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Abstract
In this course, we study moduli problems in algebraic geometry and the construction of moduli spaces
using geometric invariant theory. We start by giving the definitions of coarse and fine moduli spaces, with
an emphasis on examples. We then explain how to construct group quotients in algebraic geometry via
geometric invariant theory. Finally, we apply these techniques to construct moduli spaces of projective
hypersurfaces and moduli spaces of semistable vector bundles on a smooth projective curve.
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1. INTRODUCTION

In this course, we study moduli problems in algebraic geometry and constructions of moduli
spaces using geometric invariant theory. A moduli problem is essentially a classification problem:
we want to classify certain geometric objects up to some notion of equivalence (key examples
are vector bundles on a fixed variety up to isomorphism or hypersurfaces in P” up to projective
transformations). We are also interested in understanding how these objects deform in families
and this information is encoded in a moduli functor. An ideal solution to a moduli problem
is a (fine) moduli space, which is a scheme that represents this functor. However, there are
many simple moduli problems which do not admit such a solution. Often we must restrict
our attention to well-behaved objects to construct a moduli space. Typically the construction
of moduli spaces is given by taking a group quotient of a parameter space, where the orbits
correspond to the equivalence classes of objects.

Geometric invariant theory (GIT) is a method for constructing group quotients in algebraic
geometry and it is frequently used to construct moduli spaces. The core of this course is
the construction of GIT quotients. Eventually we return to our original motivation of moduli
problems and construct moduli spaces using GIT. We complete the course by constructing
moduli spaces of projective hypersurfaces and moduli spaces of (semistable) vector bundles
over a smooth complex projective curve.

Let us recall the quotient construction in topology: given a group G acting on a topological
space X, we can give the orbit space X/G := {G -z : © € X} the quotient topology, so that the
quotient map 7 : X — X/G is continuous. In particular, 7 gives a quotient in the category of
topological spaces. More generally, we can suppose G is a Lie group and X has the structure
of a smooth manifold. In this case, the quotient X/G will not always have the structure of a
smooth manifold (for example, the presence of non-closed orbits, usually gives a non-Hausdorff
quotient). However, if G acts properly and freely, then X/G has a smooth manifold structure,
such that 7 is a smooth submersion.

In this course, we are interested in actions of an affine algebraic group G (that is, an affine
scheme with a group structure such that multiplication and inversion are algebraic morphisms).
More precisely, we're interested in algebraic G-actions on an algebraic variety (or scheme of
finite type) X over an algebraically closed field k. As most affine groups are non-compact, their
actions typically have some non-closed orbits. Consequently, the topological quotient X/G will
not be Hausdorff. However one could also ask whether we should relax the idea of having an
orbit space, in order to get a quotient with better geometrical properties. More precisely, we
ask for a categorical quotient in the category of finite type k-schemes; that is, a G-invariant
morphism 7 : X — Y which is universal (i.e., every other G-invariant morphism X — Z factors
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uniquely through 7). With this definition, it is not necessary for Y to be an orbit space and so
we can allow 7 to identify some orbits in order to get an algebraic quotient.

Geometric invariant theory, as developed by Mumford in [25], shows that for a reductive
group G acting on a quasi-projective scheme X (with respect to an ample linearisation) one
can construct an open subvariety U C X and a categorical quotient U//G of the G-action on
U which is a quasi-projective scheme. In general, the quotient will not be an orbit space but it
contains an open subscheme V/G which is the orbit space for an open subset V' C U. If X is an
affine scheme, we have that U = X and the categorical quotient is also an affine scheme and if
X is a projective scheme, the categorical quotient is also projective. We briefly summarise the
main techniques involved in GIT.

Let X = Spec A be an affine scheme of finite type over an algebraically closed field k; then
A = O(X) := Ox(X) is a finitely generated k-algebra. An algebraic G-action on X induces
G-action on the ring O(X) of regular functions on X. For any G-invariant morphism f : X — Z
of schemes, the image of the associated homomorphism f*: O(Z) — O(X) is contained in the
subalgebra O(X)% of G-invariant functions. In particular, if O(X)% is finitely generated as a
k-algebra, then the associated affine scheme Spec O(X)% is also of finite type over k and the
inclusion O(X)% < O(X) induces a morphism X — X//G := Spec O(X )%, which is categorical
quotient of the G-action on X. The affine GIT quotient X — X //G identifies any orbits whose
closures meet, but restricts to an orbit space on an open subscheme of so-called stable points.

An important problem in GIT is determining when the ring of invariants O(X)% is finitely
generated; this is known as Hilbert’s 14th problem. For G = GL,, over the complex numbers,
Hilbert showed that the invariant ring is always finitely generated. However, for a group G
built using copies of the additive group G,, Nagata gave a counterexample where O(X) is
non-finitely generated. Furthermore, Nagata proved for any reductive group G, the ring of
invariants O(X) is finitely generated. Consequently, (classical) GIT is concerned with the
action of reductive groups; for developments on the theory for non-reductive groups, see [6].

The affine GIT quotient serves as a guide for the general approach: as every scheme is con-
structed by gluing affine schemes, the general theory is obtained by gluing affine GIT quotients.
Ideally, we would to cover X by G-invariant open affine sets and glue the corresponding affine
GIT quotients. The open G-affine sets are given by non-vanishing loci of invariant sections of
a line bundle L on X, to which we have lifted the G-action. However, usually we cannot cover
the whole of X with such open subsets, but rather only an open subset X*® of X of so-called
semistable points. In this case, we have a categorical quotient of X*® which restricts to an orbit
space on the stable locus X*.

The definitions of (semi)stability are given in terms of the existence of invariant sections of a
line bundle with certain properties. However, as calculating rings of invariants is difficult, one
often instead makes use of a numerical criterion for semistability known as the Hilbert—Mumford
criterion. More precisely, the Hilbert—Mumford criterion reduces the semistability of points in
a projective scheme to the study of the weights of all 1-dimensional subtori G, C G.

The techniques of GIT have been used to construct many moduli spaces in algebraic geometry
and finally we return to the construction of some important moduli spaces. The main examples
that we cover in this course are the GIT constructions of moduli spaces of hypersurfaces and
moduli spaces of (semistable) vector bundles on a smooth complex projective curve.

The main references for this course are the books of Newstead [31] and Mukai [24] on moduli
problems and GIT, and the book of Mumford [25] on GIT.

Notation and conventions. Throughout we fix an algebraically closed field k; at certain
points in the text we will assume that the characteristic of the field is zero in order to simplify
the proofs. By a scheme, we always mean a finite type scheme over k. By a variety, we mean
a reduced separated (finite type) scheme over k; in particular, we do not assume varieties are
irreducible. We let O(X) := Ox(X) denote the ring of regular functions on a scheme X.
For a projective scheme X with ample line bundle L, we let R(X, L) denote the homogeneous
coordinate ring of X given by taking the direct sum of the spaces of sections of all non-negative
powers of L.
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2. MODULI PROBLEMS

2.1. Functors of points. In this section, we will make use of some of the language of category
theory. We recall that a morphism of categories C and D is given by a (covariant) functor
F : C — D, which associates to every object C' € C an object F/(C) € D and to each morphism
f:C — C"in C a morphism F(f) : F(C) — F(C') in D such that F preserves identity
morphisms and composition. A contravariant functor F' : C — D reverses arrows: so F' sends
f:C—=C"to F(f): F(C") — F(C).

The notion of a morphism of (covariant) functors F,G : C — D is given by a natural trans-
formation n : F' — G which associates to every object C' € C a morphism n¢ : F(C) — G(C) in
D which is compatible with morphisms f : C' — C" in C, i.e. we have a commutative square

F(O)—2~G(0)
F(f)l G(f)
F(C")—=G(C").

Uleld
We note that if F' and G were contravariant functors, the vertical arrows in this square would
be reversed. If no is an isomorphism in D for all C' € C, then we call n a natural isomorphism
or simply an isomorphism of functors.

Remark 2.1. The focus of this course is moduli problems, rather than category theory and so
we are doing naive category theory (in the sense that we allow the objects of a category to be
a class). This is analogous to doing naive set theory without a consistent axiomatic approach.
However, for those interested in category theory, this can all be handled in a consistent manner,
where one pays more careful attention to the size of the set of objects. One approach to this
more formal category theory can be found in the book of Kashiwara and Schapira [18]. Strictly
speaking, in this case, one should work with the category of ‘small’ sets.

Let Set denote the category of sets and let Sch denote the category of schemes (of finite type
over k).

Definition 2.2. The functor of points of a scheme X is a contravariant functor hx := Hom(—, X) :
Sch — Set from the category of schemes to the category of sets defined by

hx(Y) = Hom(Y, X)
hx(f:Y—>Z) = hx(f): hx(Z) — h)((Y)
g = gof
Furthermore, a morphism of schemes f : X — Y induces a natural transformation of functors
hy: hx — hy given by
hf,Z : hx(Z) — hy(Z)
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Contravariant functors from schemes to sets are called presheaves on Sch and form a cate-
gory, with morphisms given by natural transformations; this category is denoted Psh(Sch) :=
Fun(Sch®P, Set), the category of presheaves on Sch. The above constructions can be phrased as
follows: there is a functor h : Sch — Psh(Sch) given by

X — hx (f:X—>Y)'—>hf:hx—>hy.

In fact, there is nothing special about the category of schemes here. So for any category C,
there is a functor h : C — Psh(C).

Example 2.3. For a scheme X, we have that hx(Speck) := Hom(Speck, X) is the set of
k-points of X and, for another scheme Y, we have that hx(Y) is the set of Y-valued points of
X. Let X = A! be the affine line; then the functor of points hy1 associates to a scheme Y the
set of functions on Y (i.e. morphisms Y — Al!). Similarly, for the scheme G, = A! — {0}, the
functor hy1 associates to a scheme Y the set of invertible functions on Y.

Lemma 2.4 (The Yoneda Lemma). Let C be any category. Then for any C € C and any
presheaf F' € Psh(C), there is a bijection

{natural transformsations n: hc — F'} «— F(C).
given by n— nc(lde).

Proof. Let us first check that this is surjective: for an object s € F(C'), we define a natural
transformation n = n(s) : ho — F as follows. For C’ € C, let n¢r : ha(C') — F(C') be the
morphism of sets which sends f: C" — C to F(f)(s) (recall that F(f) : F(C) — F(C")). This
is compatible with morphisms and, by construction, nc(ide) = F(id¢)(s) = s.

For injectivity, suppose we have natural transformations 1,7’ : he — F such that no(Idg) =
ne(Ide). Then we claim n = 7; that is, for any C’ in C, we have nc = 1, : ha(C') — F(C').
Let g : C' — C, then as 7 is a natural transformation, we have a commutative square

ho(C)—“~F(C)

hc(g)l J{F (9)
! !

he(C) == F(C).

It follows that
(F(g) o nc)(ide) = (ner o he(g))(de) = ner(9)
and similarly, as 7’ is a natural transformation, that (F'(g) o n;)(idc) = ¢ (g). Hence
ncr(9) = Flg)(ne(ide)) = Fg) (e (ide)) = ne(9)

as required. O

The functor h : C — Psh(C) is called the Yoneda embedding, due to the following corollary.

Corollary 2.5. The functor h : C — Psh(C) is fully faithful.
Proof. We recall that a functor is fully faithful if for every C,C’ in C, the morphism
Home (C, C") — Hompgyc)(he, her)
is bijective. This follows immediately from the Yoneda Lemma if we take F' = h¢r. (]

Exercise 2.6. Show that if there is a natural isomorphism hc — hl-, then there is a canonical
isomorphism C' — C".

The presheaves in the image of the Yoneda embedding are known as representable functors.

Definition 2.7. A presheaf F' € Psh(C) is called representable if there exists an object C' € C
and a natural isomorphism F = h¢.
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Question: Is every presheaf F' € Psh(Sch) representable by a scheme X7

The question has a negative answer, as we will soon see below. However, we are most
interested in answering this question for special functors F', known as moduli functors, which
classify certain geometric families. Before we introduce these moduli functors, we start with
the naive notion of a moduli problem.

2.2. Moduli problem. A moduli problem is essentially a classification problem: we have a
collection of objects and we want to classify these objects up to equivalence. In fact, we want
more than this, we want a moduli space which encodes how these objects vary continuously in
families; this information is encoded in a moduli functor.

Definition 2.8. A (naive) moduli problem (in algebraic geometry) is a collection A of objects
(in algebraic geometry) and an equivalence relation ~ on A.

Example 2.9.

(1) Let A be the set of k-dimensional linear subspaces of an n-dimensional vector space and
~ be equality.

(2) Let A be the set of n ordered distinct points on P! and ~ be the equivalence relation
given by the natural action of the automorphism group PGLy of P

(3) Let A to be the set of hypersurfaces of degree d in P" and ~ can be chosen to be either
equality or the relation given by projective change of coordinates (i.e. corresponding to
the natural PGL,,1-action).

(4) Let A be the collection of vector bundles on a fixed scheme X and ~ be the relation
given by isomorphisms of vector bundles.

Our aim is to find a scheme M whose k-points are in bijection with the set of equivalence
classes A/ ~. Furthermore, we want M to also encode how these objects vary continuously in
‘families’. More precisely, we refer to (A, ~) as a naive moduli problem, because there is often
a natural notion of families of objects over a scheme S and an extension of ~ to families over
S, such that we can pullback families by morphisms 7" — S.

