λ) ≥ 0 if and only if i0 ≤ d/2 if and only if [1 : 0] occurs with multiplicity at most
d/2.

(2) µ(pF , λ) > 0 if and only if i0 < d/2 if and only if [1 : 0] occurs as a root with multiplicity
strictly less than n/2.

By the Hilbert–Mumford criterion, pF ∈ Yd,1 is semistable if and only if µ(pF , λ
′) ≥ 0 for all

1-PSs λ′. For a general 1-PS λ′ we can write λ = g−1λ′g, then

µ(pF , λ
′) = µ(g · pF , λ).

If F has roots p1, . . . , pd ∈ P1, then g · F has roots g · p1, . . . , g · pd. As SL2 acts transitively on
P1, we deduce the following result.

Proposition 7.12. Let F ∈ k[x, y]d lie over pF ∈ Yd,1; then:

i) pF is semistable if and only if all roots of F in P1 have multiplicity less than or equal
to d/2.

ii) pF is stable if and only if all roots of F in P1 have multiplicity strictly less than d/2.

In particular, if d is odd then Y ss
d,1 = Y s

d,1 and the GIT quotient is a projective variety which is

a geometric quotient of the space of stable degree d hypersurfaces in P1.

Example 7.13. If d = 2, then the semistable locus corresponds to binary forms F with two
distinct roots and the stable locus is empty. Given any two distinct points (p1, p2) on P1, there is
a mobius transformation taking these points to any other two distinct points (q1, q2). However
this mobius transformation is far from unique; in fact given points p3 distinct from (p1, p2)
and q3 distinct from (q1, q2), there is a unique mobius transformation taking pi to qi. Hence
all semistable points have positive dimensional stabilisers and so can never be stable. As the
action on the semistable locus is transitive, the GIT quotient is just the point Spec k.

Example 7.14. If d = 3, then the stable locus (which coincides with the stable locus) consists
of forms with 3 distinct roots. We recall that given any 3 distinct points (p1, p2, p3) on P1, there
is a unique mobius transformation taking these points to any other 3 distinct points. Hence
the GIT quotient is the projective variety P0 = Spec k. In fact, the SL2-invariants have a single
generator: the discriminant

∆
(∑

aix
d−iyi

)
:= 27a2

0a
2
3 − a2

1a
2
2 − 18a0a1a2a3 + 4a0a

3
2 + 4a3

1a3

which is zero if and only if there is a repeated root.

Example 7.15. If d = 4, then we are considering binary quartics. In this case the semistable
locus is the set of degree 4 binary forms F with at most 2 repeated roots and the stable locus
is the set of points in which all 4 roots are distinct. Given 4 distinct ordered points (p1, . . . , p4)
there is a unique mobius transformation which takes this ordered set of points to (0, 1,∞, λ)
where λ ∈ A1 − {0, 1} is the cross-ratio of these points. However, the points in our case do not
have a natural ordering and so there are 6 possible values of the cross-ratio depending on how
we choose to order our points:

λ, 1− λ, 1

λ
,
λ− 1

λ
,

λ

λ− 1
,

1

1− λ
.
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The morphism f : Y s
4,1 → A1 given by(

(2λ− 1)(λ− 2)(λ+ 1)

λ(λ− 1)

)3

is symmetric in the six possible values of the cross-ratio, and so is SL2-invariant. It is easy to
check that f is surjective and in fact an orbit space: for each value of f in A1−{0,−27}, there
are six distinct possible choices for λ as above and so this corresponds to a unique stable orbit.
For the values 0 (resp. −27), there are 3 (resp. 2) possible values for λ and these correspond
to a unique stable orbit.

The strictly semistable points have either one or two double roots and so correspond to two
orbits. The orbit consisting of one double root is not closed: its closure contains the orbit
of points with two double roots (imagine choosing a family of mobius transformations ht that
sends (p, p, q, r) to (1, 1, 0, t), then as t → 0, we see that the point (1, 1, 0, 0) lies in this orbit
closure). This suggests that the GIT quotient Y4,1//SL2 is P1, the single point compactification
of A1.

In fact, this is true: there are two independent generators for the SL2-invariants of binary
quartics (called the I and J invariants - for example, see [31] Example 4.5 or [4], where they
are called S and T ) and the good quotient is ϕ : Y ss

4,1 → P1.

7.5. Plane cubics. In this section, we study moduli of degree 3 hypersurfaces in P2; that is,
plane cubic curves. We write a degree 3 homogeneous polynomial F in variables x, y, z as

F (x, y, z) =
3∑
i=0

3−i∑
j=0

aijx
3−i−jyizj .

We want to describe all plane cubic curves up to projective equivalence; that is, describe the
quotient for the action of SL3 on Y3,2. For simplicity, we assume that the characteristic of k is
not equal to 2 or 3.

An important classical result about the intersection of plane curves is Bézout’s Theorem,
which says for two projective plane curves C1 and C2 in P2 with no common components, the
number of points of intersection of C1 and C2 counted with multiplicities is equal to the product
of the degrees of these curves. The fact that k is algebraically closed is crucial for this result. For
a basic introduction to algebraic curves and an elementary proof of Bézout’s Theorem, see [19].
In this section, we will use without proof the following easy applications of Bézout’s Theorem.

Proposition 7.16. (1) Any non-singular projective plane curve C ⊂ P2 is irreducible.
(2) Any irreducible projective plane curve C ⊂ P2 has at most finitely many singular points.

Furthermore, Bézout’s Theorem can be used to obtain a classification of plane curves of low
degree.

Lemma 7.17. Any irreducible plane conic C ⊂ P2 is projectively equivalent to the conic defined
by x2 + yz = 0, which is isomorphic to P1.

Proof. By the above proposition, C has only finitely many singular points, and so we can choose
coordinates so that [0 : 1 : 0] ∈ C is non-singular and the tangent line to the curve at this point
is the line z = 0. Then we must have that C is the zero locus of a polynomial

P (x, y, z) = ayz + bx2 + cxz + dz2

and, as P is irreducible, we must have b 6= 0. Since ∂P (p)/∂z 6= 0, we have a 6= 0. Then the

change of coordinates x′ :=
√
bx, y′ := ay+ cx+ dz, z′ := z transforms the above conic into the

desired form.
Finally, for C : (x2 + yz = 0), we have an isomorphism f : C → P1 given by

f([x : y : z]) =

{
[x : y] if y 6= 0
[−z : x] if z 6= 0.

The inverse of f is f−1 : P1 → C given by [u : v] 7→ [uv : v2 : −u2]. �
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This enables us to easily classify all reducible plane cubics up to projective equivalence, as any
reducible plane conic is either the union of an irreducible conic with a line or a union of three
lines. In fact, one can also prove that two reducible plane cubics are projectively equivalent if
and only if they are isomorphic. If the reducible plane cubic curve is a union of a line and a
conic, then the line can either meet the conic at two distinct points or a single point (so that
the line is tangent to the conic). By the above lemma, the irreducible conic is projectively
equivalent to y2 + xz = 0. As the projective automorphism group of this conic acts transitively
on the set of tangents lines to this conic and the set of lines meeting the conic at two distinct
points, any reducible cubic which is a union of a conic and a line is projectively equivalent to
either

• (xz + y2)y = 0, where the line meets the conic in two distinct points, or
• (xz + y2)z = 0, where the line meets the conic tangentially.

If the reducible cubic curve is a union of three lines, there are four possibilities: one line occurring
with multiplicity three; a union of a double line with another distinct line; a union of three lines
meeting in a single intersection point; a union of three lines which meet in three intersection
points. Since the group of projective transformations acts transitively on the space of 3 lines,
we see that a reducible cubic curve which is a union of three lines is projectively equivalent to
either

• y3 = 0 (a triple line), or
• y2(y + z) = 0 (a union of a double line with a distinct line), or
• yz(y + z) = 0 (three concurrent lines), or
• xyz = 0 (three non-concurrent lines).

The above reducible plane cubics contain a singular point at [1 : 0 : 0]. In fact, we can define
a notion of multiplicities for singularities to distinguish between different types of singularities.
For a plane cubic, all points have multiplicity at most 3.

Definition 7.18. A singular point at p of cubic curved defined by F (x, y, z) = 0 is a triple point
if all second order partial derivatives of F vanish at p; otherwise we say p is a double point. A
non-singular point is called a single point or point of multiplicity 1.

Example 7.19. The cubics defined by y3 = 0 (a triple line), y2(y+ z) = 0 (a union of a double
line with a distinct line), yz(y + z) = 0 (three concurrent lines) all contain a triple point at
[1 : 0 : 0]. The cubic defined by xyz = 0 (three non-concurrent lines) has three double points:
[1 : 0 : 0], [0 : 1 : 0] and [0 : 0 : 1]. The cubic defined by (xz+y2)y = 0 (a union of an irreducible
conic with a non-tangential line) has two double points: [1 : 0 : 0] and [0 : 0 : 1]. The cubic
defined by (xz + y2)z = 0 (a union of an irreducible conic with a tangential line) has a single
double point at [1 : 0 : 0] (with a single tangent direction).

Since tangent lines will play an important role in the classification of semistable plane cubics,
we recall their definition. Every non-singular point has a single tangent line, whereas singular
points have multiple tangents.

Definition 7.20. Let p = [p0 : p1 : p2] be a point of a plane algebraic curve C : (F (x, y, z) = 0).

(1) If p is a non-singular point, then the tangent line to C at p is given by

∂F (p̃)

∂x
x+

∂F (p̃)

∂y
y +

∂F (p̃)

∂z
z = 0

where p̃ = (p0, p1, p2).
(2) If p = [p0 : p1 : p2] is a double point of C; then the tangent lines to C at p are given by

the degree 2 homogeneous polynomial

0 = (x− p0, y − p1, z − p2)


∂2F (p̃)
∂x2

∂2F (p̃)
∂y∂x

∂2F (p̃)
∂z∂x

∂2F (p̃)
∂x∂y

∂2F (p̃)
∂y2

∂2F (p̃)
∂z∂y

∂2F (p̃)
∂x∂z

∂2F (p̃)
∂y∂z

∂2F (p̃)
∂z2


 x− p0

y − p1

z − p2

 .
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The 3 × 3 matrix appearing in this expression is called the Hessian of F at p̃ and has
rank 0 < r < 3 as p̃ is a double point. As the Hessian does not have full rank, the above
equation for the tangent lines factorises into a product of two linear polynomials.

For a plane cubic C, there are two types of singular double points:

(1) A node (or ordinary double point) is a double point with two distinct tangent lines (which
is a self intersection of the curve, so that both branches of the curve have distinct tangent
lines at the intersection point).

(2) A cusp is a double point with a single tangent line of multiplicity two (which is not a
self intersection point of the curve).

Example 7.21. Let F1(x, y, z) = xz2 + y3 + y2x and F2(x, y, z) = xz2 + y3. The corresponding
cubics are irreducible and have a singular point at p = [1 : 0 : 0]. The point p is a double point
which is a node of the first cubic corresponding to (F1 = 0) as the tangent lines are given by

0 = y2 + z2 = (y −
√
−1z)(y +

√
−1z).

The point p is a double point of the second cubic corresponding to (F2 = 0), which is a cusp as
the tangent lines are given by

0 = z2.

Exercise 7.22. Fix a non-zero homogeneous polynomial

F (x, y, z) =

3∑
i=0

3−i∑
j=0

aijx
3−i−jyizj

of degree 3 and let C be the plane cubic curve defined by F = 0. For p = [1 : 0 : 0] ∈ P2, show
the following statements hold.

i) p ∈ C if and only if a00 = 0.
ii) p is a singular point of F if and only if a00 = a10 = a01 = 0.
iii) p is a triple point of F if and only if a00 = a10 = a01 = a11 = a20 = a02 = 0.
iv) If p = [1 : 0 : 0] is a double point of F , then its tangent lines are defined by

a20y
2 + a11yz + a02z

2 = 0.

For non-singular plane cubics, we have a classification following Bézout’s Theorem in terms
of Legendre cubics or Weierstrass cubics. It is important for the following classification, that
we remember that the characteristic of k is assumed to be not equal to 2 or 3.

Proposition 7.23. Let C ⊂ P2 be an irreducible plane cubic curve.

(1) If C is non-singular it is projectively equivalent to a Legendre cubic of the form

y2z = x(x− z)(x− λz)

for some λ ∈ k − {0, 1}.
(2) C is projectively equivalent to a Weierstrass cubic of the form

y2z = x3 + axz2 + bz3

for scalars a and b.

Proof. i) Let C be a non-singular plane cubic defined by P (x, y, z) = 0. The Hessian HP of P is
the degree 3 polynomial which is the determinant of the 3×3 matrix of second order derivatives
of P . By Bézout’s theorem, HP and P have at least one common solution, which gives a point
p ∈ C known as an inflection point. By a change of coordinates, we can assume p = [0 : 1 : 0]
and the tangent line TpC is defined by z = 0. Hence P , ∂P/∂x, ∂P/∂y and HP all vanish at p,
but ∂P/∂z is non-zero at p. It follows from the Euler relations that

HP (p) = −4

(
∂P

∂z
(p)

)2 ∂2P

∂x2
(p)
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and so also ∂2P/∂x2(p) = 0. Hence, P does not involve the monomials y3, xy2 and x2y.
Therefore,

P (x, y, z) = Q(x, z) + yz(αx+ βy + γz)

where Q is homogeneous of degree 3 and β 6= 0. After a change of coordinates in the y variable,
we may assume that

P (x, y, z) = R(x, z) + y2z

for R a degree 3 homogeneous polynomial in x and z. Since C is non-singular, z does not divide
R; that is, the coefficient of x3 in R is non-zero. We can factorise this homogeneous polynomial
in two variables as:

R(x, z) = u(x− az)(x− bz)(x− cz)
where u 6= 0 and a, b, c are distinct as C is non-singular. Let λ = (b − c)/(b − a); then one
further change of coordinates reduces the equation to a Legendre cubic. As the characteristic
of k is not equal to 3, any Legendre cubic can be transformed into a Weierstrass cubic by a
change of coordinates.

ii) It suffices to consider irreducible singular plane conics. By a change of coordinates, we
can assume that [0 : 0 : 1] is a singular point and the equation of our cubic has the form

zQ(x, y) +R(x, y) = 0

where Q is homogeneous of degree 2 and R is homogeneous of degree 3. After a linear change of
variables in x, y, the degree 2 polynomial Q in two variables is either Q(x, y) = y2 or Q(x, y) =
xy. T he first case corresponds to a cuspidal cubic and the second case corresponds to a nodal
cubic; we merely sketch the argument below and refer to [4] §10.3 for further details, where a
classification for fields of characteristic 2 and 3 is also given.

Consider the first case: Q(x, y) = y2. Then our conic has the form

y2z + ax3 + bx2y + cxy2 + dy3 = 0

where a 6= 0, as the conic is irreducible. By a linear change in the z-coordinate, we can assume
c = d = 0 and by scaling x, we may assume a = 1. A final change of coordinates which fixes
the singular point [0 : 0 : 1] and moves the unique non-singular inflection point to [0 : 1 : 0],
with tangent line z = 0, reduces the equation to zy2 = x3, which is the Weierstrass cusp.

Consider the second case: Q(x, y) = xy. Then our conic has the form

xyz + ax3 + bx2y + cxy2 + dy3 = 0.

By the change of coordinates in z, we can assume b = c = 0. Since C is irreducible, both a
and d must be non-zero and so we can scale them to both be 1. After one more change of
coordinates, we obtain a nodal Weierstrass form: y2z = x2(x+ y). �

Remark 7.24. The constant λ occurring in the Legendre cubic is not unique: it depends on
which two roots of the cubic equation are sent to 0 and 1. Hence, there are 6 possible choices
of λ for each non-singular cubic: λ, 1−λ, 1/λ, 1/(1−λ), λ/(λ− 1) and (λ− 1)/λ. Similarly, in
the Weierstrass cubic, the constants a and b are not unique: as a change of coordinates y′ = η3y
and x′ = η2x gives a new Weierstrass cubic with a′ = η4a and b′ = η6b.

Weierstrass cubics arise in the study of elliptic curves, which are classified up to isomorphism
using the j-invariant. Elliptic curves are the non-singular Weierstrass cubics (those for which
4a3+27b2 6= 0). Two elliptic curves are isomorphic if and only if they have the same j-invariant,
where

j = 1738
4a3

4a3 + 27b2
.

In terms of the Legendre cubic, we can write the j-invariant in terms of λ as

j =
256(λ2 − λ+ 1)3

λ2(λ− 1)2
.

For further details on elliptic curves and the j-invariant, see [14] IV §4.
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This classification of plane cubics does not tell us anything about which ones are (semi)stable.
We will use the Hilbert–Mumford criterion to give a complete description of the (semi)stable
locus. Any 1-PS of SL3 is conjugate to a 1-PS of the form

λ(t) =

 tr0

tr1

tr2


where ri are integers such that

∑2
i=0 ri = 0 and r0 ≥ r1 ≥ r2. It is easy to calculate that

µ(F, λ) = −min{−(3− i− j)r0 − ir1 − jr2 : aij 6= 0} = max{(3− i− j)r0 + ir1 + jr2 : aij 6= 0}.

Lemma 7.25. A plane cubic curve C is semistable if and only if it has no triple point and
no double point with a unique tangent. A plane cubic curve C is stable if and only if it is
non-singular.

Proof. Let C be defined by the vanishing of the non-zero degree 3 homogeneous polynomial

F (x, y, z) =
3∑
i=0

3−i∑
j=0

aijx
3−i−jyizj .

If F (or really the class of F in Y3,n) is not semistable, then by the Hilbert–Mumford criterion
there is a 1-PS λ of SL3 such that µ(F, λ) < 0. For some g ∈ SL3, the 1-PS λ′ := gλg−1 is of
the form λ′(t) = diag(tr0 , tr1 , tr2) for integers r0 ≥ r1 ≥ r2 which satisfy

∑
ri = 0. Then

µ(g · F, λ′) = µ(F, λ) < 0.

Let us write F ′ := g · F =
∑

i,j a
′
ijx

3−i−jyizj ; then

λ′(t) · F ′(x, y, z) =
∑
i,j

t−r0(3−i−j)−r1i−r2ja′ijx
3−i−jyizj .

Since µ(F ′, λ′) < 0, we conclude that

−min{−r0(3− i− j)− r1i− r2j : a′ij 6= 0} = max{r0(3− i− j) + r1i+ r2j : a′ij 6= 0} < 0;

that is, all weights of F ′ must be positive. The inequalities r0 ≥ r1 ≥ r2 imply that the
monomials with non-positive weights are: x3, x2y (which have strictly negative weights), and
xy2, x2z, and xyz. Hence, µ(F, λ) < 0 implies a′00 = a′10 = a′20 = a′11 = a′01 = 0 and so
p = [1 : 0 : 0] is a singular point of F ′ by Exercise 7.22. Then g−1 · p is a singular point of
F = g−1 · F ′. Moreover, if a′02 = 0 also then [1 : 0 : 0] is a triple point of F ′ and if a02 6= 0 then
[1 : 0 : 0] is a double point with a single tangent.

Suppose that F =
∑
aijx

3−i−j
0 xi1x

j
2 has a double point with a unique tangent or triple point,

then we can assume without loss of generality (by using the action of SL3) that this point is
p = [1 : 0 : 0] and that a00 = a10 = a01 = a20 = a11 = 0. Then if λ(t) = diag(t3, t−1, t−2), we
see µ(F, λ) < 0. Therefore F is semistable if and only if it has no triple point or double point
with a unique tangent.

For the second statement, if p is a singular point of C defined by F = 0, then using the SL3-
action, we can assume p = [1 : 0 : 0] and so a00 = a10 = a01 = 0. For λ(t) = diag(t2, t−1, t−1),
we see µ(F, λ) ≤ 0 by direct calculation; that is, F is not stable.

It remains to show that if F is not stable then F is not smooth. Without loss of generality,
using the Hilbert–Mumford criterion and the action of SL3 we can assume that µ(F, λ) ≤ 0
for λ(t) = diag(tr0 , tr1 , tr2) where r0 ≥ r1 ≥ r2 and

∑
ri = 0. In this case, we must have

a00 = a10 = 0, as x3 and x2y have strictly negative weights. If also a01 = 0, then p = [1 : 0 : 0]
is a singular point as required. If a01 6= 0, then

(1) 0 ≥ µ(F, λ) ≥ (2r0 + r2).

The inequalities between the ri imply that we must have equality in (1) and so r1 = r0 and
r2 = −2r0. Then

µ(F, λ) = max{(3− 3j)r0 : aij = 0} ≤ 0
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and r0 > 0; thus a20 = a30 = 0. In this case, F is reducible, as z divides F , and any reducible
plane cubic has a singular point. �

There are three strictly semistable orbits:

(1) nodal irreducible cubics,
(2) cubics which are a union of a conic and a non-tangential line, and
(3) cubics which are the union of three non-concurrent lines.

The lowest dimensional strictly semistable orbit, which is the orbit of three non-concurrent lines
(this has a two dimensional stabiliser group and so the orbit has dimension 6 = dim SL3− 2), is
closed in the semistable locus. One can show that the closure of the orbit of nodal irreducible
cubics (which is 8 dimensional) contains both other strictly semistable orbits. In particular, the
compactification of the geometric quotient Y s

3,2 → Y s
3,2/SL3 of smooth cubics is given by adding

a single point corresponding to these three strictly semistable orbits.
The geometric quotient of the stable locus classifies isomorphism classes of non-singular plane

cubics, and so via the theory of elliptic curves and the j-invariant, is isomorphic to A1 (see [14]
IV Theorem 4.1). Hence its compactification, which is a good quotient of Y ss

3,2, is P1.

The ring of invariants R(Y3,2)SL2 is known to be freely generated by two invariants S and T
by a classical result of Aaronhold (1850). In terms of the Weierstrass normal form, we have

S =
a

27
T =

4b

27
,

which both vanish on the cuspidal Weierstrass cubic (where a = b = 0), and S 6= 0 for the nodal
Weierstrass cubic, which is strictly semi-stable.

Finally, we list the unstable orbits: cuspidal cubics, cubics which are the union of a conic
and a tangent line, cubics which are the union of three lines with a common intersection, cubics
which are the union of a double line with a distinct line and cubics which are given by a triple
line.

8. Moduli of vector bundles on a curve

In this section, we describe the construction of the moduli space of (semi)stable vector bundles
on a smooth projective curve X (always assumed to be connected) using geometric invariant
theory.

The outline of the construction follows the general method described in §2.6. First of all,
we fix the available discrete invariants, namely the rank n and degree d. This gives a moduli
problemM(n, d), which is unbounded by Example 2.22. We can overcome this unboundedness
problem by restricting to moduli of semistable vector bundles and get a new moduli problem
Mss(n, d). This moduli problem has a family with the local universal property over a scheme
R. Moreover, we show there is a reductive group G acting on R such that two points lie in
the same orbits if and only if they correspond to isomorphic bundles. Then the moduli space
is constructed as a GIT quotient of the G-action on R. In fact, the notion of semistability
for vector bundles was introduced by David Mumford following his study of semistability in
geometric invariant theory, and we will see both concepts are closely related.

The construction of the moduli space of stable vector bundles on a curve was given by Seshadri
[37], and later Newstead in [30, 31]. In these notes, we will essentially follow the construction
due to Simpson [39] which generalises the curve case to a higher dimensional projective scheme.
An in-depth treatment of the general construction following Simpson can be found in the book
of Huybrechts and Lehn [16]. However, we will exploit some features of the curve case to simplify
the situation; for example, we directly show that the family of semistable vector bundles with
fixed invariants over a smooth projective curve is bounded, without using the Le Potier-Simpson
estimates which are used to show boundedness in higher dimensions.

Convention: Throughout this section, X denotes a connected smooth projective curve. By
‘sheaf’ on a scheme Y , we always mean a coherent sheaf of OY -modules.
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8.1. An overview of sheaf cohomology. We briefly recall the definition of the cohomology
groups of a sheaf F over X. By definition, the sheaf cohomology groups H i(X,F) are obtained
by taking the right derived functors of the left exact global sections functor Γ(X,−). Therefore,

H0(X,F) ∼= Γ(X,F).

As X is projective, H i(X,F) are finite dimensional k-vector spaces and, as X has dimension
1, we have H i(X,F) = 0 for i > 1. The cohomology groups can be calculated using Cech
cohomology. The first Cech cohomology group is the group of 1-cochains modulo the group
of 1-coboundaries. More precisely, given a cover U = {Ui} of X, we let Uij = Ui ∩ Uj and
Uijk = Ui ∩ Uj ∩ Uk denote the double and triple intersections; then we define

H1(U ,F) := Z1(U ,F)/B1(U ,F)

where

Z1(U ,F) := Ker δ1 = {(fij) ∈
⊕
i,j

H0(Uij ,F) : ∀i, j, k, fij − fjk + fki = 0 ∈ F(Uijk)}

B1(U ,F) := Image δ0 = {(hi − hj) for (hi) ∈
⊕
i

F(Ui)}

are the group of 1-cochains and 1-coboundaries respectively. If V is a refinement of U , then there
is an induced homomorphism H1(U ,F)→ H1(V,F) and the first cohomology group H1(X,F)
is the direct limit of the groups H1(U ,F) over all covers U of X. In fact, these definitions of
Cech cohomology groups make sense for any scheme X and any coherent sheaf F ; however,
higher dimensional X, will in general have non-zero higher degree cohomology groups.

The above definition does not seem useful for computational purposes, but it is because of
the following vanishing theorem of Serre.

Theorem 8.1 ([14] III Theorem 3.7). Let Y be an affine scheme and F be a coherent sheaf on
Y ; then for all i > 0, we have

H i(Y,F) = 0.

Consequently, we can calculate cohomology of coherent sheaves on a separated scheme using
an affine open cover.

Theorem 8.2 ([14] III Theorem 4.5). Let Y be a separated scheme and U be an open affine
cover of Y . Then for any coherent sheaf F on Y and any i ≥ 0, the natural homomorphism

H i(U ,F)→ H i(Y,F)

is an isomorphism.