Definition 2.10. Let (A, ~) be a naive moduli problem. Then an extended moduli problem is
given by

(1) sets Ag of families over S and an equivalence relation ~g on Ag, for all schemes S,

(2) pullback maps f*: Ag — Ag, for every morphism of schemes 7' — S,

satisfying the following properties:
(1) (-ASpecka NSpeck) = (A, N);
(ii) for the identity Id : S — S and any family F over S, we have Id*F = F;
(iii) for a morphism f : T — S and equivalent families F ~g G over S, we have f*F ~p f*G;
(iv) for morphisms f: T'— S and g : S — R, and a family F over R, we have an equivalence
(9o f)*F ~r frg"F.
For a family F over S and a point s : Speck — S, we write Fs := s*F to denote the corre-
sponding family over Spec k.

Lemma 2.11. A moduli problem defines a functor M € Psh(Sch) given by
M(S) := {families over S}/ ~g M(f:T—8)=f": M(S) = M(T).

We will often refer to a moduli problem simply by its moduli functor. There can be several
different extensions of a naive moduli problem.

Example 2.12. Let us consider the naive moduli problem given by vector bundles (i.e. locally
free sheaves) on a fixed scheme X up to isomorphism. Then this can be extended in two different
ways. The natural notion for a family over S is a locally free sheaf F over X x S flat over 5,
but there are two possible equivalence relations:

FrgG — F=g

Frg G = FE2GRnl for a line bundle £ — S
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where mg : X xS — S. For the second equivalence relation, since £ — S is locally trivial, there
is a cover S; of S such that F|xxs, = G|xxs;. It turns out that the second notion of equivalence
offers the extra flexibility we will need in order to construct moduli spaces.

Example 2.13. Let A consist of 4 ordered distinct points (pi, p2, p3,p4) on PL. We want to
classify these quartuples up to the automorphisms of P'. We recall that the automorphism group
of P! is the projective linear group PGLs, which acts as Mobius transformations. We define our
equivalence relation by (p1, p2, 3, p4) ~ (q1, g2, g3, q4) if there exists an automorphisms f : Pt —
P! such that f(p;) = ¢; for i = 1,...,4. We recall that for any 3 distinct points (p1, p2,p3) on
P!, there exists a unique Mobius transformation f € PGLa which sends (p1,p2,p3) to (0,1, 00)
and the cross-ratio of 4 distinct points (p1, p2, p3,ps) on P! is given by f(ps) € P! —{0,1, 0},
where f is the unique Mo6bius transformation that sends (p1, p2,ps3) to (0,1, 00). Therefore, we
see that the set A/ ~ is in bijection with the set of k-points in the quasi-projective variety
P! — {0,1, 00}.

In fact, we can naturally speak about families of 4 distinct points on P! over a scheme S: this is
given by a proper flat morphism 7 : X — S such that the fibres 771(s) = P! are smooth rational
curves and 4 disjoint sections (o1, ...,04) of m. We say two families (7 : X — S,01,...,04) and
(7' X' — S,0l,...,0) are equivalent over S if there is an isomorphism f : X — X’ over S
(i.e. m=7'"o f) such that foo; =0ol.

There is a tautological family over the scheme S = P*—{0,1,00}: let 7 : P1—{0,1,00} x P! —
S = P! —{0,1,00} be the projection map and choose sections (o1(s) = 0,02(s) = 1,03(s) =
00, 04(s) = s). It turns out that this family over P! — {0, 1, 00} encodes all families parametrised
by schemes S (in the language to come, U is a universal family and P* —{0,1, 0o} is a fine moduli
space).

Exercise 2.14. Define an analogous notion for families of n ordered distinct points on P! and
let the corresponding moduli functor be denoted My, (this is the moduli functor of n ordered
distinct points on the curve P! of genus 0). For n = 3, show that Mg 3(Speck) is a single
element set and so is in bijection with the set of k-points of Spec k. Furthermore, show there is
a tautological family over Spec k.

2.3. Fine moduli spaces. The ideal situation is when there is a scheme that represents our
given moduli functor.

Definition 2.15. Let M : Sch — Set be a moduli functor; then a scheme M is a fine moduli
space for M if it represents M.

Let’s carefully unravel this definition: M is a fine moduli space for M if there is a natural
isomorphism 7 : M — hjs. Hence, for every scheme S, we have a bijection

ng : M(S) := {families over S}/ ~g¢— hp(S) := {morphisms S — M }.

In particular, if S = Speck, then the k-points of M are in bijection with the set A/ ~.
Furthermore, these bijections are compatible with morphisms 7" — S, in the sense that we have
a commutative diagram

M(S)—E=hp(S)
M(f) har(f)
M(T)——hp (T).

nr
The natural isomorphism 7 : M — hys determines an element U = 13, (idy) € M(M); that
is, U is a family over M (up to equivalence).

Definition 2.16. Let M be a fine moduli space for M; then the family U € M(M) corre-
sponding to the identity morphism on M is called the universal family.

This family is called the universal family, as any family F over a scheme S (up to equivalence)
corresponds to a morphism f : S — M and, moreover, as the families f*U/ and F correspond
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to the same morphism idys o f = f, we have
fU~s F;
that is, any family is equivalent to a family obtained by pulling back the universal family.

Remark 2.17. If a fine moduli space for M exists, it is unique up to unique isomorphism:
that is, if (M,n) and (M',n’) are two fine moduli spaces, then they are related by unique
isomorphisms 7}, ((na) 1 (Idar)) : M — M’ and nap ((0hyy) " Adps)) : M — M.

We recall that a presheaf F': Sch — Set is said to be a sheaf in the Zariski topology if for
every scheme S and Zariski cover {S;} of S, the natural map

{f e F(S)} — {(fi € F(Si))i : filsins; = fils;ns; for all i, 5}

is a bijection. A presheaf is called a separated presheaf if these natural maps are injective.

Exercise 2.18.

(1) Show that the functor of points of a scheme is a sheaf in the Zariski topology. In
particular, deduce that for a presheaf to be representable it must be a sheaf in the
Zariski topology.

(2) Consider the moduli functor of vector bundles over a fixed scheme X, where we say
two families £ and F are equivalent if and only if they are isomorphic. Show that
the corresponding moduli functor fails to be a separable presheaf (it may be useful to
consider the second equivalence relation we introduced for families of vector bundles in
Exercise 2.12).

Example 2.19. Let us consider the projective space P" = Proj k[xo, ..., x,]|. This variety can
be interpreted as a fine moduli space for the moduli problem of lines through the origin in
V := A"*!. To define this moduli problem carefully, we need to define a notion of families and
equivalences of families. A family of lines through the origin in V over a scheme S is a line
bundle £ over S which is a subbundle of the trivial vector bundle V' x S over S (by subbundle
we mean that the quotient is also a vector bundle). Then two families are equivalent if and only
if they are equal.

Over P", we have a tautological line bundle Opn(—1) C V x P", whose fibre over p € P" is
the corresponding line in V. This provides a tautological family of lines over P". The dual of
the tautological line bundle is the line bundle Opr (1), known as the Serre twisting sheaf. The
important fact we need about Opn (1) is that it is generated by the global sections x, ..., zy.

Given any morphism of schemes f : S — P, the line bundle f*Opn (1) is generated by the
global sections f*(xg),..., f*(x,). Hence, we have a surjection Og“ — f*Opn(1). For locally
free sheaves, pull back commutes with dualising and so

frOpn(=1) 2= (f*Opa(1))".
Dually the above surjection gives an inclusion £ := f*Opn(—1) — Og“ = V x S which
determines a family of lines in V' over S.
Conversely, let £ C V' x S be a family of lines through the origin in V over S. Then, dual to
this inclusion, we have a surjection g : V¥V x S — LY. The vector bundle V'V x S is generated
by the global sections oy, ..., o, corresponding to the dual basis for the standard basis on V.

Since ¢ is surjective, the dual line bundle £ is generated by the global sections gooy,...,qooy,.
In particular, there is a unique morphism f : S — P™ given by

s+ [goop(s): -+ :qoon(s)]

such that f*Opn(—1) =L C V x S (for details, see [14] II Theorem 7.1).

Hence, there is a bijective correspondence between morphisms S — P" and families of lines
through the origin in V over S. In particular, P" is a fine moduli space and the tautological
family is a universal family. The keen reader may note that the above calculations suggests we
should rather think of P™ as the space of 1-dimensional quotient spaces of a n + 1-dimensional
vector space (a convention that many algebraic geometers use).
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Exercise 2.20. Consider the moduli problem of d-dimensional linear subspaces in a fixed vector
space V = A", where a family over S is a rank d vector subbundle £ of V' x S and the equivalence
relation is given by equality. We denote the associated moduli functor by Gr(d,n).

We recall that there is a projective variety Gr(d, n) whose k-points parametrise d-dimensional
linear subspaces of k", called the Grassmannian variety. Let T C V x Gr(d,n) be the tauto-
logical family over Gr(d,n) whose fibre over a point in the Grassmannian is the corresponding
linear subspace of V. In this exercise, we will show that the Grassmannian variety Gr(d,n) is
a fine moduli space representing Gr(d, n).

Let us determine the natural isomorphism 71 : Gr(d,n) — hgyan).- Consider a family & C
V x S over S. As & is a rank d vector bundle, we can pick an open cover {U,} of S on which &
is trivial, i.e. €|y, = U, x A% Then, since we have U, x A? = &|y, C V x S|y, = A" x Uy, we
obtain a homomorphism U, x A% < U, x A" of trivial vector bundles over U,. This determines
a n x d matrix with coefficients in O(U,) of rank d; that is, a morphism U, — M2 ,(k), to
the variety of n x d matrices of rank d. By taking the wedge product of the d rows in this
matrix, we obtain a morphism fy : Uy, — P(A%(k™)) with image in the Grassmannian Gr(d,n).
Using the fact that the transition functions of £ are linear, verify that these morphisms glue to
define a morphism f = fg : S — P(A%(k™)) such that f*7 = £. In particular, this procedure
determines the natural isomorphism: ng(€) = fs.

For a comprehensive coverage of the Grassmannian moduli functor and its representability,
see [8] Section 8. The Grassmannian moduli functor has a natural generalisation to the moduli
problem of classifying subsheaves of a fixed sheaf (or equivalently quotient sheaves with a
natural notion of equivalence). This functor is representable by a quot scheme constructed by
Grothendieck [9, 10] (for a survey of the construction, see [33]). Let us mention two special cases
of this construction. Firstly, if we take our fixed sheaf to be the structure sheaf of a scheme X,
then we are considering ideal sheaves and obtain a Hilbert scheme classifying subschemes of X.
Secondly, if we take our fixed sheaf to be a locally free coherent sheaf £ over X and consider
quotient line bundles of £, we obtain the projective space bundle P(€) over X (see [14] II §7).

2.4. Pathological behaviour. Unfortunately, there are many natural moduli problems which
do not admit a fine moduli space. In this section, we study some examples and highlight two
particular pathologies which prevent a moduli problem from admitting a fine moduli space,
namely:

(1) The jump phenomena: moduli may jump in families (in the sense that we can have
a family F over A! such that F, ~ Fy for all s,s' € Al — {0}, but Fq ~ F; for
s€ Al —{0}).

(2) The moduli problem may be unbounded (in that there is no family F over a scheme S
which parametrises all objects in the moduli problem).

Example 2.21. We consider the naive moduli problem of classifying endomorphisms of a
n-dimensional k-vector space. More precisely A consists of pairs (V,T), where V is an n-
dimensional k-vector space and T is an endomorphism of V. We say (V,¢) ~ (V' ¢) if there
exists an isomorphism h : V — V' compatible with the endomorphisms i.e. ho ¢ = ¢’ o h. We
extend this to a moduli problem by defining a family over S to be a rank n vector bundle F over
S with an endomorphism ¢ : F — F. Then we say (F,¢) ~g (G, ¢') if there is an isomorphism
h : F — G such that ho ¢ = ¢’ o h. Let End,, be the corresponding moduli functor.

For any n > 2, we can construct families which exhibit the jump phenomena. For concrete-
ness, let n = 2. Then consider the family over Al given by (F = (95512, ¢) where for s € A!

1 s
¢S:(o 1)'

For s,t # 0, these matrices are similar and so ¢; ~ ¢5. However, ¢g « ¢1, as this matrices have
distinct Jordan normal forms. Hence, we have produced a family with the jump phenomenon.

Example 2.22. Let us consider the moduli problem of vector bundles over P! of rank 2 and
degree 0.
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We claim there is no family F over a scheme S with the property that for any rank 2 degree 0
vector bundle £ on P!, there is a k-point s € S such that F|s = €. Suppose such a family F over
a scheme S exists. For each n € N, we have a rank 2 degree 0 vector bundle Opi(n) ® Opi(—n)
(in fact, by Grothendieck’s Theorem classifying vector bundles on P!, every rank 2 degree 0
vector bundle on P! has this form). Furthermore, we have

2 if n=0,

dim HO (P!, Op: (1) & Ops (—n)) = dimy (K[, 1] & k[0, 1] n) = { 2 st

Consider the subschemes S, := {s € S : dim H°(P!, F,) > n} of S, which are closed by the
semi-continuity theorem (see [14] III Theorem 12.8). Then we obtain a decreasing chain of
closed subschemes
§=528282 ...
each of which is distinct as Opi(n) @ Opi1(—n) € Sp+1 — Spt2. The existence of this chain
contradicts the fact that S is Noetherian (recall that for us scheme means scheme of finite
type over k). In particular, the moduli problem of vector bundles of rank 2 and degree 0 is
unbounded.
In fact, we also see the jump phenomena: there is a family F of rank 2 degree 0 vector
bundles over A! = Spec k[s] such that
F = { (’)1?12 s#0
Opl(l) (&) Opl(—l) s=0.
To construct this family, we note that
Eth(Opl(l), Opi1(—1)) = Hl(]P’l, Op1(—2)) & HO(Pl, Op )" =k

by Serre duality. Therefore, there is a family of extensions F over Al of Opi(1) by Opi(—1)
with the desired property.

In both cases there is no fine moduli space for this problem. To solve these types of phenom-
ena, one usually restricts to a nicer class of objects (we will return to this idea later on).

Example 2.23. We can see more directly that there is no fine moduli space for £nd,,. Suppose
M is a fine moduli space. Then we have a bijection between morphisms S — M and families
over S up to equivalence. Choose any n X n matrix 7', which determines a point m € M.
Then for S = P! we have that the trivial families (Op;,T) and (Of ® Opi(1),T ® Ido,, (1))
are non-equivalent families which determine the same morphism P! — M, namely the constant
morphism to the point m.

2.5. Coarse moduli spaces. As demonstrated by the above examples, not every moduli func-
tor has a fine moduli space. By only asking for a natural transformation M — hj; which
is universal and a bijection over Speck (so that the k-points of M are in bijection with the
equivalence classes A/ ~), we obtain a weaker notion of a coarse moduli space.

Definition 2.24. A coarse moduli space for a moduli functor M is a scheme M and a natural
transformation of functors n : M — hjs such that
(a) Mspeck : M(Speck) — ha(Speck) is bijective.
(b) For any scheme N and natural transformation v : M — hy, there exists a unique
morphism of schemes f : M — N such that v = hy on, where hy : hyy — hy is the
corresponding natural transformation of presheaves.

Remark 2.25. A coarse moduli space for M is unique up to unique isomorphism: if (M, n) and
(M',n) are coarse moduli spaces for M, then by Property (b) there exists unique morphisms
f:M — M and f': M’ — M such that hy and hy fit into two commutative triangles:

/

hap<—— M- by

AN

hg har.
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Since 1 = hy o hy on and ) = hiq,, © 7, by uniqueness in (b) and the Yoneda Lemma, we have
[ o f =idy and similarly fo f/ =id;.

Proposition 2.26. Let (M,n) be a coarse moduli space for a moduli problem M. Then (M,n)
s a fine moduli space if and only if

(1) there exists a family U over M such that ny(U) = idpy,
(2) for families F and G over a scheme S, we have F ~g G <= ns(F) =ns(G).

Proof. Exercise. O

Lemma 2.27. Let M be a moduli problem and suppose there exists a family F over Al such
that Fs ~ F1 for all s # 0 and Fy = Fi. Then for any scheme M and natural transformation
n: M — hyr, we have that ng (F) : A' — M is constant. In particular, there is no coarse
moduli space for this moduli problem.

Proof. Suppose we have a natural transformation n : M — hjs; then 1 sends the family F over
A to a morphism f: A! — M. For any s : Speck — Al, we have that f o s = ngpeck(Fs) and,
for s # 0, Fs = F1 € M(Speck), so that f|s1_(oy is a constant map. Let m : Speck — M be
the point corresponding to the equivalence class for F; under 7. Since the k-valued points of M
are closed (recall M is a scheme of finite type over an algebraically closed field), their preimages
under morphisms must also be closed. Then, as A' — {0} € f~!(m), the closure A! of A! — {0}
must also be contained in f~1(m); that is, f is the constant map to the k-valued point m of
M. In particular, the map nspeck : M(Speck) — har(Speck) is not a bijection, as Fy # Fi in
M (Speck), but these non-equivalent objects correspond to the same k-point m in M. U

In particular, the moduli problems of Examples 2.22 and 2.21 do not even admit coarse
moduli spaces.

2.6. The construction of moduli spaces. The construction of many moduli spaces follows
the same general pattern.

(1) Fix any discrete invariants for our objects - here the invariants should be invariant under
the given equivalence relation (for example, for isomorphism classes of vector bundles
on a curve, one may fix the rank and degree).

(2) Restrict to a reasonable class of objects which are bounded (otherwise, we can’t find a
coarse moduli space). Usually one restricts to a class of stable objects which are better
behaved and bounded.

(3) Find a family F over a scheme P with the local universal property (i.e. locally any other
family is equivalent to a pullback of this family - see below). We call P a parameter
space, as the k-points of P surject onto A/ ~; however, this is typically not a bijection.

(4) Find a group G acting on P such that p and ¢ lie in the same G-orbit in P if and only
if 7, ~ F4. Then we have a bijection P(k)/G = A/ ~.

(5) Typically this group action is algebraic (see Section 3) and by taking a quotient, we
should obtain our moduli space. The quotient should be taken in the category of schemes
(in terminology to come, it should be a categorical quotient) and this is done using
Mumford’s Geometric Invariant Theory.

Definition 2.28. For a moduli problem M, a family F over a scheme S has the local universal
property if for any other family G over a scheme T and for any k-point ¢ € T, there exists a
neighbourhood U of ¢ in T and a morphism f : U — S such that G|y ~y f*F.

In particular, we do not require the morphism f to be unique. We note that, for such a
family to exist, we need our moduli problem to be bounded.
3. ALGEBRAIC GROUP ACTIONS AND QUOTIENTS

In this section we consider group actions on algebraic varieties and also describe what type
of quotients we would like to have for such group actions.
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3.1. Affine Algebraic groups. An algebraic group (over k) is a group object in the category
of schemes (over k). By a Theorem of Chevalley, every algebraic group is an extension of an
abelian variety (that is, a smooth connected projective algebraic group) by an affine algebraic
group (whose underlying scheme is affine) [22, Theorem 10.25]. In this course, we only work
with affine algebraic groups and cover the results which are most important for our purposes.
A good reference for affine algebraic group schemes is the book (in preparation) of Milne [23].
For those who are interested in discovering more about algebraic groups, see [3, 22, 11].

Definition 3.1. An algebraic group over k is a scheme G over k with morphisms e : Speck — G
(identity element), m : G x G — G (group law) and i : G — G (group inversion) such that we
have commutative diagrams

GxGxG Y axa Speck x G- @« ¢ 4 ¢ % Speck
mxidl lm > ml -
GxG— G G
G oy gl g

m

Spec k— G ——Speck.

We say G is an affine algebraic group if the underlying scheme G is affine. We say G is a
group variety if the underlying scheme G is a variety (recall in our conventions, varieties are
not necessarily irreducible).

A homomorphism of algebraic groups G and H is a morphism of schemes f : G — H such
that the following square commutes

G x G2

fol lf

Hx H—>H.
my

An algebraic subgroup of G is a closed subscheme H such that the immersion H — G is a
homomorphism of algebraic groups. We say an algebraic group G’ is an algebraic quotient of G
if there is a homomorphism of algebraic groups f : G — G’ which is flat and surjective.

Remark 3.2.

(1) The functor of points hg of an algebraic group has a natural factorisation through
the category of (abstract) groups, i.e, for every scheme X the operations m,e,i equip
Hom(X,G) with a group structure and with this group structure, every map hg(f) :
Hom(X,G) — Hom(Y,G) for f : Y — X is a morphism of groups. In fact, one can
show using the Yoneda lemma that there is an equivalence of categories between the
category of algebraic groups and the category of functors F' : Sch — Grp such that the

composition Sch EN Grp — Set is representable. When restricting to the category of
affine k-schemes, this can give a very concrete description of an algebraic group, as we
will see in the examples below.

(2) Let O(G) := Og(G) denote the k-algebra of regular functions on G. Then the above
morphisms of affine varieties correspond to k-algebra homomorphisms m* : O(G) —
O(G) ® O(G) (comultiplication) and i* : O(G) — O(G) (coinversion) and the identity
element corresponds to e* : O(G) — k (counit). These operations define a Hopf algebra
structure on the k-algebra O(G). Furthermore, there is a bijection between finitely
generated Hopf algebras over k and affine algebraic groups (see [23] I Theorem 5.1).

(3) By a Theorem of Cartier, every affine algebraic group over a field k of characteristic zero
is smooth (see [23] VI Theorem 9.3). Moreover, in Exercise sheet 3, we see that every
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algebraic group is separated. Hence, in characteristic zero, the notion of affine algebraic
group and affine group variety coincide.

In the definition of homomorphisms, we only require a compatibility with the group
law m; it turns out that the compatibility for the identity and group inversion is then
automatic. This is well known in the case of homomorphisms of abstract groups, and
the algebraic case can then be deduced by applying the Yoneda lemma.

For the definition of a quotient group, the condition that the homomorphism is flat is
only needed in positive characteristic, as in characteristic zero this morphism is already
smooth (this follows from the Theorem of Cartier mentioned above and the fact that
the kernel of a homomorphism of smooth group schemes is smooth; see [22] Proposition
1.48)

Example 3.3. Many of the groups that we are already familiar with are affine algebraic groups.

(1)

The additive group G, = Spec k[t] over k is the algebraic group whose underlying variety
is the affine line A! over k and whose group structure is given by addition:

m*(t) =t®14+1®t and i"(t) = —t.

Let us indicate how to show these operations satisfy the group axioms. We only prove
the associativity, the other axioms being similar and easier. We have to show that

(m* ®id) om™ = (id®@m*) o m™ : k[t] — k[t] ® k[t] @ E[t].
This is a map of k-algebras, so it is enough to check it for ¢t. We have
(m*®@id)om™)(t) = (M* @Id)(tR1+10t)=tR1®1+10t1+101xt
and similarly
(([dem*)om* () =t®1l+10tel+lolat

which completes the proof. For a k-algebra R, we have G,(R) = (R, +); this justifies
the name of the ‘additive group’.

The multiplicative group G,, = Spec k[t,t~!] over k is the algebraic group whose under-
lying variety is the A! — {0} and whose group action is given by multiplication:

m*(t)=t®t and *(t)=t"1.

For a k-algebra R, we have G,,(R) = (R*,-); hence, the name of the ‘multiplicative
group’.

The general linear group GL, over k is an open subvariety of A" cut out by the
condition that the determinant is non-zero. It is an affine variety with coordinate ring
klzij 1 1 < 4,5 < n]get(a;;)- The co-group operations are defined by:

n
m*(m”) = lek ®:ckj and Z*(xm) = (xl])z_jl
k=1
where (:CU);Jl is the regular function on GL,, given by taking the (i, j)-th entry of the
inverse of a matrix. For a k-algebra R, the group GL,(R) is the group of invertible
n X n matrices with coefficients in R, with the usual matrix multiplication.
More generally, if V' is a finite-dimensional vector space over k, there is an affine algebraic
group GL(V') which is (non-canonically) isomorphic to GLgjy(). For a k-algebra R, we
have GL(V)(R) = Autr(V @ R).
Let G be a finite (abstract) group. Then G can be naturally seen as an algebraic group
G, over k as follows. The group operations on G make the group algebra k[G] into a
Hopf algebra over k, and G}, := Spec(k[G]) is a 0-dimensional variety whose points are
naturally identified with elements of G.
Let n > 1. Put u, := Speckl[t,t"1]/(t" — 1) C G,,, the subscheme of n-roots of unity.
Write I for the ideal (" — 1) of R := k[t,t!]. Then

m't"—-1)=t"t"-11=t"-1)t"+1(t"—-1) eI R+ R®I
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which implies that p, is an algebraic subgroup of G,,. If n is different from char(k),
the polynomial X" — 1 is separable and there are n distinct roots in k. Then the choice
of a primitive n-th root of unity in k& determines an isomorphism p, =~ Z/nZk. If
n = char(k), however, we have X" — 1 = (X — 1)" in k[X], which implies that the
scheme i, is non-reduced (with 1 as only closed point). This is the simplest example of
a non-reduced algebraic group.

A linear algebraic group is by definition a subgroup of GL,, which is defined by polynomial
equations; for a detailed introduction to linear algebraic groups, see [1, 15, 40]. For instance,
the special linear group is a linear algebraic group. In particular, any linear algebraic group
is an affine algebraic group. In fact, the converse statement is also true: any affine algebraic
group is a linear algebraic group (see Theorem 3.9 below).

An affine algebraic group G over k determines a group-valued functor on the category of
finitely generated k-algebras given by R +— G(R). Similarly, for a vector space V over k,
we have a group valued functor GL(V') given by R — Autgr (V ®; R), the group of R-linear
automorphisms. If V' is finite dimensional, then GL(V') is an affine algebraic group.

Definition 3.4. A linear representation of an algebraic group G on a vector space V over k
is a homomorphism of group valued functors p : G — GL(V). If V is finite dimensional, this
is equivalent to a homomorphism of algebraic groups p : G — GL(V'), which we call a finite
dimensional linear representation of G.