The assumption that Y is separated is used to ensure that the intersection of two open affine
subsets is also affine (see [14] II Exercise 4.3). Hence, we can apply the above Serre vanishing
theorem to all multi-intersections of the open affine subsets in the cover U .

Exercise 8.3. Using the above theorem, calculate the sheaf cohomology groups

H i(P1,OP1(n))

by taking the standard affine cover of P1 consisting of two open sets isomorphic to A1.

One of the main reasons for introducing sheaf cohomology is that short exact sequences of
coherent sheaves give long exact sequences in cohomology. The category of coherent sheaves
on X is an abelian category, where a sequence of sheaves is exact if it is exact at every stalk.
Furthermore, a short exact sequence of sheaves

0→ E → F → G → 0

induces a long exact sequence in sheaf cohomology

0→ H0(X, E)→ H0(X,F)→ H0(X,G)→ H1(X, E)→ H1(X,F)→ H1(X,G)→ 0,

which terminates at this point as dimX = 1.
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Definition 8.4. For a coherent sheaf F on X, we let hi(X,F) = dimH i(X,F) as a k-vector
space. Then we define the Euler characteristic of F by

χ(F) = h0(X,F)− h1(X,F).

In particular, the Euler characteristic is additive on short exact sequences:

χ(F) = χ(E) + χ(G).

8.2. Line bundles and divisors on curves.

Example 8.5.

(1) For x ∈ X, we let OX(−x) denote the sheaf of functions vanishing at x; that is, for
U ⊂ X, we have

OX(−x)(U) = {f ∈ OX(U) : f(x) = 0}.
By construction, this is a subsheaf of OX and, in fact, OX(−x) is an invertible sheaf on
X.

(2) For x ∈ X, we let kx denote the skyscraper sheaf of x whose sections over U ⊂ X are
given by

kx(U) :=

{
k if x ∈ U
0 else.

The skyscraper sheaf is not a locally free sheaf; it is a torsion sheaf which is supported
on the point x. Since H0(X, kx) = kx(X) = k and H1(X, kx) = 0, we have χ(kx) = 1.

There is a short exact sequence of sheaves

(2) 0→ OX(−x)→ OX → kx → 0

where for U ⊂ X, the homomorphism OX(U) → kx(U) is given by evaluating a function
f ∈ OX(U) at x if x ∈ U . We can tensor this exact sequence by an invertible sheaf L to obtain

0→ L(−x)→ L → kx → 0

where L(−x) is also an invertible sheaf, whose sections over U ⊂ X are the sections of L over
U which vanish at x. Hence, we have the following formula

(3) χ(L) = χ(L(−x)) + 1.

Definition 8.6. Let X be a smooth projective curve.

(i) A Weil divisor on X is a finite formal sum of points D =
∑

x∈X mxx, for mx ∈ Z.
(ii) The degree of D is degD =

∑
mx.

(iii) We say D is effective, denoted D ≥ 0, if mx ≥ 0 for all x.
(iv) For a rational function f ∈ k(X), we define the associated principal divisor

div(f) =
∑

x∈X(k)

ordx(f)x,

where ordx(f) is the order of vanishing of f at x (as OX,x is a discrete valuation ring,
we have a valuation ordx : k(X)∗ → Z).

(v) We say two divisors are linearly equivalent if their difference is a principal divisor.
(vi) For a Weil divisor D, we define an invertible sheaf OX(D) by

OX(D)(U) := {0} ∪ {f ∈ k(X)∗ : (divf +D)|U ≥ 0}.

Remark 8.7.

(1) For D = −x, this definition of OX(D) coincides with the definition of OX(−x) above.
(2) As X is smooth, the notions of Weil and Cartier divisors coincide. The above construc-

tion D 7→ OX(D) determines a homomorphism from the group of Weil divisors modulo
linear equivalence to the Picard group of isomorphism classes of line bundles, and this
homomorphism is an isomorphism as X is smooth. In particular, any invertible sheaf L
over X is isomorphic to an invertible sheaf OX(D). For proofs of these statements, see
[14] II §6.
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For an effective divisor D, the dual line bundle O(−D) is isomorphic to the ideal sheaf of the
(possibly non-reduced) subscheme D ⊂ X given by this effective divisor (see [14] II Proposition
6.18) and we have a short exact sequence

(4) 0→ OX(−D)→ OX → kD → 0,

where kD denotes the skyscraper sheaf supported on D; thus kD is a torsion sheaf. This short
exact sequence generalises the short exact sequence (2). In particular, any effective divisor
admits a non-zero section OX → OX(D). In fact, a line bundle OX(D) admits a non-zero
section if and only if D is linearly equivalent to an effective divisor D by [14] II Proposition 7.7.

Definition 8.8. The Grothendieck group of X, denoted K0(X), is the free group generated by
classes [E ] ,for E a coherent sheaf on X, modulo the relations [E ]− [F ] + [G] = 0 for short exact
sequences 0→ E → F → G → 0.

We claim that there is a homomorphism

(5) (det, rk) : K0(X)→ Pic(X)⊕ Z

which sends a locally free sheaf E to (det E := ∧rk EE , rk E). To extend this to a homomorphism
on K0(X), we need to define the map for coherent sheaves F : for this, we can take a finite
resolution of F by locally free sheaves, which exists because X is smooth, and use the relations
defining K0(X). This map is surjective and in fact is an isomorphism (see [14] II, Exercise
6.11). Using this homomorphism we can define the degree of any coherent sheaf on X.

Definition 8.9. (The degree of a coherent sheaf).

(i) If D is a divisor, we define degOX(D) := degD.
(ii) If F is a torsion sheaf, we define degF =

∑
x∈X length(Fx).

(iii) If E is a locally free sheaf, deg E = deg(det E).
(iv) If F is a coherent sheaf, we define deg E := deg(detF), where detF is the image of F

in Pic(X) under the homomorphism (5).

In fact, the degree is uniquely determined by the first two properties and the fact that
the degree is additive on short exact sequences (that is, if we have a short exact sequence
0→ E → F → G → 0, then degF = deg E + deg G); see [14] II, Exercise 6.12.

Example 8.10. The skyscraper sheaf kx has degree 1.

8.3. Serre duality and the Riemann-Roch Theorem.

Proposition 8.11 (Riemann-Roch Theorem, version I). Let L = OX(D) be an invertible sheaf
on a smooth projective curve X. Then

χ(OX(D)) = χ(OX) + degD

Proof. We can write D = x1 + · · · + xn − y1 − · · · − ym and then proceed by induction on
n+m ∈ Z. The base case where D = 0 is immediate. Now assume that the equality has been
proved for D; then we can deduce the statement for D+x (and D−x) from the equality (3). �

Definition 8.12. For a smooth projective curve X, the sheaf of differentials ωX := Ω1
X on X

is called the canonical sheaf. The genus of X is g(X) := h0(X,ωX).

The canonical bundle is a locally free sheaf of rank 1 = dimX; see [14] II Theorem 8.15.

Theorem 8.13 (Serre duality for a curve). Let X be a smooth projective curve and E be a
locally free sheaf over X. There exists a natural perfect pairing

H0(X, E∨ ⊗ ωX)×H1(X, E)→ k.

Hence, H0(X, E∨ ⊗ ωX) ∼= H1(X, E)∨ and h0(X, E∨ ⊗ ωX) = h1(X, E).

Remark 8.14.
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(1) Once one chooses an isomorphism H1(X,ωX) ' k, the pairing can be described as the
composition

H0(X, E∨ ⊗ ωX)×H1(X, E)→ H1(X, E∨ ⊗ E ⊗ ωX)→ H1(X,ωX) ' k
where the first map is a cup-product and the map E∨ ⊗ E → OX is the trace.

(2) In fact, Serre duality can be generalised to any projective scheme (see [14] III Theorem
7.6 for the proof) where ωX is replaced by a dualising sheaf. If Y is a smooth projective
variety of dimension n, then the dualising sheaf is the canonical sheaf ωY = ∧nΩY ,
which is the nth exterior power of the sheaf of differentials, and the first cohomology
group is replaced by the nth cohomology group.

An important consequence of Serre duality on curves is the Riemann–Roch Theorem.

Theorem 8.15 (Riemann–Roch theorem, version II). Let X be a smooth projective curve of
genus g and let L be a degree d invertible sheaf on X. Then

h0(X,L)− h0(X,L∨ ⊗ ωX) = d+ 1− g.

Proof. First, we use Serre duality to calculate the Euler characteristic of the structure sheaf

χ(OX) := h0(X,OX)− h1(X,OX) = 1− h0(X,ωX) = 1− g.
Then by Serre duality and the baby version of Riemann–Roch it follows that

h0(X,L)− h0(X,L∨ ⊗ ωX) = χ(L) = d+ χ(O(X)) = d+ 1− g
as required. �

There is a Riemann–Roch formula for locally free sheaves due to Weil. The proof is given
by induction on the rank of the locally free sheaf with the above version giving the base case.
To go from a given locally free sheaf E to a locally free sheaf of lower rank E ′ one uses a short
exact sequence

0→ L → E → E ′ → 0,

where L is an invertible subsheaf of E of maximal degree (this forces the quotient E ′ to be locally
free; see Exercise 8.23 for the existence of such a short exact sequence).

Corollary 8.16 (Riemann–Roch for locally free sheaves on a curve). Let X be a smooth pro-
jective curve of genus g and F be a locally free sheaf of rank n and degree d over X. Then

χ(F) = d+ n(1− g).

Example 8.17. On a curve X of genus g, the canonical bundle has degree 2g − 2 by the
Riemann–Roch Theorem:

h0(X,ωX)− h1(X,OX) = g − 1 = degωX + 1− g.
Therefore, on P1, we have ωP1 = OP1(−2).

8.4. Vector bundles and locally free sheaves. We will often use the equivalence between
the category of algebraic vector bundles on X and the category of locally free sheaves. We recall
that this equivalence is given by associating to an algebraic vector bundle F → X the sheaf F
of sections of F . Under this equivalence, the trivial line bundle X × A1 on X corresponds to
the structure sheaf OX .

We will use the notation E to mean a sheaf or locally free sheaf and E to mean a vector
bundle. We also denote the stalk of E at x by Ex and the fibre of E at x by Ex.

For a smooth projective curve X, the local rings OX,x are DVRs, which are PIDs. Using this
one can show the following.

Exercise 8.18. Prove the following statements for a smooth projective curve X.

a) Any torsion free sheaf on X is locally free.
b) A subsheaf of a locally free sheaf over X is locally free.
c) A non-zero homomorphism f : L → E of locally free sheaves over X with rkL = 1 is

injective.



MODULI PROBLEMS AND GEOMETRIC INVARIANT THEORY 65

One should be careful when going between vector bundles and locally free sheaves, as this
correspondence does not preserve subobjects. More precisely, if F is a locally free sheaf with
associated vector bundle F and E ⊂ F is a subsheaf, then the map on stalks Ex → Fx is injective
for all x ∈ X. However, the map on fibres of the associated vector bundles Ex → Fx is not
necessarily injective, as Ex is obtained by tensoring Ex with the residue field k(x) ∼= k, which is
not exact in general.

Example 8.19. For an effective divisor D, we have that OX(−D) ↪→ OX is a locally free
subsheaf but this does not induce a vector subbundle of the trivial line bundle, as a line bundle
has no non-trivial vector subbundles.

However, if we have a subsheaf E of a locally free sheaf F for which the quotient G := F/E
is torsion free (and so locally free, as X is a curve), then the associated vector bundle E is a
vector subbundle of F , because if we tensor the short exact sequence

0→ Ex → Fx → Gx → 0

with the residue field, then we get a long exact sequence

· · · → Tor1
OX,x(k,Gx)→ Ex → Fx → Gx → 0,

where Tor1
OX,x(k,Gx) = 0 as Gx is flat.

Definition 8.20. Let E be a subsheaf of a locally free sheaf F and let E and F denote the
corresponding vector bundles. Then the vector subbundle of F generically generated by E is a
vector subbundle E of F which is the vector bundle associated the locally free sheaf

E := π−1(T (F/E))

where π : F → F/E and T (F/E) denotes the torsion subsheaf of F/E (i.e. (F/E)/T (F/E) is
torsion free).

Indeed, as F/E is torsion free (and so locally free), the vector bundle homomorphism as-
sociated to E → F is injective; that is, E is a vector subbundle of F . Furthermore, we have
that

rk E = rk E and deg E ≥ E .

Example 8.21. Let D be an effective divisor and consider the subsheaf L′ := OX(−D) of
L := OX ; then the vector subbundle of L generically generated by L′ is L′ = L.

The category of locally free sheaves is not an abelian category and also the category of vector
bundles is not abelian. Given a homomorphism of locally free sheaves f : E → G, the quotient
E/kerf may not be locally free (and similarly for the image). Similarly, the kernel (and the
image) of a morphism of vector bundles may not be a vector bundle; essentially because the
rank can jump. Instead, we can define the vector subbundle that is generically generated by
the kernel (and the same for the image) sheaf theoretically.