If G is affine, we can describe a linear representation p : G — GL(V) more concretely in
terms of its associated co-module as follows. The natural inclusion GL(V) — End(V) and
p: G — GL(V) determine a functor G — End(V), such that the universal element in G(O(Q))
given by the identity morphism corresponds to an O(G)-linear endomorphism of V ®; O(G),
which by the universality of the tensor product is uniquely determined by its restriction to a
k-linear homomorphism p* : V. — V ®;, O(G); this is the associated co-module. If V' is finite
dimensional, we can even more concretely describe the associated co-module by considering
the group homomorphism G — End(V) and its corresponding homomorphism of k-algebras
OV @i V*) — O(G), which is determined by a k-linear homomorphism V @5 V* — O(G) or
equivalently by the co-module p* : V' — V ®; O(G). In particular, a linear representation of an
affine algebraic group G on a vector space V is equivalent to a co-module structure on V (for
the full definition of a co-module structure, see [23] Chapter 4).

3.2. Group actions.

Definition 3.5. An (algebraic) action of an affine algebraic group G on a scheme X is a
morphism of schemes o : G x X — X such that the following diagrams commute

exidx idGXO'

Speckx X —=> G x X GxGxX——GxX

C e ]

X GxX X.

R

g

Suppose we have actions ox : G x X — X and oy : G XY — Y of an affine algebraic group G
on schemes X and Y. Then a morphism f : X — Y is G-equivariant if the following diagram
commutes

GXXMGXY

axl ayl

X Y.

If Y is given the trivial action oy = my : GXY — Y, then we refer to a G-equivariant morphism
f: X =Y as a G-invariant morphism.
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Remark 3.6. If X is an affine scheme over k£ and O(X) denotes its algebra of regular functions,
then an action of G on X gives rise to a coaction homomorphism of k-algebras:

o OX) —» O(GxX)=Z0O(G) e, 0(X)
o= > hi® fi
This gives rise to a homomorphism G — Aut(O(X)) where the k-algebra automorphism of
O(X) corresponding to g € G is given by

f= > hilg)fi € O(X)
for f € O(X) with O'*(f) = Zhl®fl

Definition 3.7. An action of an affine algebraic group G on a k-vector space V' (resp. k-algebra
A) is given by, for each k-algebra R, an action of G(R) on V ®; R (resp. on A ®j R)

or:GR)x (VerR) = V@r R (resp. op: G(R) x (A®, R) = A®y R)

such that og(g, —) is a morphism of R-modules (resp. R-algebras) and these actions are func-
torial in R. We say that an action of G on a k-algebra A is rational if every element of A is
contained in a finite dimensional G-invariant linear subspace of A.

Lemma 3.8. Let G be an affine algebraic group acting on an affine scheme X. Then any
f € O(X) is contained in a finite dimensional G-invariant subspace of O(X). Furthermore, for
any finite dimensional vector subspace W of O(G), there is a finite dimensional G-invariant
vector subspace V' of O(X) containing W.

Proof. Let 0 : O(X) — O(G) ® O(X) denote the coaction homomorphism. Then we can write
o*(f) =>1"1hi ® fi, for h; € O(G) and f; € O(X). Then g- f =Y, hi(g) fi and so the vector
space spanned by fi,..., fn is a G-invariant subspace containing f. The second statement
follows by applying the same argument to a given basis of W. (]

In particular, the action of G on the k-algebra O(X) is rational (that is, every f € O(X) is
contained in a finite dimensional G-invariant linear subspace of O(X)).

One of the most natural actions is the action of G on itself by left (or right) multiplication.
This induces a rational action o : G — Aut(O(G)).

Theorem 3.9. Any affine algebraic group G over k is a linear algebraic group.

Proof. As G is an affine scheme (of finite type over k), the ring of regular functions O(G) is a
finitely generated k-algebra. Therefore the vector space W spanned by a choice of generators for
O(G) as a k-algebra is finite dimensional. By Lemma 3.8, there is a finite dimensional subspace
V of O(G) which is preserved by the G-action and contains W.

Let m* : O(G) — O(G) ® O(G) denote the comultiplication; then for a basis fi,..., f, of V,
we have m*(f;) € O(G) ® V, hence we can write

D= ai;®f
j=1
for functions a;; € O(G). In terms of the action o : G — Aut(O(G)), we have that o(g, fi) =
>_;aij(g)fj. This defines a k-algebra homomorphism
p* : O(Matnxn) — O(G) Tij 7 Qij-

To show that the corresponding morphism of affine schemes p : G — Mat,«, is a closed
embedding, we need to show p* is surjective. Note that V is contained in the image of p* as

fi=Ido) ® e)m*(fi) = (do) @ €) D _ai; @ f = Y _ *(f;)ai;.
7j=1 7j=1

Since V' generates O(G) as a k-algebra, it follows that p* is surjective. Hence p is a closed
immersion.
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Finally, we claim that p : G — Mat,x, is a homomorphism of semigroups (recall that a
semigroup is a group without inversion, such as matrices under multiplication) i.e. we want to
show on the level of k-algebras that we have a commutative square

O(Matrsn)— 22 O (Mat,xn) @ O(Matnsxy)
p*i p*®p*
O(G) O(G) ® O(G);

"
mg

that is, we want to show for the generators x;; € O(Maty,x,,), we have
m(aig) = mg(p* (257)) = (0° © p*) (Migay (35)) = (0" © p) (Z i @ fckj) =D ik ® axj.
k k

To prove this, we consider the associativity identity mg o (id X m¢g) = mg o (mg x id) and apply
this on the k-algebra level to f; € O(G) to obtain

Y an@ay @ f; =Y mglay) @ f
k7j J

as desired. Furthermore, as G is a group rather than just a semigroup, we can conclude that the
image of p is contained in the group GL,, of invertible elements in the semigroup Mat, x,. U

Tori are a basic class of algebraic group which are used extensively to study the structure of
more complicated algebraic groups (generalising the use of diagonal matrices to study matrix
groups through eigenvalues and the Jordan normal form).

Definition 3.10. Let G be an affine algebraic group scheme over k.

(1) G is an (algebraic) torus if G = G}, for some n > 0.
(2) A torus of G is a subgroup scheme of G which is a torus.
(3) A maximal torus of G is a torus T' C G which is not contained in any other torus.

For a torus T, we have commutative groups
X*(T) :=Hom(T,G,,) X.(T):=Hom(G,,,T)

called the character group and cocharacter group respectively, where the morphisms are homo-
morphisms of linear algebraic groups. Let us compute X*(G,,).

Lemma 3.11. The map
0:7Z — X*(Gp)
n — (t—t")
is an isomorphism of groups.

Proof. Let us first show that this is well defined. Write m* for the comultiplication on O(G,).
Then m*(t") = (t®t)" = t" ®@t" shows that 6(n) : G,, — G,, is a morphism of algebraic groups.
Since t*? =t g itself is a morphism of groups. It is clearly injective, so it remains to show
surjectivity.

Let ¢ be an endomorphism of G,,,. Write ¢*(t) € k[t,t~!] as > lil<m a;t'. We have m*(¢*(t)) =
¢*(t) ® ¢*(t), which translates into

Z CLiti X = Z aiajti &® tl.
{ i,J

From this, we deduce that at most one a; is non-zero, say a,. Looking at the compatibility
of ¢ with the unit, we see that necessarily a,, = 1. This shows that ¢ = 6(n), completing the
proof. O
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For a general torus 7', we deduce from the Lemma that the (co)character groups are finite free
Z-modules of rank dim 7". There is a perfect pairing between these lattices given by composition

<, > X' (T)x X (T)—Z

where < x, A >:= y o A\.

An important fact about tori is that their linear representations are completely reducible.
We will often use this result to diagonalise a torus action (i.e. choose a basis of eigenvectors for
the T-action so that the action is diagonal with respect to this basis).

Proposition 3.12. For a finite dimensional linear representation of a torus p : T — GL(V),
there is a weight space decomposition
Ve @ Vi

XEX*(T)

where V) = {v eV :t-v=x()vVt € T} are called the weight spaces and {x : V) # 0} are
called the weights of the action.

Proof. To keep the notation simple, we give the proof for T' = G, where X*(T') = 7Z; the general
case can be obtained either by adapting the proof (with further notation) or by induction on
the dimension of T'. The representation p has an associated co-module

PV =V epO0Gy,) 2V k[t .

and the diagram

1% V @ k[t,t71]

o
Pl id ®m*l

V @ k[t i V@ k[t t7 @ k[t,t 7]

commutes. From this, it follows easily that, for each integer m, the space
Vm={veV:p'(v)=vath}

is a subrepresentation of V.
Forv € V, we have p*(v) = >, <7 fm(v) @t where f,, : V — V is a linear map, and because
of the compatibility with the identity element, we find that

v = Z fm(v)

meZ
If p*(v) = >, ez fm(v) @ t™, then we claim that f,,(v) € Vj,. From the diagram above
> P (fn(@) @17 = (p* @ Tdgpp 1)) (p*(v) = (Idy @ m* = fulv)@t" "
meZ meZ

and as {t™},ez are linearly independent in k[t, =], the claim follows.
Let us show that in fact, the f,;,, form a collection of orthogonal projectors onto the subspaces
V. Using the commutative diagram again, we get

Yo @@ttt = Y fulfalv) @™ @1,

meZ m,ne’

which again by linear independence of the {t"} shows that f,, o f,, vanishes if m # n and is
equal to f, otherwise; this proves that they are orthogonal idempotents. Hence, the V,, are
linearly independent and this completes the proof. O

This result can be phrased as follows: there is an equivalence between the category of linear
representations of T and X*(7T')-graded k-vector spaces. We note that there are only finitely
many weights of the T-action, for reasons of dimension.
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3.3. Orbits and stabilisers.

Definition 3.13. Let G be an affine algebraic group acting on a scheme X by 0 : G x X — X
and let x be a k-point of X.
i) The orbit G-z of x to be the (set-theoretic) image of the morphism o, = o(—, z) : G(k) —
X (k) given by g — g - x.
ii) The stabiliser G, of = to be the fibre product of o, : G — X and x : Speck — X.

The stabiliser G, of z is a closed subscheme of G (as it is the preimage of a closed subscheme
of X under o, : G — X). Furthermore, it is a subgroup of G.

Exercise 3.14. Using the same notation as above, consider the presheaf on Sch whose S-points
are the set

{9 €ha(S):g- (xs) =zs}
where xg : S — X is the composition S — Speck — X of the structure morphism of § with
the inclusion of the point x. Describe the presheaf structure and show that this functor is
representable by the stabiliser G.

The situation for orbits is clarified by the following result.

Proposition 3.15. Let G be an affine algebraic group acting on a scheme X. The orbits of
closed points are locally closed subsets of X, hence can be identified with the corresponding
reduced locally closed subschemes.

Moreover, the boundary of an orbit G-z — G - = is a union of orbits of strictly smaller
dimension. In particular, each orbit closure contains a closed orbit (of minimal dimension).

Proof. Let x € X(k). The orbit G - x is the set-theoretic image of the morphism o, hence by
a theorem of Chevalley ([14] II Exercise 3.19), it is constructible, i.e., there exists a dense open
subset U of G- o with U C G -2 C G - x. Because G acts transitively on G - 2 through o, this
implies that every point of G - z is contained in a translate of U. This shows that G - x is open
in G -z, which precisely means that G - x is locally closed. With the corresponding reduced
scheme structure of GG - x, there is an action of G,eq on G - z which is transitive on k-points. In
particular, it makes sense to talk about its dimension (which is the same at every point because
of the transitive action of Gieq).

The boundary of an orbit G-z is invariant under the action of G and so is a union of G-orbits.
Since G - x is locally closed, the boundary G - — G - z, being the complement of a dense open
set, is closed and of strictly lower dimension than G - z. This implies that orbits of minimum
dimension are closed and so each orbit closure contains a closed orbit. U

Definition 3.16. An action of an affine algebraic group G on a scheme X is closed if all G-orbits
in X are closed.

Example 3.17. Consider the action of G,, on A2 by t - (x,y) = (tz,t 'y). The orbits of this
action are

conics {(z,y) : zy = a} for a € A — {0},

the punctured z-axis,

the punctured y-axis,

the origin.

The origin and the conic orbits are closed whereas the punctured axes both contain the origin
in their orbit closures. The dimension of the orbit of the origin is strictly smaller than the
dimension of G,,, indicating that its stabiliser has positive dimension.

Example 3.18. Let G, act on A" by scalar multiplication: ¢ (ay,...,a,) = (ta,...,tay,). In
this case, there are two types of orbits:

e punctured lines through the origin,

e the origin.
The origin is the only closed orbit, which has dimension zero. Furthermore, every orbit contains
the origin in its closure.
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Exercise 3.19. In Examples 3.17 and 3.18, write down the coaction homomorphism explicitly.

Proposition 3.20. Let G be an affine algebraic group acting on a scheme X. For x € X(k),
we have

dim(G) = dim(G,) + dim(G - z)

Proof. Since the dimension is a topological invariant of a scheme, we can assume G and X are
reduced. The orbit G - x, which we see as a locally closed subscheme of X according to the
previous proposition, is reduced by definition. This implies that the morphism ¢, : G — G -z
is flat at every generic point of G - z (every k-scheme is flat over k), hence, by the openess of
the flat locus of o, (EGA IV3 11.1.1), there exists a dense open set U such that o1 (U) — U is
flat. Using the transitive action of G on G - = (which is well defined because G is reduced), we
deduce that o, is flat. Moreover, by definition, the fibre of o, at = is the stabiliser GG,. We can
thus apply the dimension formula for fibres of a flat morphism [14, Proposition II1.9.5], which
yields
dim(G,) = dim(G) — dim(G - z)

as required. O

Proposition 3.21. Let G be an affine algebraic group acting on a scheme X by a morphism

o:GxX — X. Then the dimension of the stabiliser subgroup (resp. orbit) viewed as a function

X — N is upper semi-continuous (resp. lower-semi-continuous); that is, for every n, the sets
{r e X :dimG; > n} and {r € X : dim(G - x) < n}

are closed in X.