Definition 8.22. Let f : E → F be a morphism of vector bundles; then we can define

(1) the vector subbundle K of E generically generated by the kernel Kerf , which satisfies

rkK = rk Kerf degK ≥ deg Kerf ;

(2) the vector subbundle I of F generically generated by the image Imagef , which satisfies

rk I = rk Imagef deg I ≥ deg Imagef.

Exercise 8.23. Let E be a locally free sheaf of rank r over X. In this exercise, we will prove
that there exists a short exact sequence of locally free sheaves over X

0→ L → E → F → 0

such that L is an invertible sheaf and F has rank r − 1.
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a) Show that for any effective divisor D with r degD > h1(E), the vector bundle E(D)
admits a section by considering the long exact sequence in cohomology associated to the
short exact sequence

0→ OX → OX(D)→ kD → 0

tensored by E (here kD denotes the skyscraper sheaf with support D). Deduce that E has
an invertible subsheaf.

b) For an invertible sheaf L with degL > 2g − 2, prove that h1(L) = 0 using Serre duality.
c) Show that the degree of an invertible subsheaf L of E is bounded above, using the

Riemann–Roch formula for invertible sheaves and part b).
d) Let L to be an invertible subsheaf of E of maximal degree; then verify that the quotient
F of L ⊂ E is locally free.

Exercise 8.24. In this exercise, we will prove for locally free sheaves E and F over X that

deg(E ⊗ F) = rk E degF + rkF deg E
by induction on the rank of E .

a) Prove the base case where E = OX(D) by splitting into two cases. If D is effective, use
the short exact sequence

0→ OX → OX(D)→ OD → 0

and the Riemann–Roch Theorem to prove the result. If D is not effective, write D as
D1 −D2 for effective divisors Di and modify F by twisting by a line bundle.

b) For the inductive step, use Exercise 8.23.

Example 8.25. Let E be a locally free sheaf of rank r and degree d over a genus g smooth
projective curve X; then for any line bundle L, we have that

χ(E ⊗ L⊗m) = d+ rmdegL+ r(1− g)

is a degree 1 polynomial in m.

8.5. Semistability. In order to construct moduli spaces of algebraic vector bundles over a
smooth projective curve, Mumford introduced a notion of semistability for algebraic vector
bundles. One advantage to restricting to semistable bundles of fixed rank and degree is that
the moduli problem is then bounded (without adding the semistability hypothesis, the mod-
uli problem is unbounded; see Example 2.22). A second advantage, which explains the term
semistable, is that the notion of semistability for vector bundles corresponds to the notion of
semistability coming from an associated GIT problem (which we will describe later on).

Definition 8.26. The slope of a non-zero vector bundle E on X is the ratio

µ(E) :=
degE

rkE
.

Remark 8.27. Since the degree and rank are both additive on short exact sequences of vector
bundles

0→ E → F → G→ 0,

it follows that

(1) If two out of the three bundles have the same slope µ, the third also has slope µ;
(2) µ(E) < µ(F ) (resp. µ(E) > µ(F )) if and only if µ(F ) < µ(G) (resp. µ(F ) > µ(G)).

Definition 8.28. A vector bundle E is stable (resp. semistable) if every proper non-zero vector
subbundle S ⊂ E satisfies

µ(S) < µ(E) (resp. µ(S) ≤ µ(E) for semistability).

A vector bundle E is polystable if it is a direct sum of stable bundles of the same slope.

Remark 8.29. If we fix a rank n and degree d such that n and d are coprime, then the notion
of semistability for vector bundles with invariants (n, d) coincides with the notion of stability.
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Lemma 8.30. Let L be a line bundle and E a vector bundle over X; then

i) L is stable.
ii) If E is stable (resp. semistable), then E ⊗ L is stable (resp. semistable).

Proof. Exercise. �

Lemma 8.31. Let f : E → F be a non-zero homomorphism of vector bundles over X; then

i) If E and F are semistable, µ(E) ≤ µ(F ).
ii) If E and F are stable of the same slope, then f is an isomorphism.

iii) Every stable vector bundle E is simple i.e. End E = k.

Proof. Exercise. �

If E is a vector bundle which is not semistable, then there exists a subbundle E′ ⊂ E with
larger slope that E, by taking the sum of all vector subbundles of E with maximal slope,
one obtains a unique maximal destabilising vector subbundle of E, which is semistable by
construction. By iterating this process, one obtains a unique maximal destabilising filtration of
E known as the Harder–Narasimhan filtration of E [13].

Definition 8.32. Let E be a vector bundle; then E has a Harder–Narasimhan filtration

0 = E(0) ( E(1) ( · · · ( E(s) = E

where Ei := E(i)/E(i−1) are semistable with slopes

µ(E1) > µ(E2) > · · · > µ(Es).

As we have already mentioned, the moduli problem of vector bundles on X with fixed rank
n and degree d is unbounded. Therefore, we restrict to the moduli functors M(s)s(n, d) of
(semi)stable locally free sheaves. Let us refine our notion of families to families of semistable
vector bundles.

Definition 8.33. A family over a scheme S of (semi)stable vector bundles on X with invariants
(n, d) is a coherent sheaf E over X × S which is flat over S and such that for each s ∈ S, the
sheaf Es is a (semi)stable vector bundle on X with invariants (n, d).

We say two families E and F over S are equivalent if there exists an invertible sheaf L over
S and an isomorphism

E ∼= F ⊗ π∗SL
where πS : X × S → S denotes the projection.

Lemma 8.34. If there exists a semistable vector bundle over X with invariants (n, d) which is
not polystable, then the moduli problem of semistable vector bundles Mss(n, d) does not admit
a coarse moduli space.

Proof. If there exists a semistable sheaf F on X which is not polystable, then there is a non-split
short exact sequence

0→ F ′ → F → F ′′ → 0,

where F ′ and F ′′ are semistable vector bundles with the same slope as F . The above short
exact sequence corresponds to a non-zero point in Ext(F ′′,F ′) and if we take the affine line
through this extension class then we obtain a family of extensions over A1 = Spec k[t]. More
precisely, let E be the coherent sheaf over X × A1 given by this extension class. Then E is flat
over A1 and

Et ∼= F for t 6= 0, and E0
∼= F ′′ ⊕F ′.

Since E is a family of semistable locally free sheaves with the fixed invariants (n, d) which
exhibits the jump phenomenon, there is no coarse moduli space by Lemma 2.27. �

However, this cannot happen if the notions of semistability and stability coincide, which
happens when n and d are coprime.
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8.6. Boundedness of semistable vector bundles. To construct a moduli space of vector
bundles on X using GIT, we would like to find a scheme R that parametrises a family F of
semistable vector bundles on X of fixed rank n and degree d such that any vector bundle of
the given invariants is isomorphic to Fp for some p ∈ R. In this section, we prove an important
boundedness result for the family of semistable vector bundles on X of fixed rank and degree
which will enable us to construct such a scheme. In fact, we will show that we can construct a
scheme R which parametrises a family with the local universal property.

First, we note that we can assume, without loss of generality, that the degree of our vector
bundle is sufficiently large: for, if we take a line bundle L of degree e, then tensoring with L pre-
serves (semi)stability and so induces an isomorphism between the moduli functor of (semi)stable
vector bundles with rank and degree (n, d) and those with rank and degree (n, d+ ne)

−⊗ L :Mss(n, d) ∼=Mss(n, d+ ne).

Hence, we can assume that d > n(2g − 1) where g is the genus of X. This assumption will be
used to prove the boundedness result for semistable vector bundles. However, first we need to
recall the definition of a sheaf being generated by global sections.

Definition 8.35. A sheaf F is generated by its global sections if the natural evaluation map

evF : H0(X,F)⊗OX → F

is a surjection.

Lemma 8.36. Let F be a locally free sheaf over X of rank n and degree d > n(2g − 1). If the
associated vector bundle F is semistable, then the following statements hold:

i) H1(X,F) = 0;
ii) F is generated by its global sections.

Proof. For i), we argue by contradiction using Serre duality: if H1(X,F) 6= 0, then dually there
would be a non-zero homomorphism f : F → ωX . We let K ⊂ F be the vector subbundle
generically generated by the kernel of f which is a vector subbundle of rank n− 1 with

degK ≥ deg ker f ≥ degF − degωX = d− (2g − 2).

In this case, by semistability of F , we have

d− (2g − 2)

n− 1
≤ µ(K) ≤ µ(F ) =

d

n
;

this gives d ≤ n(2g − 2), which contradicts our assumption on the degree of F .
For ii), we let Fx denote the fibre of the vector bundle at a point x ∈ X. If we consider the

fibre Fx as a torsion sheaf over X, then we have a short exact sequence

0→ F(−x) := OX(−x)⊗F → F → Fx = F ⊗ kx → 0

which gives rise to an associated long exact sequence in cohomology

0→ H0(X,F(−x))→ H0(X,F)→ H0(Fx)→ H1(X,F(−x))→ · · · .

Then we need to prove that, for each x ∈ X, the map H0(X,F)→ H0(X,Fx) = Fx is surjective.
We prove this map is surjective by showing that H1(X,F(−x)) = 0 using the same argument
as in part i) above, where we use the fact that twisting by a line bundle does not change
semistability: F(−x) := OX(−x) ⊗ F is semistable with degree d − n > n(2g − 2) and thus
H1(X,OX(−x)⊗F) = 0. �

As mentioned above, these two properties are important for showing boundedness. In fact,
we will see that a strictly larger family of vector bundles of fixed rank and degree are bounded;
namely those that are generated by their global sections and have vanishing 1st cohomology.
Given a locally free sheaf F of rank n and degree d that is generated by its global sections, we
can consider the evaluation map

evF : H0(X,F)⊗OX → F
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which is, by assumption, surjective. If also H1(X,F) = 0, then by the Riemann–Roch formula

χ(F) = d+ n(1− g) = dimH0(X,F)− dimH1(X,F) = dimH0(X,F);

that is, the dimension of the 0th cohomology is fixed and equal to N := d+n(1−g). Therefore,
we can choose an isomorphism H0(X,F) ∼= kN and combine this with the evaluation map for
F , to produce a surjection

qF : ONX = kN ⊗OX → F
from a fixed trivial vector bundle. Such surjective homomorphisms from a fixed coherent sheaf
are parametrised by a projective scheme known as a Quot scheme, which generalises the Grass-
mannians.

8.7. The Quot scheme. The Quot scheme is a fine moduli space which generalises the Grass-
mannian in the sense that it parametrises quotients of a fixed sheaf. In this section, we will define
the moduli problem that the Quot scheme represents and give an overview of the construction
of the Quot scheme following [33].

Let Y be a projective scheme and F be a fixed coherent sheaf on X. Then one can consider
the moduli problem of classifying quotients of F . More precisely, we consider surjective sheaf
homomorphisms q : F → E up to the equivalence relation

(q : F → E) ∼ (q′ : F → E ′) ⇐⇒ ker q = ker q′.

Equivalently, there is a sheaf isomorphism φ : E → E ′ such that the following diagram commutes

F
Id
��

q //E
φ
��

F
q′
//E ′.

This gives the naive moduli problem and the following definition of families gives the extended
moduli problem.

Definition 8.37. Let F be a coherent sheaf over Y . Then for any scheme S, we let FS := π∗Y F
denote the pullback of F to Y × S via the projection πY : Y × S → Y . A family of quotients
of F over a scheme S is a surjective OY×S-linear homomorphism of sheaves over Y × S

qS : FS → E ,
such that E is flat over S. Two families qS : FS → E and q′S : FS → E ′ are equivalent if
ker qS = ker q′S . It is easy to check that we can pullback families, as flatness is preserved by
base change; therefore, we let

QuotY (F) : Sch→ Set

denote the associated moduli functor.

Remark 8.38.

(1) With these definitions, it is clear that we can think of the Quot scheme as instead
parametrising coherent subsheaves of F up to equality rather than quotients of F up to
the above equivalence. Indeed this perspective can also be taken with the Grassmannian
(and even projective space). For us, the quotient perspective will be the most useful.

(2) For the moduli problem of the Grassmannian, we fix the dimension of the quotient
vector spaces. Similarly for the quotient moduli problem, we can fix invariants, as for
two quotient sheaves to be equivalent, they must be isomorphic. Thus we can refine the
above moduli functor by fixing the invariants of our quotient sheaves.

Definition 8.39. For a coherent sheaf E over a projective scheme Y equipped with a fixed ample
invertible sheaf L, the Hilbert polynomial of E with respect to L is a polynomial P (E ,L) ∈ Q[t]
such that for l ∈ N sufficiently large,

P (E ,L, l) = χ(E ⊗ L⊗l) :=
∑
i≥0

(−1)i dimH i(Y, E ⊗ L⊗l).
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Serre’s vanishing theorem states that for l sufficiently large (depending on E), all the higher
cohomology groups of E ⊗ L⊗l vanish (see [14] III Theorem 5.2). Hence, for l sufficiently large,
P (E ,L, l) = dimH0(Y, E ⊗ L⊗l).

The proof that there is such a polynomial is given by reducing to the case of Pn (as L is
ample, we can use a power of L to embed X into a projective space) and then the proof proceeds
by induction on the dimension d of the support of the sheaf (where the inductive step is given
by restricting to a hypersurface and the base case d = 0 is trivial as the Hilbert polynomial
is constant); for a proof, see [16] Lemma 1.2.1. However, for a smooth projective curve X,
we can explicitly write down the Hilbert polynomial of a locally free sheaf over X using the
Riemann–Roch Theorem.

Example 8.40. On a smooth projective genus g curve X, we fix a degree 1 line bundle L =
OX(x) =: OX(1). For a vector bundle E over X of rank n and degree d, the twist E(m) :=
E ⊗ OX(m) has rank n and degree d+mn. The Riemann–Roch formula gives

χ(E(m)) = d+mn+ n(1− g).

Thus E has Hilbert polynomial P (t) = nt + d + n(1 − g) of degree 1 with leading coefficient
given by the rank n.

Definition 8.41. For a fixed ample line bundle L on Y , we have a decomposition

QuotY (F) =
⊔

P∈Q[t]

QuotP,LY (F)

into Hilbert polynomials P taken with respect to L.

If Y = X is a curve, then we have a decomposition of the Quot moduli functor by ranks and
degrees of the quotient sheaf:

QuotX(F) =
⊔

(n,d)

Quotn,dX (F).

Example 8.42. The grassmannian moduli functor is a special example of the Quot moduli
functor:

Gr(d, n) = Quotn−dSpec k(k
n).

Theorem 8.43 (Grothendieck). Let Y be a projective scheme and L an ample invertible sheaf

on Y . Then for any coherent sheaf F over Y and any polynomial P , the functor QuotP,LY (F)

is represented by a projective scheme QuotP,LY (F).

The idea of the construction is very beautiful but also technical; therefore, we will just give
an outline of a proof. We split the proof up into the 4 following steps.

Step 1. Reduce to the case where Y = Pn, L = OPn(1) and F is a trivial vector bundle ONPn .

Step 2. For m sufficiently large, construct an injective natural transformation of moduli func-
tors

QuotP,O(1)
Pn (ONPn) ↪→ Gr(V, P (m))

to the Grassmannian moduli functor of P (m)-dimensional quotients of V := kN ⊗H0(OPn(m)).

Step 3. Prove thatQuotP,O(1)
Pn (ONPn) is represented by a locally closed subscheme of Gr(V, P (m)).

Step 4. Prove that the Quot scheme is proper using the valuative criterion for properness.

Before we explain the proof of each step, we need the following definition.

Definition 8.44. A natural transformation of presheaves η :M′ →M is a closed (resp. open,
resp. locally closed) immersion if ηS is injective for every scheme S and moreover, for any
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natural transformation γ : hS →M from the functor of points of a scheme S, there is a closed
(resp. open, resp. locally closed) subscheme S′ ⊂ S such that

hS′ ∼=M′ ×M hS

where the fibre product is given by

(M′ ×M hS)(T ) =
{

(f : T → S ∈ hS(T ), F ∈M′(T )) : γT (f) = ηT (F ) ∈M(T )
}
.

Sketch of Step 1. First, we can assume that L is very ample by replacing L by a sufficiently
large positive power of L; this will only change the Hilbert polynomial. Then L defines a
projective embedding i : Y ↪→ Pn such that L is the pullback of OPn(1). Since i is a closed
immersion, i∗F is coherent and, moreover i∗ is exact; therefore, we can push-forward quotient
sheaves on Y to Pn. Hence, one obtains a natural transformation

QuotY (F)→ QuotPn(i∗F),

which is injective as i∗i∗ = Id. We claim that this natural transformation is a closed immersion
in the sense of the above definition. More precisely, we claim for any scheme S and natural
transformation hS → QuotPn(i∗F) there exists a closed subscheme S′ ⊂ S with the following
property: a morphism f : T → S determines a family in QuotY (F)(T ) if and only if the
morphism f factors via S′. To define the closed subscheme associated to a map η : hS →
QuotPn(i∗F), we let (i∗F)S � E denote the family over S of quotients associated to ηS(idS)
and apply (idS × i)∗ to obtain a homomorphism of sheaves over Y × S

(F)S ∼= i∗(i∗F)S → i∗E ;

then we take S′ ⊂ S to be the closed subscheme on which this homomorphism is surjective (the
fact that this is closed follows from a semi-continuity argument). Hence, we may assume that
(Y,L) = (Pn,O(1)).

We can tensor any quotient sheaf by a power ofO(1) and this induces a natural transformation
between

QuotPn(F) ∼= QuotPn(F ⊗O(r))

(under this natural transformation the Hilbert polynomial undergoes a explicit transformation
corresponding to this tensorisation). Hence, by replacing F with F(r) := F ⊗ O(r), we can
assume without loss of generality that F has trivial higher cohomology groups and is globally
generated; that is, the evaluation map

O⊕NPn ∼= H0(Pn,F)⊗OPn → F

is surjective and N = P (F , 0). By composition, this surjection induces a natural transformation

QuotPn(F)→ QPn(ONPn)

which can also be shown to be a closed embedding. In conclusion, we obtain a natural trans-
formation

QuotP
′,L

Y (F)→ QuotP,O(1)
Pn (ONPn)

which is a closed embedding of moduli functors.

Sketch of Step 2. By a result of Mumford and Castelnuovo concerning ‘Castelnuovo–
Mumford regularity’ of subsheaves of ONPn , there exists M ∈ N (depending on P , n and N) such
that for all m ≥M , the following holds for any short exact sequence of sheaves

0→ K → ONPn → F → 0

such that F has Hilbert polynomial P :

(1) the sheaf cohomology groups H i of K(m), F(m) vanish for i > 0,
(2) K(m) and F(m) are globally generated.
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The proof of this result is by induction on n, where one restricts to a hyperplane H ∼= Pn−1 in
Pn to do the inductive step; for a full proof, see [33] Theorem 2.3. Now if we fix m ≥ M , we
claim there is a natural transformation

η : QuotP,O(1)
Pn (ONPn) ↪→ Gr(kN ⊗H0(OPn(m)), P (m)).

First, let us define this for families over S = Spec k: for a quotient q : O⊕NPn � F with kernel
K, we have an associated long exact sequence in cohomology

0→ H0(K(m))→ H0(ONPn(m))→ H0(F(m))→ H1(K(m)) = 0.

Hence, we define

ηSpec k(q : ONPn � F) =
(
H0(q(m)) : W � H0(F(m))

)
,

where W := H0(ONPn(m)) = kN ⊗ H0(OPn(m)) and we have dimH0(F(m)) = P (m), as all
higher cohomology of F(m) vanishes.

To define ηS for a family of quotients qS : ONPn×S → E over an arbitrary scheme S, we
essentially do the above process in a family. More precisely, we let πS : X × S → S be the
projection and push forward qS(m) by πS to S to obtain a surjective homomorphism of sheaves
over S

OS ⊗W ∼= πS∗(ONPn×S(m))→ πS∗(E(m)).

By our assumptions on m and the semi-continuity theorem, πS∗(E(m)) is locally free of rank
P (m) (as the higher rank direct images of E(m) vanish so the claim follows by EGA III 7.9.9).
Hence, we have a family of P (m)-dimensional quotients of W over S, which defines the desired
S-point in the Grassmannian.

Let Gr = Gr(W,P (m)). We claim this natural transformation η is an injection. Let us
explain how to reconstruct qS from the morphism fqs : S → Gr corresponding to the surjection

πS∗(qs(m)) : OS ⊗W → πS∗(E(m)).

Over the Grassmannian, we have a universal inclusion (and a corresponding surjection)

KGr ↪→ OGr ⊗W,
whose pullback to S via the morphism S → Gr is the homomorphism

π∗SπS∗(KS(m))→ V ⊗OS = π∗SπS∗(ONPn×S(m)),

where KS := ker qS . We claim that the homomorphism

f : π∗SπS∗(KS(m))→ π∗SπS∗(ONPn×S(m))→ ONPn×S(m)

has cokernel qS(m). To prove the claim, consider the following commutative diagram

0 //π∗SπS∗(KS(m))

��

//π∗SπS∗(ONPn×S(m))

��

//π∗SπS∗(E(m))

��

//0

0 //KS(m) //ONPn×S(m) //E(m) //0

whose rows are exact and whose columns are surjective by our assumption on m. Finally, we
can recover qS from qS(m) by twisting by O(−m).

Sketch of Step 3. For any morphism f : T → Gr = Gr(W,P (m)), we let KT,f denote the
pullback of the universal subsheaf KGr on the Grassmannian to T via f . Then consider the
induced composition

hT,f : π∗TKT,f → π∗T (W ⊗OT ) ∼= π∗TπT∗(ONPn×T (m))→ ONT×Pn(m)

where πT : Pn×T → T denotes the projection. Let qT,f (m) : ONPn×T (m)→ FT,f (m) denote the
cokernel of hT,f ; then FT,f is a coherent sheaf over Pn × T .

We claim that the natural transformation defined in Step 2 is a locally closed immersion.
To prove the claim, we need to show for any morphism h : S → Gr, there is a unique locally
closed subscheme S′ ↪→ S with the property that a morphism f : T → S factors via S′ ↪→ S if
and only if the sheaf FT,h◦f is flat over T and has Hilbert polynomial P at each t ∈ T . This
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locally closed subscheme S′ ⊂ S is constructed as the stratum with Hilbert polynomial P in
the flattening stratification for the sheaf FT,f ′ over T × Pn. For details, see [33] Theorem 4.3.

Let QuotPPn(ONPn) be the locally closed subscheme of Gr associated to the identity morphism
on Gr (which corresponds to the universal family on the Grassmannian); then it follows from
the above arguments that this scheme represents the functor QuotPPn(ONPn).

The Grassmannian Gr = Gr(W,P (m)) has its Pücker embedding into projective space

Gr(W,P (m)) ↪→ P(∧P (m)W∨).

Therefore, we have a locally closed embedding

(6) QuotPn(O⊕NPn , P ) ↪→ P(∧P (m)W∨).

In particular, the Quot scheme is quasi-projective; hence, separated and of finite type.

Sketch of Step 4. We will prove the valuative criterion for the Quot scheme using its moduli
functor. The Quot scheme QuotPPn(O⊕NPn ) is proper over Spec k if and only if for every discrete
valuation ring R over k with quotient field K, the restriction map

QuotPPn(ONPn)(SpecR)→ QuotPPn(ONPn)(SpecK)

is bijective. Since the Quot scheme is separated, we already know that this map is injective.
Let j : PnK ↪→ PnR denote the open immersion. Any quotient sheaf qK : ONPnK → FK can be lifted

to a quotient sheaf qR : ONPnR → FR where FR is the image of the homomorphism

qR : O⊕NPnR → j∗(O⊕NPnK )→ j∗FK .

The sheaf FR is torsion free as it as a subsheaf of j∗FK , which is torsion free as j∗ is exact,
j∗j∗FK = FK and FK is torsion free (as it is flat over K). Hence, FR is flat over R, as over
a DVR flat is equivalent to torsion free and so this gives a well defined R-valued point of the
Quot scheme. It remains to check that the image of qR under the restriction map is qK . As j∗ is
left exact, the map j∗FR → j∗j∗FK = FK is injective and the following commutative diagram

O⊕NPnK
qK ## ##

j∗qR// //j∗FR

��
FK

implies that the vertical homomorphism must also be surjective; thus j∗FR ∼= j∗j∗FK = FK as
required. Hence, the Quot scheme is proper over Spec k.

Since QuotPn(O⊕NPn ;P ) is proper over Spec k, the embedding (6) is a closed embedding.

Remark 8.45.

(1) As the Quot scheme Q := QuotP,LY (F) is a fine moduli space, the identity morphism on
Q corresponds to a universal quotient homomorphism

π∗Y F � U

over Q× Y , where πY : Q× Y → Y denotes the projection to Y .
(2) The Quot scheme can also be defined in the relative setting, where we replace our field k

by a general base scheme S and look at quotients of a fixed coherent sheaf on a scheme
X → S; the construction in the relative case is carried out in [33].

The Hilbert schemes are special examples of Quot schemes, which also play an important
role in the construction of many moduli spaces.

Definition 8.46. A Hilbert scheme is a Quot scheme of the form QuotPY (OY ) and represents
the moduli functor that sends a scheme S to the set of closed subschemes Z ⊂ Y × S that are
proper and flat over S with the given Hilbert polynomial.
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Exercise 8.47. For a natural number d ≥ 1, prove that the Hilbert scheme

QuotdP1(OP1)

is isomorphic to Pd by showing they both have the same functor of points in the following way.

a) Show that any family Z ⊂ P1 over Spec k in this Hilbert scheme is a degree d hypersurface
in P1.

b) Let S be a scheme and πS : P1
S := P1 × S → S denote the projection. Show that any

family Z ⊂ P1
S over S in this Hilbert scheme is a Cartier divisor in P1

S and so there is a

line subbundle of πS∗(OP1S (d)) which determines a morphism fZ : S → Pd. In particular,

this gives a natural transformation

QuotdP1(OP1)→ hPd .

c) Construct the inverse to the above natural transformation using the tautological family
of degree d hypersurfaces in P1 parametrised by Pd.