Proof. Consider the graph of the action
I'=(pry,0) :GxX —- X xX

and the fibre product P
©

L

Gx X——X x X,
where A : X — X x X is the diagonal morphism; then the k-points of the fibre product P
consists of pairs (g, x) such that g € G,. The function on P which sends p = (g,z) € P to the
dimension of P, := ¢~ !(¢(p)) is upper semi-continuous (cf. [14] IIT 12.8 or EGA 1V 13.1.3);
that is, for all n

{p € P:dim P, > n}
is closed in P. By restricting to the closed subscheme X = {(e,z) : z € X} C P, we conclude
that the dimension of the stabiliser of x is upper semi-continuous; that is,

{r € X :dimG, > n}
is closed in X for all n. Using the previous proposition, we deduce the statement for dimensions
of orbits. (]
Lemma 3.22. Let G be an affine algebraic group acting on a scheme X over k.

i) If G is an affine group variety and 'Y and Z are subschemes of X such that Z is closed,
then
{9eG:g9Y C Z}

1s closed.
it) If X is a variety, then for any subgroup H C G the fized point locus

Xl ={zeX H-z=uz}
is closed in X.

Proof. Exercise. (Hint: express these subsets as intersections of preimages of closed subschemes
under morphisms associated to the action.) (]
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3.4. First notions of quotients. Let G be an affine algebraic group acting on a scheme X
over k. In this section and §3.5, we introduce different types of quotients for the action of G on
X; the main references for these sections are [4], [25] and [31].

The orbit space X/G = {G -z : x € X} for the G-action on X, may not always admit the
structure of a scheme. Instead we ask for a universal quotient in the category of schemes (of
finite type over k).

Definition 3.23. A categorical quotient for the action of G on X is a G-invariant morphism
@ : X — Y of schemes which is universal; that is, every other G-invariant morphism f : X — Z
factors uniquely through ¢ so that there exists a unique morphism h : Y — Z such that
f = @ o h. Furthermore, if the preimage of each k-point in Y is a single orbit, then we say ¢ is
an orbit space.

As ¢ is constant on orbits, it is also constant on orbit closures. Hence, a categorical quotient
is an orbit space only if the action of G on X is closed; that is, all the orbits G - x are closed.

Remark 3.24. The categorical quotient has nice functorial properties in the following sense:
if ¢ : X — Y is G-invariant and we have an open cover U; of Y such that | : o= 5(U;) — U; is
a categorical quotient for each ¢, then ¢ is a categorical quotient.

Exercise 3.25. Let ¢ : X — Y be a categorical quotient of a G-action on X.

i) If X is connected, show that Y is connected.
ii) If X is irreducible, show that Y is irreducible.
iii) If X is reduced, show that Y is reduced.

Example 3.26. We consider the action of G,;, on A™ as in Example 3.18. As the origin is in the
closure of every single orbit, any G-invariant morphism A"” — Z must be a constant morphism.
Therefore, we claim that the categorical quotient is the structure map ¢ : A" — Speck to
the point Speck. This morphism is clearly G-invariant and any other G-invariant morphism
f + A" — Z is a constant morphism to z € Z(k). Therefore, there is a unique morphism
z : Speck — Z such that f =z o0 ¢.

We now see the sort of problems that may occur when we have non-closed orbits. In Example
3.18 our geometric intuition tells us that we would ideally like to remove the origin and then
take the quotient of G, acting on A" —{0}. In fact, we already know what we want this quotient
to be: the projective space P"~! = (A" — {0})/G,, which is an orbit space for this action.

3.5. Second notions of quotient. Let G be an affine algebraic group acting on a scheme X
over k. The group G acts on the k-algebra O(X) of regular functions on X by

g-flz)=flg~" )
and we denote the subalgebra of invariant functions by
OX) :={fecOX):g-f=fforall geG}.

Similarly if U C X is a subset which is invariant under the action of G (that is, g-u € U for all
u € U and g € G), then G acts on Ox (U) and we write Ox (U)Y for the subalgebra of invariant
functions.

The following notion of a good quotient came out of geometric invariant theory; more pre-
cisely, we will later see that GIT quotients are good quotients. However, it is clear that many
of the properties of a good quotient are desirable. Furthermore, we will soon see that a good
quotient is a categorical quotient.

Definition 3.27. A morphism ¢ : X — Y is a good quotient for the action of G on X if
i) ¢ is G-invariant.
ii) ¢ is surjective.
iii) If U C Y is an open subset, the morphism Oy (U) — Ox (o }(U)) is an isomorphism
onto the G-invariant functions Ox (o~ (U))%.
iv) If W C X is a G-invariant closed subset of X, its image ¢(W) is closed in Y.
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v) If W, and W> are disjoint G-invariant closed subsets, then (W) and ¢(W3) are disjoint.
vi) ¢ is affine (i.e. the preimage of every affine open is affine).

If moreover, the preimage of each point is a single orbit then we say ¢ is a geometric quotient.

Exercise 3.28. Assuming that ii) holds, prove that conditions iv) and v) together are equivalent
to:

v)" If W1 and Wy are disjoint G-invariant closed subsets, then the closures of ¢(W7) and
p(Ws) are disjoint.

Remark 3.29. In fact, surjectivity is a consequence of iii) and iv): condition iii) shows that ¢
is dominant (i.e. the image of ¢ is dense in Y') and condition iv) shows that the image of ¢ is
closed in Y.

Proposition 3.30. Let G be an affine algebraic group acting on a scheme X and suppose we
have a morphism ¢ : X — 'Y satisfying properties i), iii), i) and v) in the definition of good
quotient. Then ¢ s a categorical quotient. In particular, any good quotient is a categorical
quotient.

Proof. Property i) of the definition of a good quotient states that ¢ is G-invariant and so we
need only prove that it is universal with respect to all G-invariant morphisms from X. Let
f: X = Z be a G-invariant morphism; then we will construct a unique morphism h :Y — Z
such that f = h o ¢ by taking a finite affine open cover U; of Z (we can take the cover to be
finite as Z is of finite type over k), then using this cover to define a cover of Y by open subsets
Vi, and finally by locally defining morphisms h; : V; — U; which glue to give h.

Since W; := X — f~1(U;) is G-invariant and closed in X, its image o(W;) C Y is closed by
iv). Let V; :=Y — ¢o(W;) be the open complement; then by construction, we have an inclusion
o Y V;) c f7YU;). As U; cover Z, the intersection N; W; is empty. We claim by property
v) of the good quotient ¢, we have N;p(W;) = 0; that is, V; are an open cover of Y. To see
this, suppose for a contradiction that the intersection N;p(W;) is non-empty; then as we are
working with finite type schemes, this intersection has a closed point, which is a k-point as k
is algebraically closed. Let W be a closed G-orbit in the preimage of the k-point p € N;p(W;).
Then by property v), we must have W N W; # () for each 4, since o(W) N o(W;) # 0. Since
W is a single G-orbit and each W; is G-invariant, we must have W C W, and thus W C N;W,,
which gives a contradiction.

Since f is G-invariant the homomorphism Oz(U;) — Ox (f~(U;)) has image in Ox (f~(U;))€.
Therefore, there is a unique morphism h; which makes the following square commute

*

04U — 0y (V)
Ox (f~H(U3)6—=Ox (oL (Vi))C

where the isomorphism on the right hand side of this square is given by property iii) of the good
quotient ¢. Since Uj; is affine, the k-algebra homomorphism Oz (U;) — Oy (V;) corresponds to
a morphism h; : V; — U; (see [14] I Proposition 3.5). By construction

Fle=1vy = hio @lg-1(vsy 1 97 (Vi) = Us
and h; = hj; on V;NV}; therefore, we can glue the morphisms h; to obtain a morphism h: Y — Z
such that f = h o . Since the morphisms h; are unique, it follows that h is also unique. U

Example 3.31. We consider the action of G,, on A? as in Example 3.17. As the origin is
in the closure of the punctured axes {(x,0) : x # 0} and {(0,y) : y # 0}, all three orbits
will be identified by the categorical quotient. The smooth conic orbits {(z,y) : xy = «a} for
a € A' — {0} are closed. These conic orbits are parametrised by A! — {0} and the remaining
three orbits will all be identified in the categorical quotient. Therefore, we may naturally expect
that ¢ : A2 — Al given by (z,y) — xy is a categorical quotient. In fact, we will prove that
this is a good quotient and therefore also a categorical quotient. This morphism is clearly
G-invariant and surjective, which shows parts i) and ii).
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For iii), let U C A! be an open subset and consider the morphism
" O0p1(U) = Op2 (07 1(D)).

For U = Al, we have ¢* : C[z] — C[z,y] given by z — xy. We claim that this is an isomorphism
on the ring of G,,-invariant functions. The action of t € G,, on O(A?) = C[z,y] is given by

t- g a;i;z'y’ :E a;it! " 'xty’ .
1] 1]

Therefore, the invariant subalgebra is

Clz,y)* = Zaij:viyj ta;; =0Vi# j» = Clay]
]

as required. Now suppose we have an open subset U C A'; then U = A! — {ay,...,a,} and
Op1(U) = Clz](p) where f(2) = (2 —a1)--- (2 — an) € C[z]. Then ¢~ *(U) is the non-vanishing
locus of F(z,y) := f(zy) € Clz,y] and Op2(p~1(U)) = C[z, y]r. In particular, we can directly
verify that

Ourlp™ (1))%" = (Cla,ylr)*" = (Cla,y]®) | = Clay]r = Clzl; = O (V).

For v)’, we note that any G-invariant closed subvariety in A? is either a finite union of orbit
closures or the entire space A2. Therefore, we can assume that the disjoint G-invariant closed
subsets W7 and Wy are both a finite union of orbit closures and even just that W; = G - p; are
disjoint for ¢ = 1,2. Since we have already determined the orbit closures, we see that there are
two cases two consider: either p; and ps both do not lie on the axes in A? (and so their orbits
correspond to disjoint conics {(x,y) : xy = a;} and p(W1) = a1 # as = ¢(W3)) or one of the
points, say p; lies on an axis, so that (W) = 0, and the second point py cannot also lie on an
axis as we assumed the closures of the orbits were disjoint, so (W) # 0.

Trivially vi) holds, as any morphism of affine schemes is affine.

Finally, we note that ¢ is not a geometric quotient, as ¢ ~1(0) is a union of 3 orbits.

Corollary 3.32. Let G be an affine algebraic group acting on a scheme X and let p: X —Y
be a good quotient; then:

a) G-x1 NG -x2 # ¢ if and only if p(z1) = p(x2).
b) For each y € Y, the preimage = (y) contains a unique closed orbit. In particular, if
the action is closed (i.e. all orbits are closed), then ¢ is a geometric quotient.

Proof. a). As ¢ is constant on orbit closures, it follows that ¢(z1) = ¢(x2) if G- 21NG - x2 # ¢.
By property v) of the good quotient ¢, we get the converse. For b), suppose we have two distinct
closed orbits W; and Ws in ¢~ 1(y), then the fact that their images under ¢ are both equal to
y contradicts property v) of the good quotient . ([

Corollary 3.33. If ¢ : X — Y is a good (resp. geometric) quotient, then for every open

U C Y the restriction ¢| : ¢ Y(U) — U is also a good (resp. geometric) quotient of G acting
-1

on o (U).

Proof. Exercise. O

Remark 3.34. The definition of good and geometric quotients are local in the target; thus if
¢ : X — Y is G-invariant and we have a cover of Y by open sets U; such that ¢| : o= 1(U;) — U;
are all good (respectively geometric) quotients, then so is ¢ : X — Y. We leave the proof as an
exercise.
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3.6. Moduli spaces and quotients. Let us give one result about the construction of moduli
spaces using group quotients. For a moduli problem M, a family F over a scheme S has the
local universal property if for any other family G over a scheme T and for any k-point t € T,
there exists a neighbourhood U of ¢ in T and a morphism f : U — S such that G|y ~y f*F.

Proposition 3.35. For a moduli problem M, let F be a family with the local universal property
over a scheme S. Furthermore, suppose that there is an algebraic group G acting on S such
that two k-points s,t lie in the same G-orbit if and only if Fy ~ Fs. Then

a) any coarse moduli space is a categorical quotient of the G-action on S;
b) a categorical quotient of the G-action on S is a coarse moduli space if and only if it is
an orbit space.

Proof. For any scheme M, we claim that there is a bijective correspondence
{natural transformations n : M — hjs} <— {G-invariant morphisms f : S — M}

given by n — ng(F), which is G-invariant by our assumptions about the G-action on S. The
inverse of this correspondence associates to a G-invariant morphism f : S — M and a family
G over T' a morphism np(G) : T'— M by using the local universal property of F over S. More
precisely, we can cover T' by open subsets U; such that there is a morphism h; : U; — S and
hiF ~u, Glu,. For v € U; N Uj, we have

Fhiw) ~ (B F)u ~ Gu ~ (W3 F)u ~ Fij ()

and so by assumption h;(u) and hj(u) lie in the same G-orbit. Since f is G-invariant, we can
glue the compositions foh; : U; — M to a morphism np(G) : T — M. We leave it to the reader
to verify that this determines a natural transformation 1 (that is, this is functorial with respect
to morphisms) and that these correspondences are inverse to each other.

Hence, if (M,n : M — hy) is a coarse moduli space, then ng(F) : S — M is G-invariant
and universal amongst all G-invariant morphisms from S, by the universality of . This proves
statement a). Furthermore, the G-invariant morphism ng(F) : S — M is an orbit space if and
only if Ngpeck is bijective. This proves statement b). U

4. AFFINE GEOMETRIC INVARIANT THEORY

In this section we consider an action of an affine algebraic group G on an affine scheme X of
finite type over k and show that this action has a good quotient when G is linearly reductive.
The main references for this section are [25] and [31] (for further reading, see also [2], [4] and
32)).

Let X be an affine scheme of finite type over k; then the ring of regular functions O(X) is
a finitely generated k-algebra. Conversely, for any finitely generated k-algebra A, the spectrum
of prime ideals Spec A is an affine scheme of finite type over k.

The action of an affine algebraic group G on an affine scheme X given by a morphism

c:GxX =X

corresponds to a homomorphism of k-algebras o* : O(X) — O(G x X) =2 O(G) ®; O(X), which
gives a G-co-module structure on the (typically infinite dimensional) k-vector space O(X). This
co-module structure in turn determines a linear representation G — GL(O(X)). Concretely, on
the level of k-points, the action of g € G(k) on f € O(X) is given by

(9-)z)=flg~" ).
The ring of G-invariant regular functions on X is
O(X)%={feO(X):0"(f) =18 f}.

Any G-invariant morphism ¢ : X — Z of schemes induces a homomorphism ¢* : O(Z) — O(X)
whose image is contained in the subalgebra of G-invariant regular functions O(X)%. This leads
us to an interesting problem in invariant theory which was first considered by Hilbert.
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4.1. Hilbert’s 14th problem. For a rational action of an affine algebraic group G on a finitely
generated k-algebra A, Hilbert asked whether the algebra of G-invariants A is finitely gener-
ated.

The answer to Hilbert’s 14th problem is negative in this level of generality: Nagata gave
an example of an action of an affine algebraic group (constructed using copies of the additive
groups) for which the ring of invariants is not finitely generated (see [27] and [29]). However,
for reductive groups (which we introduce below), the answer is positive due to a Theorem of
Nagata. The proof of this result is beyond the scope of this course. However, we will prove that
for a rational action of a ‘linearly reductive’ group on an algebra, the subalgebra of invariants is
finitely generated, using a Reynolds operator, which essentially mimics Hilbert’s 19th century
proof that, over the complex numbers, a rational action of the general linear group GL, on an
algebra has a finitely generated invariant subalgebra.

4.2. Reductive groups. In this section, we will give the definition of a reductive group, a lin-
early reductive group and a geometrically reductive group, and explain the relationship between
these different notions of reductivity.

Our starting point is the Jordan decomposition for affine algebraic groups over k. We first
recall the Jordan decomposition for GL,: an element g € GL,, (k) has a decomposition

9 = 9ssGu = GuPss

where g is semisimple (or, equivalently, diagonalisable, as k is algebraically closed) and g, is
unipotent (that is, g — I,, is nilpotent).

For any affine algebraic group G, we would like to have an analogous decomposition, and
we can hope to make use of the fact that G admits a faithful linear representation G — GL,,.
However, this would require the decomposition to be functorial with respect to closed immersions
of groups.

Definition 4.1. Let G be an affine algebraic group over k. An element g is semisimple (resp.
unipotent) if there is a faithful linear representation p : G — GL,, such that p(g) is diagonalisable
(resp. unipotent).

Theorem 4.2 (Jordan decomposition, see [23] X Theorem 2.8 and 2.10). Let G be an affine
algebraic group over k. For every g € G(k), there exists a unique semisimple element gss and a
unique unipotent element g, such that

9 = 9ssGu = Gulss-

Furthermore, this decomposition is functorial with respect to group homomorphisms. In particu-
lar, if g € G(k) is semisimple (resp. unipotent), then for all linear representations p : G — GLy,,
the element p(g) is semisimple (resp. unipotent).

Let p : G — GL(V) be a linear representation of an affine algebraic group G on a vector
space V and let p* : V — O(G) ®;, V denote the associated co-module. Then a vector subspace
V' C Vis G-invariant if p*(V') C O(G)®; V' and a vector v € V' is G-invariant if p*(v) = 1®w.
We let V& denote the subspace of G-invariant vectors.

Definition 4.3. An affine algebraic group G is unipotent if every non-trivial linear representa-
tion p: G — GL(V) has a non-zero G-invariant vector.

Proposition 4.4. For an affine algebraic group G, the following statements are equivalent.

i) G is unipotent.
i1) For every representation p : G — GL(V') there is a basis of V' such that p(G) is contained
in the subgroup U C GL(V') consisting of upper triangular matrices with diagonal entries
equal to 1.
i11) G is isomorphic to a subgroup of a standard unipotent group U, C GL, consisting of
upper triangular matrices with diagonal entries equal to 1.
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Proof. 1) <= ii): If e1,...,e, is a basis of V such that p(G) C U, then e; is fixed by p.
Conversely if p: G — GL(V) is a representation of a unipotent group G, then we can proceed
by induction on the dimension of V. As U is unipotent, the linear subspace of G-fixed points
VC is non-zero; let eq,--- e, be a basis of VE. Then there is a basis €m41,---,6n Of V/VG
such that the induced representation has image in the upper triangular matrices with diagonal
entries equal to 1. By choosing lifts e,,+; € V of €,,+i, we get the desired basis of V.

ii) <= iii): As every affine algebraic group G has a faithful representation p : G — GL,,
we see that ii) implies iii). Conversely, any subgroup of U, is unipotent (see [23] XV Theorem
2.4). O

Remark 4.5. If G is a unipotent affine algebraic group, then every g € G(k) is unipotent. The
converse is true if in addition G is smooth (for example, see [23] XV Corollary 2.6 or SGA3
XVII Corollary 3.8).

Example 4.6.
(1) The additive group G, is unipotent, as we have an embedding G, < Uy given by

’_>10
c 01 )

2) In characteristic p, there is a finite subgroup «,, C G, where we define the functor of
P
points of «,, by associating to a k-algebra R,

ap(R) :={c € G4(R) : ¢ =0}.

This is represented by the scheme Spec k[t]/(t?) and so ¢, is a unipotent group which
is not smooth.

Definition 4.7. An algebraic subgroup H of an affine algebraic group G is normal if the
conjugation action H x G — G given by (h, g) — ghg~! factors through H — G.

Definition 4.8. An affine algebraic group G over k is reductive if it is smooth and every smooth
unipotent normal algebraic subgroup of G is trivial.

Remark 4.9. In fact, one can define reductivity by saying that the unipotent radical of G (which
is the maximal connected unipotent normal algebraic subgroup of G) is trivial; however, to
define the unipotent radical carefully, we would need to prove that, for a group G, the subgroup
generated by two smooth algebraic subgroups of G is also algebraic (see [22] Proposition 2.24).

Exercise 4.10. Show that the general linear group GL, and the special linear group SL,,
are reductive. [Hint: if we have a non-trivial smooth connected unipotent normal algebraic
subgroup U C GL,, then there exists ¢ € U(k) C GL, (k) whose Jordan normal form has a
r x r Jordan block for 7 > 1 (as g is unipotent). Using normality of U, find another element
g € U(k) such that the product g¢’ is not unipotent.]

Definition 4.11. An affine algebraic group G is

(1) linearly reductive if every finite dimensional linear representation p : G — GL(V) is com-
pletely reducible; that is the representation decomposes as a direct sum of irreducibles.

(2) geometrically reductive if, for every finite dimensional linear representation p : G —
GL(V) and every non-zero G-invariant point v € V, there is a G-invariant non-constant
homogeneous polynomial f € O(V') such that f(v) # 0.

Example 4.12. Any algebraic torus (G,,)" is linearly reductive by Proposition 3.12.

Exercise 4.13. Show directly that the additive group G, is not geometrically reductive. [Hint:
there is a representation p : G, — GLs and a G-invariant point v € A? such that every non-
constant G-invariant homogeneous polynomial in two variables vanishes at v].

Proposition 4.14. For an affine algebraic group G, the following statements are equivalent.

i) G is linearly reductive.
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ii) For any finite dimensional linear representation p : G — GL(V), any G-invariant
subspace V! C V admits a G-stable complement (i.e. there is a subrepresentation V' C
V such that V=V'@& V"),

iii) For any surjection of finite dimensional G-representations ¢ : V. — W, the induced map
on G-invariants ¢¢ : VG — WC is surjective.

i) For any finite dimensional linear representation p : G — GL(V') and every non-zero
G-invariant point v € V, there is a G-invariant linear form f : V. — k such that
f(w) #0.

v) For any finite dimensional linear representation p : G — GL(V) and any surjective
G-invariant linear form f:V — k, there is v € VC such that f(v) # 0.

Proof. The equivalence i) <= ii) is clear, as we are working with finite dimensional represen-
tations.

ii) = iii): Let f : V — W be a surjection of finite dimensional G-representations and
V' :=ker(f) C V. Then, by assumption, V' has a G-stable complement V" = W. Since both
V' and V" are G-invariant, V¢ = (V)¢ @ (V") and so f¢ : VE — (V)& =2 WC is surjective.

ili) = ii): Let p : G — GL(V) be a finite dimensional linear representation and V' C V a
G-invariant subspace. Then we have a surjection

¢ : Hom(V, V') — Hom(V’', V")
of finite dimensional G-representations and so by iii) the identity map id}, lifts to G-equivariant
morphism f : V — V’ splitting the inclusion V' C V. More precisely, V' has G-stable comple-
ment V" :=kerf.
iv) <= v): We can identify V¢ with the space of G-invariant linear forms VV — k

VY = Homg(k, V) = Homg(VV, k).

iii) = iv): Let V be a finite dimensional linear G-representation and v € V¢ be a non-zero
G-invariant vector. Then v determines a G-invariant linear form ¢ : VV — k. By letting G act
trivially on k, we can view ¢ as a surjection of G-representations and so by iii), the fixed point
1 € k= k% has alift f € (VV)9 = Homg(V, k) such that f(v) = 1.

iv) = iii): Let ¢ : V. — W be a finite dimensional G-representation. Then we want to
prove that ¢© is surjective: i.e. lift any non-zero w € W& to a point v € V. By iv), there
exists a G-invariant form f : W — k such that f(w) # 0. Then fo¢:V — k is a G-invariant
surjective form on V and so by v) <= iv), there exists v € V& such that (f o ¢)(v) # 0. By
suitably rescaling v € V& so that (f o ¢)(v) = f(w), we get the desired lift. O

Exercise 4.15. Prove that any finite group of order not divisible by the characteristic of k is
linearly reductive. [Hint: consider averaging over the group.]

We summarise the main results relating the different notions of reductivity in the following
theorem, whose proof is beyond the scope of this course.

Theorem 4.16. (Weyl, Nagata, Mumford, Haboush)

i) Every linearly reductive group is geometrically reductive.
i1) In characteristic zero, every reductive group is linearly reductive.
i11) A smooth affine algebraic group is reductive if and only if it is geometrically reductive.

In particular, for smooth affine algebraic group schemes, we have
linearly reductive = geometrically reductive <= reductive

and all three notions coincide in characteristic zero.

Statement i) follows immediately from the definition of geometrically reductive and Propo-
sition 4.14. There are several proofs of Statement ii); the earliest goes back to Weyl, where
he first reduces to k = C, and then uses the representation theory of compact Lie groups (this
argument is known an Weyl’s unitary trick; see Proposition 4.18). An alternative approach is to
use Lie algebras (for example, see the proof that SL,, is linearly reductive in characteristic zero
n [24] Theorem 4.43). Statement iii) was conjectured by Mumford after Nagata proved that
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every geometrically reductive group is reductive [29], and the converse statement was proved
by Haboush [12].

Remark 4.17. In positive characteristic, the groups GL,, SL, and PGL, are not linearly
reductive for n > 1; see [28].

We will now sketch the proof that over the complex numbers every reductive group is linearly
reductive.

Proposition 4.18. Fvery reductive group G over C is linearly reductive.

Proof. We let K C G(C) be a maximal compact subgroup.

Step 1. For a compact Lie subgroup K, we claim that every finite dimensional representation
of the Lie group K is completely reducible. Let us sketch the proof of this claim. Let V be a
finite dimensional representation of K (i.e. there is a morphism p : K — GL(V) of Lie groups);
then analogously to Proposition 4.14 above, it suffices to prove that every K-invariant subspace
W C V has a K-stable complement. There is a K-invariant Hermitian inner product on V,
as we can take any Hermitian inner product A on V and integrate over the compact group K
using a Haar measure dp on K to obtain a K-invariant Hermitian inner product

RE (01, 09) = /K h(k - v,k - vo)du(k).