8.8. GIT set up for construction of the moduli space. Throughout this section, we fix a
connected smooth projective curve X and we assume the genus of X is greater than or equal to
2 to avoid special cases in low genus. We fix a rank n and a degree d > n(2g − 1) (recall that
tensoring with a line bundle does not alter semistability and so we can pick the degree to be
arbitrarily large; in fact, eventually we will choose d to be even larger). It follows from Lemma
8.36 that any locally free semistable sheaf E of rank r and degree d is globally generated with
H1(X, E) = 0. By the Riemann–Roch Theorem,

dimH0(X, E) = d+ n(1− g) =: N.

If we choose an identification H0(X, E) ∼= kN , then the evaluation map

H0(X, E)⊗OX → E ,

which is surjective as E is globally generated, determines a quotient sheaf q : ONX � E .

Let Q := Quotn,dX (ONX ) be the Quot scheme of quotient sheaves of the trivial rank N vector

bundle ONX of rank n and degree d. Let R(s)s ⊂ Q denote the open subscheme consisting
of quotients q : ONX → F such that F is a (semi)stable locally free sheaf and H0(q) is an
isomorphism. For a proof that these conditions are open see [16] Proposition 2.3.1.

The Quot scheme Q parametrises a universal quotient

qQ : ONQ×X � U

and we let q(s)s : ON
R(s)s×X → U

(s)s := U|R(s)s denote the restriction to R(s)s.

Lemma 8.48. The universal quotient sheaf U (s)s over R(s)s × X is a family over R(s)s of
(semi)stable locally free sheaves over X with invariants (n, d) with the local universal property.

Proof. Let F be a family over a scheme S of (semi)stable locally free sheaves over X with fixed
invariants (n, d). Then for each s ∈ S, the locally free semistable sheaf Fs is globally generated
with vanishing first cohomology by our assumption on d. Therefore, by the semi-continuity
Theorem, πS∗F is a locally free sheaf over S of rank N = d+n(1− g). For each s ∈ S, we need

to show there is an open neighbourhood U ⊂ S of s ∈ S and a morphism f : S → R(s)s such
that F|U ∼ f∗U (s)s. Pick an open neighbourhood U 3 s on which πS∗F is trivial; that is, we
have an isomorphism

Φ : ONU ∼= (πS∗F)|U .

Then the surjective homomorphism of sheaves over U ×X

qU : ONU×X
π∗UΦ

//π∗UπU∗(F|U ) //F|U
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determines a morphism f : U → Q to the quot scheme such that there is a commutative diagram

ONU×X
qu //

Id

��

F|U

∼=

��
ONU×X

f∗qQ //f∗U

In particular F|U ∼= f∗U and, as F is a family of (semi)stable vector bundles, the morphism

f : U → Q factors via R(s)s. �

These families U (s)s over R(s)s are not universal families as the morphisms described above
are not unique: if we take S = Spec k and E to be a (semi)stable locally free sheaf, then different

choices of isomorphism H0(X, E) ∼= kN give rise to different points in R(s)s.
Any two choices of the above isomorphism are related by an element in the general linear

group GLN and so it is natural to mod out by the action of this group.

Lemma 8.49. There is an action of GLN on Q := Quotn,dX (ONX ) such that the orbits in R(s)s

are in bijective correspondence with the isomorphism classes of (semi)stable locally free sheaves
on X with invariants (n, d).

Proof. We claim there is a (left) action

σ : GLN ×Q→ Q

which on k-points is given by

g · (ONX
q //E ) = (ONX

g−1

//ONX
q //E ).

To construct the action morphism it suffices to give a family over GLN ×Q of quotients of ONX
with invariants (n, d). The inverse map on the group i−1 : GLN → GLN determines a universal
inversion which is a sheaf isomorphism

(7) τ : kN ⊗OGLN → kN ⊗OGLN .

Let qQ : kN ⊗ OQ×X → U denote the universal quotient homomorphism on Q ×X. Then the
action σ : GLN ×Q→ Q is determined by the following family of quotient maps over GLN ×Q

kN ⊗OGLN×Q×X
p∗GLN

τ
//kN ⊗OGLN×Q×X

(pQ×X)∗qQ //p∗Q×XU

where pGLN : GLN ×Q×X → GLN and pQ×X : GLN ×Q×X → Q×X denote the projection
morphisms.

From the definition of R(s)s, we see these subschemes are preserved by the action. Consider
quotient sheaves qE : ONX � E and qE : ONX � F in R(s)s. If g ·qE ∼ qF , then there is an isomor-
phism E ∼= F which fits into a commutative square, and so E and F are isomorphic. Conversely,
if E ∼= F , then there is an induced isomorphism φ : H0(E) ∼= H0(F). The composition

kN
H0(qE) //H0(E)

φ //H0(F)
H0(qF )−1

//kN

is an isomorphism which determines a point g ∈ GLN such that g · qE ∼ qF . �

Remark 8.50. In particular, any coarse moduli space for (semi)stable vector bundles is con-

structed as a categorical quotient of the GLN -action on R(s)s. Furthermore, if there is an orbit
space quotient of the GLN -action on R(s)s, then this is a coarse moduli space. In fact, as the
diagonal Gm ⊂ GLN acts trivially on the Quot scheme, we do not lose anything by instead
working with the SLN -action.

Finally, we would like to linearise the action to construct a categorical quotient via GIT.
There is a natural family of invertible sheaves on the Quot scheme arising from Grothendieck’s
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embedding of the Quot scheme into the Grassmannians: for sufficiently large m, we have a
closed immersion

Q = Quotn,dX (ONX ) ↪→ Gr(H0(ONX (m)),M) ↪→ P := P(∧MH0(ONX (m))∨)

whereM = mr+d+r(1−g). We let Lm denote the pull back ofOP(1) to the Quot scheme via this
closed immersion. There is a natural linear action of SLN on H0(ONX (m)) = (kN ⊗H0(OX(m)),
which induces a linear action of SLN on P(∧MH0(ONX (m))∨); hence, Lm admits a linearisation
of the SLN -action.

We can define the linearisation Lm using the universal quotient sheaf U on Q×X: we have

Lm = det(πQ∗(U ⊗ π∗XOX(m)))

where πX : Q×X → X and πQ : Q×X → Q are the projection morphisms. Furthermore, the
universal quotient sheaf U admits a SLN -linearisation: we have equivalent families of quotients
sheaves over SLN ×Q given by

kN ⊗OSLN×Q×X
(σ×idX)∗qQ //(σ × idX)∗U

and

kN ⊗OSLN×Q×X
p∗SLN

τ
//kN ⊗OSLN×Q×X

p∗Q×XqQ //p∗Q×XU ,

where qQ : kN ⊗OQ×X → U denotes the universal quotient homomorphism, σ : SLN ×Q→ Q
denotes the group action, pQ×X and pSLN denote the projections from SLN × Q × X to the
relevant factor and τ is the isomorphism given in (7). Hence, there is an isomorphism

Φ : (σ × idX)∗U → (pQ×X)∗U
satisfying the cocycle condition, which gives a linearisation of the SLN -action on U . For m
sufficiently large, Lm is ample and admits an SLN -linearisation, as the construction of Lm
commutes with base change for m sufficiently large. Hence, at q : ONX → F in Q, the fibre of
the of the associated line bundle Lm is naturally isomorphic to an alternating tensor product
of exterior powers of the cohomology groups of F(m):

Lm,q ∼= detH∗(X,F(m)) =
⊗
i≥0

detH i(X,F(m))⊗(−1)i .

In fact, by the Castelnuovo–Mumford regularity result explained in the second step of the
construction of the quot scheme, for m sufficiently large, we have H i(X,F(m)) = 0 for all i > 0
for all points q : ONX → F in Q. Therefore, for m sufficiently large, the fibre at q is

Lm,q ∼= detH0(X,F(m)).

8.9. Analysis of semistability. Let SLN act on Q := Quotn,dX (ONX ) as above. In this section,
we will determine the GIT (semi)stable points in Q with respect to the SLN -linearisation Lm.
In fact, we will prove that Qss(Lm) = Rss and Qs(Lm) = Rs.

We will use the Hilbert–Mumford criterion for our stability analysis. Let q : ONX � F denote
a closed point in the Quot scheme Q and let λ : Gm → SLN be a 1-parameter subgroup. We
recall that the action is given by

λ(t) · q : ONX
λ−1(t) //ONX

q //F .
First of all, we would like to calculate the limit as t→ 0. For this, we need some notation. The
action of λ−1 on V := kN determines a weight space decomposition

V = ⊕r∈ZVr
where Vr := {v ∈ V : λ−1(t)v = trv} are zero except for finitely many weights r and, as λ is a
1-PS of the special linear group, we have

(8)
∑
r∈Z

r dimVr = 0.
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There is an induced ascending filtration of V = kN given by V ≤r := ⊕s≤rVs and an induced
ascending filtration of F given by

F≤r := q(V ≤r ⊗OX)

and q induces surjections qr : Vr ⊗ OX → Fr := F≤r/F≤r−1 which fit into a commutative
diagram

V ≤r−1 ⊗OX //

����

V ≤r ⊗OX //

����

Vr ⊗OX
qr
����

F≤r−1 //F≤r // //Fr.

Lemma 8.51. Let q : ONX � F be a k-point in Q and λ : Gm → SLN be a 1-PS as above; then

lim
t→0

λ(t) · q =
⊕
r∈N

qr.

Proof. As the quot scheme is projective, there is a unique limit. Therefore, it suffices to construct
a family of quotient sheaves of ONX over A1 = Spec k[t]

Φ : ONX×A1 � E

such that Φt = λ(t) · q for all t 6= 0 and Φ0 = ⊕rqr.
We will use the equivalence between quasi-coherent sheaves on A1 and k[t]-modules. Consider

the k[t]-module

V :=
⊕
r

V ≤r ⊗k trk

with action given by t · (v≤r ⊗ tr) = v≤r ⊗ tr+1 ∈ V ≤r+1 ⊗ r, which works as the filtration
is increasing. Since the filtration on V is zero for sufficiently small r and stabilises to V for
sufficiently large r: there is an integer R such that V ≤r = 0 for all r ≤ R and so V ⊂ V ⊗k tRk[t];
hence, V is coherent. The 1-PS λ−1 determines a sheaf homomorphism over A1

γ : V ⊗k k[t]→ V :=
⊕
r

V ≤n ⊗k trk

given by v ⊗ ts =
∑

r vr ⊗ ts 7→
∑

r vr ⊗ tr+s, where vr ∈ Vr and so, as s is non-negative,
vr ∈ V ≤r+s. By construction, γ|Vr = tr · IdVr . We leave it to the reader to write down an inverse
which shows that γ is an isomorphism.

Over Spec k, the k-module k[t] determines a quasi-coherent (but not coherent) sheaf, we let
OX ⊗k k[t] denote the pullback of this quasi-coherent sheaf to X. Then to describe coherent
sheaves on X ×A1, we will use the equivalence between the category of quasi-coherent sheaves
on X × A1 and the category of OX ⊗k k[t]-modules. Using the filtration F≤r we construct a
quasi-coherent sheaf E over X × A1 as follows. Let

E :=
⊕
n

F≤r ⊗k trk ⊂ F ⊗k tRk[t]

for R as above. The action of t is identical to the action of t on V given above. Furthermore,
we have the above inclusion as the filtration is zero for r sufficiently small and stabilises to F
for r sufficiently large; in particular E is a coherent sheaf on X × A1.

The homomorphism q induces a surjective homomorphism of coherent sheaves over X × A1

qA1 :
⊕
n

V ≤r ⊗k trk → E :=
⊕
n

F≤r ⊗k trk

and we define our family of quotient sheaves over X × A1 to be Φ := qA1 ◦ π∗A1γ, where πA1 :

X × A1 → A1 is the projection.
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If we restrict Φ to A1 − {0}, then this corresponds to inverting the variable t. In this case,
we have an commutative diagram

ONX ⊗k k[t, t−1]

Φ|A1−{0}
��

π∗
A1−{0}

(γ)
//ONX ⊗k k[t, t−1]

q⊗id
��

E ⊗k k[t, t−1]
∼= //F ⊗k k[t, t−1]

where γ gives the action of λ−1; hence [Φt] = [λ(t) · q] for all t 6= 0. Let i : 0 ↪→ A1 denote the
closed immersion; then the composition i∗i

∗ kills the action of t. We have

i∗i
∗(E) = E/t · E = (

⊕
r≥R
F≤r ⊗k trk)/(

⊕
r≥R
F≤r ⊗k tr+1k) =

⊕
r

Fr ⊗k trk,

with trivial action by t. Hence, the restriction of E to the special fibre 0 ∈ A1 is E0 = ⊕rFr and
this completes the proof of the lemma. �

Lemma 8.52. Let λ : Gm → SLN be a 1-PS and q : ONX � F be a k-point in Q. Then using
the notation introduced above for the weight decomposition of λ−1 acting on V = kN , we have

µLm(q, λ) = −
∑
r∈Z

rP (Fr,m) =
∑
r∈Z

(
P (F≤r,m)− dimV ≤r

N
P (F ,m)

)
.