Then, we define the K-stable complement of W C V to be the orthogonal complement of
W C V with respect to this K-invariant Hermitian inner product.

Step 2. For G reductive and a maximal compact subgroup K C G(C), the elements of K
are Zariski dense in G. We prove this statement in Lemma 4.19 below. The proof works with
the Lie algebras ¢ and g(C), using the fact that the exponential map exp : g(C) — G(C) is
holomorphic, the fact that g(C) = ¢ as G(C) is reductive (for a proof see, for example, [34]
Theorem 2.7) and the Identity Theorem from complex analysis.

Step 3. For any finite dimensional linear representation p : G — GL(V), we claim that
VG = VK where K is a maximal compact of G. As K C G is a subgroup, we have V& c VX,
To prove the reverse inclusion, let v € VX and consider the morphism

c:G—=V

given by g + p(g) -v. Then o~ !(v) C G is Zariski closed. Since v € VX, we have K C o7 (v)
and so also K C o~ !(v). However, as K C G is Zariski dense, it follows that G C o~ !(v); that
is, v € V@ as required.

Step 4. The reductive group G is linearly reductive. By Proposition 4.14, it suffices to show
for every surjective homomorphism of finite dimensional linear G-representations ¢ : V. — W,
the induced homomorphism ¢© on invariant subspaces is also surjective. By Step 3, this is
equivalent to showing that ¢¥ is surjective, which follows by Step 1. O

Lemma 4.19. Owver the complex numbers, let G be a reductive group and K C G(C) be a
mazximal compact subgroup. Then the elements of K are Zariski dense in G.

Proof. If this is not the case, then there exists a function f € O(G) which is not identically zero
such that f(K) = 0. On the level of Lie algebras, as G(C) is a complex reductive group and
K C G(C) a maximal compact subgroup, we have

g(C) =t@R C

(see [34] Theorem 2.7). Furthermore, the exponential map exp : g(C) — G(C) is holomorphic
and maps £ to K. Therefore, h := foexp : g(C) — C is holomorphic and vanishes on ¢.
However, if V' is a real vector space and [ : V ®@g C — C is holomorphic with {(V ®g R) = 0,
then [ is identically zero (the proof of this follows from the Identity Theorem in complex analysis
when V' has dimension 1 and, for higher dimensional V', we can view [ as a function in a single
variable x; by fixing all other variables and by applying this argument for each 4, we deduce
that [ = 0). In particular, h : g(C) — C is identically zero and, as the exponential map is a
local homeomorphism, we deduce that f is identically zero which is a contradiction. O
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4.3. Nagata’s theorem. In this section, when we talk of a group G acting on a k-algebra A,
we will always mean that the group G acts by k-algebra homomorphisms. We recall that a
G-action on a k-algebra A is rational if every element of A is contained in a finite dimensional
G-invariant linear subspace of A. In particular, if A = O(X) and the G-action on A comes from
an algebraic action of an affine algebraic group G on X, then this action is rational by Lemma
3.8.

Theorem 4.20 (Nagata). Let G be a geometrically reductive group acting rationally on a finitely
generated k-algebra A. Then the G-invariant subalgebra AC is finitely generated.

As every reductive group is geometrically reductive, we can use Nagata’s theorem for reductive
groups. In the following section, we will prove this result for linearly reductive groups using
Reynolds operators (so in characteristic zero this also proves Nagata’s theorem). Nagata also
gave a counterexample of a non-reductive group action for which the ring of invariants is not
finitely generated (see [27] and [29]).

4.4. Reynolds operators. Given a linearly reductive group G, for any finite dimensional linear
representation p : G — GL(V), we can write V = V& @ W where W is the direct sum of all
non-trivial irreducible subrepresentations. This gives a canonical G-complement W to V¢ and
a unique projection py : V — V&. This projection motivates the following definition.

Definition 4.21. For a group G acting on a k-algebra A, a linear map R4 : A — A% is
called a Reynolds operator if it is a projection onto A and, for a € A% and b € A, we have
Ry(ab) = aR (D).

Lemma 4.22. Let G be a linearly reductive group acting rationally on a finitely generated
k-algebra A; then there exists a Reynolds operator Ra : A — AC.

Proof. Since A is finitely generated, it has a countable basis. Therefore, we can write A as
an increasing union of finite dimensional G-invariant vector subspaces A, C A using the fact
that the action is rational. More precisely, if we label our basis elements a1, as,..., then we
iteratively construct the subsets A,, by letting A,, be the finite dimensional G-invariant subspace
containing ai, ..., a, and a basses of A,_1 and a; - A, for j =1,...,n. Then A =~ 4n.
Since G is linearly reductive and each A, is a finite dimensional G-representation, we can write

where A/ is the direct sum of all non-trivial irreducible G-subrepresentations of A,,. We let
R, : A, — AS be the canonical projection onto the direct factor AS.
For m > n, we have a commutative square

A, — AC
[ . J
Ay ——= A
RTTL

as we have A/, ¢ A/ and AG c AG. Hence, we have a linear map Ry : A — AY given by the
compatible projections R, : A,, — AS for each n.

It remains to check that for a € A and b € A, we have Ra(ab) = aRa(b). Pick n such
that a,b € A,, and pick m > n such that a(A4,) C A,,. Then consider the homomorphism of
G-representations given by left multiplication by a

lo: Ay — A

We can write A, = A ® A’ , where A!, = W, @---®W, is a direct sum of non-trivial irreducible
subrepresentations W; C A,. Since G acts by algebra homomorphisms and a € A%, we have
1.(A%) ¢ AS. By Schur’s Lemma, the image of each irreducible W; under [, is either zero
or isomorphic to W;. Therefore, we have I,(W;) C Al and so l,(A4)) C Al,. In particular,
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if we write b = b¢ + b’ for b € AS and ¥ € A’ then ab = 1,(b) = 1,(b%) + 1,(V), where
1,(b9) = ab® € AG and I,(V) = ab’ € A!,. Hence,

Ra(ab) = ab® = aR 4 (b)
as required. O
In fact, the arguments used in the final part of this proof, give the following result.

Corollary 4.23. Let A and B be k-algebras with a rational action of a linearly reductive group
G, which have Reynolds operators Ry : A — A% and Rp : B — BY. Then any G-equivariant
homomorphism h : A — B of these k-algebras commutes with the Reynolds operators: Rgoh =
hoRj4.

Lemma 4.24. Let A be a k-algebra with a rational G-action and suppose that A has a Reynolds
operator Ry : A — AC. Then for any ideal I C A®, we have IAN A% = I. More generally, if
{I;}jes are a set of ideals in AC, then we have

<ZIJA) ﬁAG = ZI]

jeJ jeJ
In particular, if A is noetherian, then so is AY.

Proof. Clearly, I ¢ IAN A%. Conversely, let € TAN A%; then we can write x = >yt for
ip €I and x; € A. As R4 is a Reynolds operator,

z=Ra(z) =Ry (Z m;l> = iRa(xm) € 1.

=1 =1

Now suppose that A is Noetherian and consider a chain Iy C Is C --- of ascending ideals
in A, Then I;A C [A C --- is a chain of ascending ideals in A and so must stabilise as
A is Noetherian. However, as I,, = I,A N A%, it follows that the chain of ideals I,, must also
stabilise. 0

Theorem 4.25 (Hilbert, Mumford). Let G be a linearly reductive group acting rationally on a
finitely generated k-algebra A. Then AC is finitely generated.

Proof. Let us first reduce to the case where A is a polynomial algebra and the G-action is linear.
Let V be a finite dimensional G-invariant vector subspace of A containing a set of generators
for A as a k-algebra; the existence of V' is guaranteed as our action is rational. As V' contains
generators for A as an algebra, we have a G-equivariant surjection of k-algebras

O(VY) = Sym*(V) — A.

Since G is linearly reductive, both algebras admit a Reynolds operator by Lemma 4.22 and,
moreover, these Reynolds operators commute with this surjection by Corollary 4.23. Therefore,
we have a surjection (Sym*(V))¢ — A% and so to prove A“ is finitely generated, it suffices to
assume that A is a polynomial algebra with a linear G-action.

Let A = Sym*(V') where V is a finite dimensional G-representation. Then A is naturally a
graded k-algebra, where the grading is by homogeneous degree A = ®, A, = ®p>0 Sym" V. As
the G-action on A is linear, the invariant subalgebra A is also graded A% = @, AS. By Hilbert’s
basis theorem, A is Noetherian and so by Lemma 4.24, the invariant ring A® is also Noetherian.
Hence, the ideal Af = Pn>0AG C AC is finitely generated. We then use the following technical
but not difficult result: for a graded k-algebra B = ®,>0B,, and by, ...,b, € B homogeneous
elements of positive degree, the following statements are equivalent:

(1) B is generated by by, ..., b, as a Bp-algebra; that is, B = By[b1, ... bn];

(2) Byt := ®p>0By is generated by by, ..., by, as an ideal; that is By = Bbj + - -+ + Bby,.
By applying this to A® and the finitely generated ideal AS_; = ®p>0A%, we deduce that A is

a finitely generated k-algebra. O
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Nagata gave an example of an action of a product of additive groups G/, on an affine space
A™ such that the algebra of invariants fails to be finitely generated; see [27] and [29]. From this
example, one can produce an affine scheme X with a G,-action such that O(X )G“ is not finitely
generated. More generally, a theorem of Popov states that for any non-reductive group G there
is an affine scheme X such that O(X)% is not finitely generated. Let us quickly outline the proof
following [25] Theorem A.1.0. As G is non-reductive, we can pick a surjective homomorphism
from the unipotent radical R,(G) of G onto G,, which defines an action of R,(G) on X such
that the algebra of invariants is not finitely generated. Then we can take the Borel construction
associated to R,(G) C G

Y =G xP(@ X .= (G x X)/R,(G)
which is locally trivial over G/R,(G) with fibre X and there is a natural G-action on Y where
O(Y)¢ = 0(X)(©)

is not finitely generated. In fact Y is affine (and so O(Y) is finitely generated) as G — G /R, (G)
has a local section by a result of Rosenlicht and so the fibre bundle Y — G/R,(G) also has a
local section.

Theorem 4.26 (Popov). An affine algebraic group G over k is reductive if and only if for
every rational G-action on a finitely generated k-algebra A, the subalgebra AS of G-invariants
is finitely generated.

4.5. Construction of the affine GIT quotient. Let G be a reductive group acting on an
affine scheme X. We have seen that this induces an action of G' on the coordinate ring O(X),
which is a finitely generated k-algebra. By Nagata’s Theorem, the subalgebra of invariants
O(X)Y is finitely generated.

Definition 4.27. The affine GIT quotient is the morphism ¢ : X — X//G := Spec O(X)% of
affine schemes associated to the inclusion ¢* : O(X)% — O(X).

Remark 4.28. The double slash notation X//G used for the GIT quotient is a reminder that
this quotient is not necessarily an orbit space and so it may identify some orbits. In nice cases,
the GIT quotient is also a geometric quotient and in this case we shall often write X /G instead
to emphasise the fact that it is an orbit space.

We will soon prove that the reductive GIT quotient is a good quotient. In preparation for
proving that the GIT quotient is a good quotient, we need the following lemma.

Lemma 4.29. Let G be a geometrically reductive group acting on an affine scheme X. If
Wi and Wy are disjoint G-invariant closed subsets of X, then there is an invariant function
f € O(X)E which separates these sets i.e.

f(W1)=0 and f(W2)=1.
Proof. As W; are disjoint and closed, we have
(1) =1(0) = I(W1 N Wa) = I(Wy) + I(Ws)

and so we can write 1 = f; + fo, where f; € I(W;). Then f1(W;) = 0 and f1(W3) = 1. By
Lemma 3.8, the function f; is contained in a finite dimensional G-invariant linear subspace V
of O(X); therefore, so we can choose a basis hi,...,h, of V. This basis defines a morphism
h:X — A" by

B(z) = (h(@), - ., hn(2))-
For each i, the function h; is a linear combination of translates of fi, so we have

n;
hi=> ciga-h
=1

for constants c; and group elements g;;. Then h;(x) = > ", ¢y fi (g;l1 -x) and, as W; are G-
invariant subsets and f; takes the value 0 (resp. 1) on W (resp. Wa), it follows that h(1¥/1) = 0
and h(Ws) = v # 0.
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As the functions g - h; also belong to V', we can write them in terms of our given basis as
n
g-hi =7 aij(g)h;.
j=1

This defines a representation G — GL,, given by g — (a;j(g)) such that h : X — A" is G-
equivariant with respect to the G-action on X and the G-action on A™ via this representation
G — GL,. Therefore v = h(W3) is a non-zero G-invariant point. Since G is geometrically
reductive, there is a non-constant homogeneous polynomial P € k[z1, ..., 2,]® such that P(v) #
0 and P(0) = 0. Then f = cP o h is the desired invariant function where ¢ = 1/P(v). O

Theorem 4.30. Let G be a reductive group acting on an affine scheme X. Then the affine
GIT quotient ¢ : X — X//G is a good quotient and, moreover, X//G is an affine scheme.

Proof. As G is reductive and so also geometrically reductive, it follows from Nagata’s Theorem
that the algebra of G-invariant regular functions on X is a finitely generated k-algebra. Hence
Y := X//G = Spec O(X)% is an affine scheme of finite type over k. Since the affine GIT quotient
is defined by taking the morphism of affine schemes associated to the inclusion O(X)% < O(X),
it is G-invariant and affine: this gives part i) and vi) in the definition of good quotient.