Proof. By definition, this Hilbert–Mumford weight is negative the weight of the action of λ(Gm)
on the fibre of the line bundle Lm over the fixed point q′ :=

⊕
r∈N qr = limt→0 λ(t) · q. The fibre

over this fixed point is

Lm,q′ =
⊗
r∈Z

detH∗(X,Fr(m)),

where H∗(X,Fr(m)) denotes the complex defining the cohomology groups H i(X,Fr(m)) for
i = 1, 2 and the determinant of this complex is the 1-dimensional vector space⊗

i≥0

detH i(X,Fr(m))⊗(−1)i = ∧h0(X,Fr(m))H0(X,Fr(m))⊗ ∧h1(X,Fr(m))H1(X,Fr(m))∨.

The virtual dimension of H∗(X,Fr(m)) is given by the alternating sums of the dimensions
of the cohomology groups of Fr(m) and thus is equal to P (Fr,m). Since λ acts with weight
r on Fr, it also acts with weight r on H i(X,Fr(m)). Therefore, the weight of λ acting on
detH∗(X,Fr(m)) is rP (Fr,m). The first equality then follows from this and the definition of
the Hilbert–Mumford weight.

For the second equality, we recall that as λ is a 1-PS of SLN , we have a relation (8) and by
definition, we have dimVr = dimV ≤r − dimV ≤r−1. Furthermore, as Fr := F≤r/F≤r−1, we
have

P (Fr) = P (F≤r)− P (F≤r−1).

The second equality then follows from these observations. �

Remark 8.53. The second expression for the Hilbert–Mumford weight is of greater use to us,
as it is expressed in terms of subsheaves of F . The number of distinct weights for the λ−1-action
on V = kN , tells us the number of jumps in the filtration of F .

If we suppose there are only two weights r1 < r2 for λ, then we get a filtration of F by a
single subsheaf 0 ( F ′ ( F :

0 = · · · = 0 = F≤r1−1 ( F ′ := F≤r1 = · · · = F≤r2−1 ( F≤r2 = F = · · · F .

Let V ′ := V ≤r1 ; then we have

µLm(q, λ) = (r2 − r1)

(
P (F ′,m)− dimV ′

dimV
P (F ,m)

)
,

where r2 − r1 > 0.
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Proposition 8.54. Let q : ONX � F be a k-point in Q. Then q ∈ Q(s)s(Lm) if and only if for
all subspaces 0 6= V ′ ( V = KN we have an inequality

(9)
dimV ′

P (F ′,m)
(≤)

dimV

P (F ,m)

where F ′ := q(V ′ ⊗OX) ⊂ F .

Proof. Suppose the inequality (9) holds for all subspaces V ′. We will show q is (semi)stable using
the Hilbert–Mumford criterion. For any 1-PS λ : Gm → GLN , there are finitely many weights
r1 < r2 < · · · < rs for the λ−1-action on V = KN , which give rise to subspaces V (i) = V ≤ri ⊂ V
and subsheaves F (i) := q(V (i)⊗OX) ⊂ F . Furthermore, we have F≤n = F (i) for ri ≤ n < ri+1.
Therefore, by Lemma 8.52, we have

µLm(q, λ) =
s−1∑
i=1

(ri+1 − ri)

(
P (F (i),m)− dimV (i)

dimV
P (F ,m)

)
(≥)0.

Conversely, if there exists a subspace 0 ( V ′ ( kN for which the inequality (9) does not hold
(or holds with equality respectively), then we can construct a 1-PS λ with two weights r1 > r2

such that V (1) = V ′ and V (2) = V . Then

µLm(q, λ) = (r2 − r1)

(
P (F ′,m)− dimV ′

dimV
P (F ,m)

)
< 0 (resp. µLm(q, λ) = 0);

that is q is unstable for the SLN -action with respect to Lm. �

Remark 8.55. For m sufficiently large P (F ′,m) and P (F ,m) are both positive; thus, we can
multiply by the denominators in the inequality (9) to obtain an equivalent inequality

(dimV ′ rkF)m+(dimV ′)(degF+rkF(1−g))(≤)(dimV rkF ′)m+(dimV )(degF ′+rkF ′(1−g)).

An inequality of polynomials in a variable m holds for all m sufficiently large if and only if there
is an inequality of their leading terms. If rkF ′ 6= 0, then the leading term of the polynomial
P (F ′) is rkF ′ and if rkF ′ = 0, then the Hilbert polynomial of F ′ is constant. Therefore, there
exists M (depending on F and F ′) such that for m ≥M

rkF ′ > 0 and
dimV ′

rkF ′
(≤)

dimV

rkF
> 0 ⇐⇒ dimV ′

P (F ′,m)
(≤)

dimV

P (F ,m)
.

In fact, M only depends on P (F) and P (F ′). Moreover, as the subspaces 0 6= V ′ ( V = kN

form a bounded family (they are parametrised by a product of Grassmannians) and the quotient
sheaves q : ONX → F form a bounded family (they are parametrised by the Quot scheme Q),
the family of sheaves F ′ = q(V ′⊗F) are also bounded. Therefore, there are only finitely many
possibilities for P (F ′). Hence, there exists M such that for m ≥M the following holds: for any
q : ONX → F in Q and 0 6= V ′ ( V = kN , we have

rkF ′ > 0 and
dimV ′

rkF ′
(≤)

dimV

rkF
> 0 ⇐⇒ dimV ′

P (F ′,m)
(≤)

dimV

P (F ,m)

where F ′ = q(V ′ ⊗OX).

Remark 8.56. Let q : ONX � F ∈ Q(k). Then we note

(1) If 0 ( V ′ ⊂ V = kN and F ′ := q(V ′ ⊗OX), then V ′ ⊂ H0(q)−1(H0(F ′)),
(2) If G ⊂ F and V ′ = H0(q)−1(H0(G)), then q(V ′ ⊗OX) ⊂ G.

Using these two remarks, we obtain a corollary to Proposition 8.54.

Corollary 8.57. There exists M such that for m ≥ M and for a k-point q : ONX � F in Q,
the following statements are equivalent:

(1) q is GIT (semi)stable for SLN -acting on Q with respect to Lm;
(2) for all subsheaves F ′ ⊂ F with V ′ := H0(q)−1(H0(F ′)) 6= 0, we have rkF ′ > 0 and

dimV ′

rkF ′
(≤)

dimV

rkF
.
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In the remaining part of this section, we prove some additional results concerning semistability
of vector bundles, which we will eventually relate to GIT semistability.

Lemma 8.58. Let n and d be fixed such that d > n2(2g − 2). Then a locally free sheaf F of
rank n and degree d is (semi)stable if for all F ′ ⊂ F we have

(10)
h0(X,F ′)

rkF ′
(≤)

χ(F)

rkF
.

Proof. Suppose F is not semistable; then there exists a subsheaf F ′ ⊂ F with µ(F ′) > µ(F).
In fact, we can assume F ′ is semistable (if not, there is a vector subbundle F ′′ of F ′ with larger
slope, and so we can replace F ′ with F ′′). Then

degF ′ > d

n
rkF ′ > d

n
> n(2g − 2) > rkF ′(2g − 2).

Then it follow from Lemma 8.36 that H1(X,F ′) = 0. However, in this case

h0(X,F ′)
rkF ′

= µ(F ′) + (1− g) > µ(F) + (1− g) =
χ(F)

rkF
which contradicts (10). Furthermore, if the inequality (10) holds with a strict inequality and
F is not stable, then we can apply the above argument to any subsheaf F ′ ⊂ F with the same
slope as F and get a contradiction. �

The converse to this lemma also holds for d sufficiently large, as we will demonstrate in
Proposition 8.61; however, first we need some preliminary results.

Lemma 8.59. (Le Potier bounds) For any semi-stable locally free sheaf F of rank n and slope
µ, we have

h0(X,F)

n
≤ [µ+ 1]+ := max(µ+ 1, 0)

Proof. If µ < 0, then H0(X,F) = 0. For µ ≥ 0, we proceed by induction on the degree d of F .
If we assume the lemma holds for all degrees less than d, then we can consider the short exact
sequence

0→ F(−x)→ F → Fx → 0

where x ∈ X. By considering the associated long exact sequence, we see that

h0(X,F) ≤ h0(X,F(−x)) + n.

Since µ(F) = µ(F(−x)) + 1, the result follows by applying the inductive hypothesis to F(−x).
�

We recall that any vector bundle has a unique maximal destabilising sequence of vector
subbundles, known as its Harder–Narasimhan filtration (cf. Definition 8.32).

Corollary 8.60. Let F be a locally free sheaf of rank n and slope µ with Harder–Narasimhan
filtration

0 = F (0) ( F (1) ( · · · ( F (s) = F
i.e. Fi = F (i)/F (i−1) are semistable and µmax(F) = µ(F1) > · · · > µ(Fs) = µmin(F); then

h0(X,F)

n
≤

s∑
i=1

rkFi
n

[µ(Fi) + 1]+ ≤
(

1− 1

n

)
[µ+ 1]+ +

1

r
[µmin(F) + 1]+.

Proposition 8.61. Let n and d be fixed such that d > gn2 + n(2g − 2). Let F be a semistable
locally free sheaf over X with rank r and degree d. Then for all non-zero subsheaves 0 6= F ′ ( F ,
we have

h0(X,F ′)
rkF ′

≤ χ(F)

rkF
and if equality holds, then h1(X,F ′) = 0 and µ(F ′) = µ(F).
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Proof. Let µ = d/n denote the slope and pick a constant C such that 2g−2 < C < µ− gn (this
is possible, as µ− gn > 2g − 2 by our choice of d). We will prove the following statements for
subsheaves F ′ ⊂ F .

(1) If µmin(F ′) ≤ C, then
h0(X,F ′)

rkF ′
<
χ(F)

rkF
.

(2) If µmin(F ′) > C, then h1(X,F) = 0 and

h0(X,F ′)
rkF ′

≤ χ(F)

rkF
and if equality holds, then µ(F ′) = µ(F).

We can apply Corollary 8.60 to a subsheaf F ′ ⊂ F to obtain the bound

h0(X,F ′)
rkF ′

≤
(

1− 1

n

)
[µ+ 1]+ +

1

n
[µmin(F ′) + 1]+.

If µmin(F ′) ≤ C, then

h0(X,F ′)
rkF ′

≤
(

1− 1

n

)
(µ+ 1) +

1

n
(C + 1) < µ+ 1 + g =

χ(F)

rkF
by our choice of C, which proves (1).

For (2), suppose µmin(F ′) > C; then we claim that H1(X,F ′) = 0. To prove the claim, it
suffices to show that H1(X,F ′i) = 0, where F ′i are the semistable subquotients appearing in the
Harder–Narasimhan filtration of F ′. For each F ′i , we have

µ(F ′i) ≥ µmin(F ′) > C > 2g − 2.

Hence, degF ′i > rkF ′i(2g − 2) and, as F ′i is semistable, we conclude that H1(X,F ′i) = 0 by
Lemma 8.36. Then by semistability of F , we have µ(F ′) ≤ µ(F); hence

h0(X,F ′)
rkF ′

= µ(F ′) + 1− g ≤ µ(F) + 1− g =
χ(F)

rkF
with equality only if µ(F ′) = µ(F). �

Remark 8.62. Proposition 8.61 and Lemma 8.58 together say, for sufficiently large degree d,
that (semi)stability of a locally free sheaf F over X is equivalent to

h0(X,F ′)
rkF ′

(≤)
h0(X,F)

rkF
for all non-zero proper subsheaves F ′ ⊂ F . This result was first proved by Le Potier for curves
(see [35] Propositions 7.1.1 and 7.1.3) and was later generalised to higher dimensions by Simpson
[39].

We recall that we defined open subschemes R(s)s ⊂ Q := Quotn,dX (ON ) whose k-points are

quotient sheaves q : ONX → F such that F is a locally free (semi)stable sheaf and H0(q) is
an isomorphism. The following theorem shows that GIT semistability for SLN acting on Q
coincides with vector bundle semistability (provided d and m are sufficiently large).

Theorem 8.63. Let n and d be fixed such that d > max(n2(2g − 2), gn2 + n(2g − 2)). Then
there exists a natural number M > 0 such that for all m ≥M , we have

Qss(Lm) = Rss and Qs(Lm) = Rs.

Proof. We pickM as required by Corollary 8.57. Since these subschemes are all open subschemes
of Q, it suffices to check these equalities of schemes on k-points.

First, let q : ONX → F be a k-point in Rss; that is, F is a semistable locally free sheaf
and H0(q) : V → H0(X,F) is an isomorphism. We will show that q is GIT semistable using
Corollary 8.57. Let F ′ ⊂ F be a subsheaf with rkF ′ > 0 and let V ′ := H0(q)−1(H0(X,F ′). As
H0(q) is a isomorphism, we have dimV ′ = h0(X,F ′). By Proposition 8.61, we have either

(1) h0(X,F ′) < rkF ′χ(F)/rkF , or
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(2) h1(X,F ′) = 0 and µ(F ′) = µ(F).

In the first case,

dimV ′

rkF ′
=
h0(X,F ′)

rkF ′
<
χ(F)

rkF
=

dimV

rkF
and in the second case, dimV ′ = h0(X,F ′) = P (F ′), and we have

dimV ′

rkF ′
=
χ(F ′)
rkF ′

=
χ(F)

rkF
=

dimV

rkF
.

Hence q ∈ Qss(Lm) by Corollary 8.57. In fact, this argument shows that if, moreover, F is a

stable locally free sheaf, then q ∈ Qs(Lm), because, in this case, condition (2) is not possible

and so we always have a strict inequality. Hence, we have inclusions R(s)s(k) ⊂ Q(s)s(Lm)(k).

Suppose that q : ONX → F is a k-point in Q(s)s(Lm); then for every subsheaf F ′ ⊂ F such
that V ′ := H0(q)−1(H0(X,F ′)) is non-zero, we have rkF ′ > 0 and an inequality

dimV ′

rkF ′
(≤)

dimV

rkF
by Corollary 8.57.

We first observe that H0(q) : V → H0(X,F) is injective, as otherwise let K be the kernel,
then F ′ = q(K ⊗OX) = 0 has rank equal to zero, and so contradicts GIT semistability of q. In
fact, we claim that GIT semistability also implies H1(X,F) = 0; thus, dimH0(X,F) = χ(F) =
N = dimV and so the injective map H0(q) is an isomorphism. If H1(X,F) 6= 0, then by Serre

duality, there is a non-zero homomorphism F → ωX whose image F ′′ ⊂ ωX is an invertible
sheaf. We can equivalently phrase the GIT (semi)stability of q in terms of quotient sheaves
F � F ′′ as giving an inequality

dimV

n
≤ dimV ′′

rkF ′′
where V ′′ denotes the image of the composition V → H0(X,F) → H0(X,F ′′). We note that
dimV ′′ ≤ g, as V ′′ ⊂ H0(X,F ′′) ⊂ H0(X,ωX). Therefore, GIT semistability would imply

d

n
+ (1− g) ≤ g,

which contradicts our choice of d. Thus H0(q) is an isomorphism.
We next claim that F is locally free. Since we are working over a curve, the claim is equiv-

alent to showing that F is torsion free. If F ′ ⊂ F is a torsion subsheaf (i.e. rkF ′ = 0),
then H0(X,F ′) 6= 0, as every torsion sheaf has a section, and so this would contradict GIT
semistability.

Let F ′ ⊂ F be a subsheaf and V ′ := H0(q)−1(H0(X,F ′)); then by GIT (semi)stability

h0(X,F ′)
rkF ′

=
dimV ′

rkF ′
(≤)

dimV

rkF
=
χ(F)

rkF
.

Hence, F is (semi)stable by Lemma 8.58. Since also H0(q) is an isomorphism, we have shown

that q ∈ R(s)s. This completes the proof of the opposite inclusion Q(s)s(Lm)(k) ⊂ R(s)s(k). �

8.10. Construction of the moduli space. Let X be a connected smooth projective curve of
genus g ≥ 2. We fix a rank n and a degree d. In this section, we will give the construction of
the moduli space of stable vector bundles on X.

We defined open subschemes R(s)s ⊂ Q := Quotn,dX (ON ) (where N := d + n(1 − g)) whose

k-points are quotients q : ONX → F such that F is (semi)stable and H0(q) is an isomorphism.
The construction of the moduli space of stable vector bundles is originally due to Seshadri

[37]; however, we have not followed his construction (Seshadri uses a different linearisation
which embeds the Quot scheme in a product of Grassmannians). Instead, we are following the
construction due to Le Potier [35] and Simpson [39], which generalises more naturally to higher
dimensions; see Remark 8.70 for some comments on the additional complications for higher
dimensional base schemes.
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Theorem 8.64. There is a coarse moduli space M s(n, d) for moduli of stable vector bundles of
rank n and degree d over X that has a natural projective completion M ss(n, d) whose k-points
parametrise polystable vector bundles of rank n and degree d.

Proof. We first construct these spaces for large d and then, by tensoring with invertible sheaves
of negative degree, we obtain the moduli spaces for smaller degree d. Hence, we may assume
that d > max(n2(2g − 2), gn2 + n(2g − 2)) We linearise the SLN -action on Q in the invertible
sheaf Lm, where m is taken sufficiently large as required for the statement of Theorem 8.63.
Then Q(s)s(Lm) = R(s)s and there is a projective GIT quotient

π : Rss = Qss(Lm)→ Q//LmSLN =: M ss(n, d)

which is a categorical quotient of the SLN -action on Rss and π restrict to a geometric quotient

πs : Rs = Qs(Lm)→ Qs(Lm)/SLN =: M s(n, d).

Furthermore, R(s)s parametrises a family U (s)s of (semi)stable vector bundles over X of rank

n and degree d which has the local universal property and such that two k-points in R(s)s lie
in the same orbit if and only if the corresponding vector bundles parametrised by these points
are isomorphic; see Lemmas 8.48 and 8.49. By Proposition 3.35, a coarse moduli space is a
categorical quotient of the SLN -action on R(s)s if and only if it is an orbit space. Therefore, as
πs is a categorical quotient which is also an orbit space, M s(n, d) is a coarse moduli space for
stable vector bundles on X of rank n and degree d.

Since the k-points of the GIT quotient parametrise closed orbits, to complete the proof it
remains to show that the orbit of q : ONX → F in Rss is closed if and only if F is polystable. If
F is not polystable, then there is a non-split short exact sequence

0→ F ′ → F → F ′′ → 0

where F ′ and F ′′ are semistable with the same slope as F . In this case, we can find a 1-PS λ
such that limt→0 λ(t) · [q] = [ONX → F ′′ ⊕F ′], which shows that the orbit is not closed. In fact,
by repeating this argument one case show that a quotient homomorphism for a semistable sheaf
contains a quotient homomorphism for a polystable sheaf in its orbit closure. More precisely,
one can define a Jordan–Holder filtration of F by stable vector bundles of the same slope as F :

0 ( F(1) ( F(2) ( · · · ( F(s) = F
and then pick out a 1-PS λ which inducing this filtration so that the limit as t→ 0 is the asso-
ciated graded object grJH(F) := ⊕iF(i)/F(i−1). We note that unlike the Harder–Narasimhan
filtration, the Jordan–Holder filtration is not unique but the associated graded object is unique.
Now suppose that F is polystable so we have F = ⊕F⊕nii for non-isomorphic stable vector

bundles Fi; then we want to show the orbit of q is closed: i.e. for every point q′ : ONX → F ′
in the closure of the orbit of q, we have an isomorphism F ∼= F ′. Using Theorem 6.13, we can
produce a 1-PS λ such that limt→0 λ(t) · q = q′. This corresponds to a family E over A1 of
semistable vector bundles such that

Et ∼= F for t 6= 0, and E0 = F ′.
Since the stable bundles Fi are simple and any non-zero homomorphism between stable vector
bundles of the same slope is an isomorphism, we see that dim Hom(Fi,F) = ni. As E is flat
over A1, this dimension function is upper semi-continuous; hence dim Hom(Fi,F ′) =: n′i ≥ ni.
As Fi is stable, the evaluation map ei : Fi ⊗ Hom(Fi,F ′) → F ′ must be injective. Moreover

sum
∑
Fn
′
i

i ⊂ F ′ is a direct sum as Fi � Fj by assumption. By comparing the ranks, we must

have ni = n′i for all i and F ′ ∼= ⊕F⊕nii = F . �

Proposition 8.65. The moduli space M s(n, d) of stable vector bundles is a smooth quasi-
projective variety of dimension n2(g − 1) + 1.

Proof. We claim that the open subscheme Rs ⊂ Q is smooth and has dimension n2(g−1)+N2.
To prove this claim, we use the following results concerning the local smoothness and Zariski
tangent spaces of the quot scheme: for a k-point q : ONX → F of Q, we have
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(1) TqQ ∼= Hom(K,F), where K = ker q.
(2) If Ext1(K,F) = 0, then Q is smooth in a neighbourhood of q.

For a proof of these results, see [16] Propositions 2.2.7 and 2.2.8; in fact, the description of the
tangent spaces should remind you of the description of the tangent spaces to the Grassmannian.
To prove the claim, for q ∈ Rs, we apply Hom(−,F) to the short exact sequence

0→ K → ONX → F → 0

to obtain a long exact sequence

· · · → Hom(K,F)→ Ext1(F ,F)→ Ext1(ONX ,F)→ Ext1(K,F)→ 0.

Since Ext1(ONX ,F) = H1(X,F)N = 0 (by our assumption on the degree of d), we see that Q is
smooth in a neighbourhood of every point q ∈ Q. To calculate the dimension, we consider the
following long exact sequence for q ∈ Rs:

0→ Hom(F ,F)→ Hom(ONX ,F)→ Hom(K,F)→ Ext1(F ,F)→ 0

where hom(F ,F) = 1 as every stable bundle is simple, and hom(ONX ,F) = N2 as our assumption

on d implies H1(X,F) = 0, and Ext1(F ,F) = H1(F∨⊗F) = n2(g−1)+1 by the Riemann–Roch
formula. Hence,

dimRss = dimTqQ = dim Hom(K,F) = n2(g − 1) + 1 +N2 − 1 = n2(g − 1) +N2.

Since SLN acts with only a finite global stabiliser on the smooth quasi-projective variety Rs and
the quotient Rs →M s(n, d) is geometric, it follows from a deep result concerning étale slices of
GIT quotients known as Luna’s slice theorem [21], that M s(n, d) is smooth. Furthermore, we
have

dimM s(n, d) = dimRs − dim SLN = n2(g − 1) + 1

which completes the proof. �

Remark 8.66. In fact, using deformation theory of vector bundles, one can identify the Zariski
tangent space to M s(n, d) at the isomorphism class [E] of a stable vector bundle E as follows

T[E]M
s(n, d) ∼= Ext1(E,E).

The obstruction to M s(n, d) being smooth is controlled by Ext2(E,E), which vanishes as we
are working over a curve. The same description holds in higher dimensions, except now this
second Ext group could be non-zero and so in general the moduli space is not smooth; see [16]
Corollary 4.52.

If the degree and rank are coprime, the notions of semistability and stability coincide; hence,
in the coprime case, the moduli space of stable vector bundles of rank r and degree d on X is
a smooth projective variety.

Finally, we ask whether this coarse moduli space is ever a fine moduli space. In fact, we see
why it is necessary to allow a more general notion of equivalence of families of vector bundles
with a twist by a line bundle:

Remark 8.67. Two families E and F parametrised by S determine the same morphism to
M s(n, d) if E ∼= F ⊗ π∗SL for a line bundle L on S where πS : S ×X → S is the projection map
and, in fact, this is an if and only if statement by [31] Lemma 5.10.

It is a result of Mumford and Newstead, for n = 2 [26], and Tjurin [43] in general that the
moduli space of stable vector bundles is a fine moduli space for coprime rank and degree.

Theorem 8.68. If (n, d) = 1, then M s(n, d) = M ss(n, d) is a fine moduli space.

The idea of the proof is to construct a universal family over this moduli space by descending
the universal family U over Rs ×X to the GIT quotient. For more details, we recommend the
exposition given by Newstead [31], Theorem 5.12.

Remark 8.69. If (n, d) 6= 1, then Ramanan observes that a fine moduli space for stable sheaves
does not exist [36].
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Remark 8.70. In this remark, we briefly explain some of the additional complications that
arise when studying moduli of vector bundles over a higher dimensional projective base Y .

(1) Instead of fixing just the rank and degree, one must fix higher Chern classes (or the
Hilbert polynomial) of the sheaves.

(2) In higher dimensions, torsion free and locally free not longer agree; therefore, rather
than working with locally free sheaves, we must enlarge our category to torsion free
sheaves in order to get a projective completion of the moduli space of stable sheaves.

(3) As we have seen for curves, slope (semi)stability is equivalent to an inequality of reduced
Hilbert polynomials, known as Gieseker (semi)stability

µ(E ′) ≤ µ(E) ⇐⇒ P (E ′)
rkE ′

≤ P (E)

rkE
.

However, in higher dimensions, slope (semi)stability and Gieseker (semi)stability do not
coincide: we have

slope stable =⇒ Gieseker stable =⇒ Gieseker semistable =⇒ slope semistable.

In higher dimensions, one constructs a moduli space for Gieseker stable torsion free
sheaves (or for Gieseker semistable pure sheaves).

(4) Since the Hilbert polynomial is taken with respect to a choice of ample line bundle on
Y , the notion of Gieseker (semi)stability also depends on this choice. Over a curve,
the Hilbert polynomial of a vector bundle only depends on the degree of the ample line
bundle we take and consequently all ample line bundles determine the same notion of
semistability. In particular, one can study how the moduli space changes as we vary
this ample line bundle on Y .

(5) The Quot scheme is longer smooth, due to the existence of some non-vanishing second
Ext groups. In particular, the moduli space of stable torsion free sheaves is no longer
smooth in general.

(6) To construct the moduli spaces in higher dimensions, we do not take a GIT quotient of
the whole Quot scheme, but rather the closure of Rss in Q. The reason for this, is that
there may be semistable points in the quot scheme which are not torsion free (or pure)
sheaves;

(7) In higher dimensions, the Le Potier bounds become more difficult to prove; although
there are essentially analogous statements.

For the interested reader, we recommend the excellent book of Huybrechts and Lehn [16].
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