To prove ii), we take y € Y (k) and want to construct x € X (k) whose image under ¢ : X — Y
is y. Let m, be the maximal ideal in O(Y) = O(X)Y of the point y and choose generators
fi,..., fm of my. Since G is reductive, we claim that it follows that

3 HO(X) # O(X).
=1

For a linearly reductive group, this claim follows from Lemma 4.24 as
m m
(Z fi<9<X>> NOX)% =) fIOX)C # O(X)°.
i=1 i=1

For a proof for geometrically reductive groups, see [31] Lemma 3.4.2. Then, as > ..", fiO(X)
is not equal to O(X), it is contained in some maximal idea m, C O(X) corresponding to a
closed point € X (k). In particular, we have that fj(z) =0 fori=1,...,m and so p(z) =y
as required. Therefore, every closed point is in the image of ¢ and as the image of ¢ is a
constructible subset by Chevalley’s Theorem, we can conclude that ¢ is surjective.

For f € O(X)Y, the open sets U = Y; form a basis of the open subsets of Y. Therefore, to
prove iii), it suffices to consider open sets U of the form Y for f € O(X)%. Let f € O(X)Y;
then Oy (Yy) = (O(X)%); is the localisation of O(X)“ with respect to f and

Ox (¢ ' (¥7)% = Ox (X)) = (0(X)5)¥ = (O(X)%); = Oy (Yy)

as localisation with respect to an invariant function commutes with taking G-invariants. Hence
the image of the inclusion homomorphism Oy (Y;) = (O(X)%); — Ox(p~1(Yy)) = O(X); is
Ox (71 (Y}))¥ = (O(X);)¢ which proves iii).

By Remark 3.28, given the surjectivity of ¢, properties iv) and v) are equivalent to v)’ and
so it suffices to prove v)’. By Lemma 4.29, for any two disjoint G-invariant closed subsets
Wy and Wy in X, there is a function f € O(X)% such that f(W;) = 0 and f(Ws) = 1.
Since O(X)¥ = O(Y), we can view f as a regular function on Y with f(¢(W;)) = 0 and
f(e(W3)) = 1. Hence, it follows that

e(W1) Np(W2) =0
which finishes the proof. O

Corollary 4.31. Suppose a reductive group G acts on an affine scheme X and let ¢ : X —
Y := X//G be the affine GIT quotient. Then

o) =) <= G-zNG- -2 #.
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Furthermore, the preimage of each point y € Y contains a unique closed orbit. In particular, if
the action of G on X is closed, then ¢ is a geometric quotient.

Proof. As ¢ is a good quotient, this follows immediately from Corollary 3.32 (]

Example 4.32. Consider the action of G = G,, on X = A? by t- (z,y) = (tz,t 'y) as in
Example 3.17. In this case O(X) = k[z,y] and O(X) = k[zy] = k[2] so that Y = A! and the
GIT quotient ¢ : X — Y is given by (x,y) — xy. The three orbits consisting of the punctured
axes and the origin are all identified and so the quotient is not a geometric quotient.

Example 4.33. Counsider the action of G = G,,, on A" by ¢ - (z1,...,2,) = (tz1,...,tx,) as
in Example 3.18. Then O(X) = k[z1,...,7,] and O(X)% = k so that Y = Speck is a point
and the GIT quotient ¢ : X — Y = Speck is given by the structure morphism. In this case all
orbits are identified and so this good quotient is not a geometric quotient.

Remark 4.34. We note that the fact that G is reductive was used several times in the proof,
not just to show the ring of invariants is finitely generated. In particular, there are non-reductive
group actions which have finitely generated invariant rings but for which other properties listed
in the definition of good quotient fail. For example, consider the additive group G, acting on
X = A* by the linear representation p : G, — GLy

Even though G, is non-reductive, the invariant ring is finitely generated: one can prove that
Kz, 22, 23, 24) % = klzo, 24, 1174 — T273).

However the GIT ‘quotient’ map X — X//G, = A3 is not surjective: its image misses the
punctured line {(0,0,) : A € k*} € A3. For further differences, see [6].

4.6. Geometric quotients on open subsets. As we saw above, when a reductive group G
acts on an affine scheme X in general a geometric quotient (i.e. orbit space) does not exist
because the action is not necessarily closed. For finite groups G, every good quotient is a
geometric quotient as the action of a finite group is always closed. In this section, we define an
open subset X? of ‘stable’ points in X for which there is a geometric quotient.

Definition 4.35. We say © € X is stable if its orbit is closed in X and dimG, = 0 (or
equivalently, dim G - = dim G). We let X* denote the set of stable points.

Proposition 4.36. Suppose a reductive group G acts on an affine scheme X and let p: X —
Y := X//G be the affine GIT quotient. Then X* C X is an open and G-invariant subset,
YS := o(X?) is an open subset of Y and X* = ¢~ 1(Y®). Moreover, ¢ : X* — Y® is a geometric
quotient.

Proof. We first show that X* is open by showing for every x € X*(k) there is an open neigh-
bourhood of z in X*. By Lemma 3.21, the set X := {z € X : dimG, > 0} of points with
positive dimensional stabilisers is a closed subset of X. If z € X®, then by Lemma 4.29 there is
a function f € O(X)? such that

f(X4)=0 and f(G-z)=1.

Then z € X¢(k) and we claim that Xy C X* so that Xy is an open neighbourhood of z in X*.
Since all points in X have stabilisers of dimension zero, it remains to check that their orbits
are closed. Suppose z € X¢(k) has a non-closed orbit so w ¢ G - z belongs to the orbit closure
of z; then w € X¢(k) too as f is G-invariant and so w must have stabiliser of dimension zero.
However, by Proposition 3.15 the boundary of the orbit G - z is a union of orbits of strictly
lower dimension and so the orbit of w must be of dimension strictly less than that of z which
contradicts the fact that w has zero dimensional stabiliser. Hence, X? is an open subset of X,
and is covered by sets of the form X as above.
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Since p(Xf) = Yy is open in Y and also X = ¢~ !(Y}), it follows that Y* is open in ¥ and
also X® = ¢~ 1(p(X*)). Then ¢ : X* — Y* is a good quotient by Corollary 3.33. Furthermore,
the action of G on X* is closed and so ¢ : X® — Y is a geometric quotient by Corollary
3.32. U

Example 4.37. We can now calculate the stable set for the action of G = G,, on X = A? as
in Examples 3.17 and 4.32. The closed orbits are the conics {xy = a} for a € A! — {0} and the
origin, but the origin has a positive dimensional stabiliser. Thus

X* = {(2,y) € A2 wy # 0} = Xo.

In this example, it is clear why we need to insist that dim G, = 0 in the definition of stability:
so that the stable set is open. In fact this requirement should also be clear from the proof of
Proposition 4.36.

Example 4.38. We may also consider which points are stable for the action of G = G, on A"
as in Examples 3.18 and 4.33. The only closed orbit is the origin, whose stabiliser is positive
dimensional, and so X® = (). In particular, this example shows that the stable set may be
empty.

Example 4.39. Consider G = GLs acting on the space Msx2 of 2x2 matrices with k-coefficients
by conjugation. The characteristic polynomial of a matrix A is given by

char 4 (t) = det(x] — A) = 22 + ¢1(A)z + co(A)

where ¢1(A) = —Tr(A) and c3(A) = det(A) and is well defined on the conjugacy class of a
matrix. The Jordan canonical form of a matrix is obtained by conjugation and so lies in the
same orbit of the matrix. The theory of Jordan canonical forms says there are three types of
orbits:

e matrices with characteristic polynomial with distinct roots «, 3. These matrices are
diagonalisable with Jordan canonical form

(55)

These orbits are closed and have dimension 2. The stabiliser of the above matrix is the
subgroup of diagonal matrices which is 2 dimensional.

e matrices with characteristic polynomial with repeated root « for which the minimum
polynomial is equal to the characteristic polynomial. These matrices are not diagonal-
isable and their Jordan canonical form is

(5a)

These orbits are also 2 dimensional but are not closed: for example

im( O a 1 tt 0\ [ a 0
o\ o ¢t 0 « o t) \0 a)’

e matrices with characteristic polynomial with repeated root « for which the minimum
polynomial is z — a. These matrices have Jordan canonical form

(52)

Since scalar multiples of the identity commute with everything, their stabilisers are
equal to the full group GLo and their orbits are simply a point, which is closed and zero
dimensional.
We note that every orbit of the second type contains an orbit of the third type and so will be
identified in the quotient. Clearly there are two G-invariant functions on Msys: the trace and
determinant, and so
k[tr, det] € O(Mayo)C2.
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We claim that these are the only G-invariant functions on Msyo. To see this we note that from
the above discussion about Jordan normal forms and orbit closures, a G-invariant function on
Moo is completely determined by its values on the diagonal matrices Dy C Maxo. Hence the
ring of GLg-invariants on Mayo is contained in the ring O(Ds) = k[x11, z22]. In fact, using the
GLo-action we can permute the diagonal entries; therefore,

O(Max2)"2 C k[x11, £92)% = k[x11 + o2, 211292],

as the symmetric polynomials are generated by the elementary symmetric polynomials. These
elementary symmetric polynomials correspond to the trace and determinant respectively, and
we see there are no additional invariants. Hence

k[tr, det] = O(May2)Sl2
and the affine GIT quotient is given by
¢ = (tr,det) : Mayxo — A2
The subgroup G, I3 fixes every point and so there are no stable points for this action.

Example 4.40. More generally, we can consider G = GL,, acting on M, «, by conjugation. If
A is an n X n matrix, then the coefficients of its characteristic polynomial

char(t) = det(t] — A) = t" + ¢ (A" + -+ cn(A)

are all G-invariant functions. As in Example 4.39 above, we can use the theory of Jordan normal
forms as above to describe the different orbits and the closed orbits correspond to diagonalisable
matrices. By a similar argument to above, we have

kler,...,cn) C O(Mnxn)GL” C O(Dn)S” = klxy,. .. 7szrnn]S” =klo1,...,00]

where o; is the ith elementary symmetric polynomial in the x;s. Hence, we conclude these are
all equalities and the affine GIT quotient is given by

0 Myxn — A"
Ars (e1(A), . ca(A)).

Again as every orbit contains a copy of G, in its stabiliser subgroup, there are no stable points.

Remark 4.41. In situations where there is a non-finite subgroup H C G which is contained in
the stabiliser subgroup of every point for a given action of G on X, the stable set is automatically
empty. Hence, for the purposes of GIT, it is better to work with the induced action of the group
G/H. In the above example, this would be equivalent to considering the action of the special
linear group on the space of n X n matrices by conjugation.

5. PROJECTIVE GIT QUOTIENTS

In this section we extend the theory of affine GIT developed in the previous section to
construct GIT quotients for reductive group actions on projective schemes. The idea is that we
would like construct our GIT quotient by gluing affine GIT quotients. In order to do this we
would like to cover our scheme X by affine open subsets which are invariant under the group
action and glue the affine GIT quotients of these affine open subsets of X. However, it may not
be possible to cover all of X by such compatible open invariant affine subsets.

For a projective scheme X with an action of a reductive group G, there is not a canonical way
to produce an open subset of X which is covered by open invariant affine subsets. Instead, this
will depend on a choice of an equivariant projective embedding X — P™, where G acts on P" by
a linear representation G — GL,+1. We recall that a projective embedding of X corresponds to
a choice of a (very) ample line bundle £ on X. We will shortly see that equivariant projective
embeddings are given by an ample linearisation of the G-action on X, which is a lift of the
G-action to a ample line bundle on X such that the projection to X is equivariant and the
action on the fibres is linear.

In this section, we will show for a reductive group G acting on a projective scheme X and a
choice of ample linearisation of the action, there is a good quotient of an open subset of semistable
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points in X. Furthermore, this quotient is itself projective and restricts to a geometric quotient
on an open subset of stable points. The main reference for the construction of the projective
GIT quotient is Mumford’s book [25] and other excellent references are [4, 24, 31, 32, 42].

5.1. Construction of the projective GIT quotient.

Definition 5.1. Let X be a projective scheme with an action of an affine algebraic group G.
A linear G-equivariant projective embedding of X is a group homomorphism G — GL, 1 and
a G-equivariant projective embedding X — P". We will often simply say that the G-action on
X — P” is linear to mean that we have a linear G-equivariant projective embedding of X as
above.

Suppose we have a linear action of a reductive group G on a projective scheme X C P".
Then the action of G on P” lifts to an action of G' on the affine cone A"+ over P". Since the
projective embedding X C P" is G-equivariant, there is an induced action of G on the affine
cone X C A" over X c P". More precisely, we have

O(A™) = klxo, ..., zn] = @ klzo, ..., 2], = @ H(P", Ox(r))
r>0 r>0
and if X C P" is the closed subscheme associated to a homogeneous ideal I(X) C k[zg, ..., xy],
then X = Spec R(X) where R(X) = k[zo, ..., zn]/I(X).
The k-algebras O(A"*!) and R(X) are graded by homogeneous degree and, as the G-action
on A" is linear it preserves the graded pieces, so that the invariant subalgebra

OA™ Y = P klxo, ..., 2]
r>0
is a graded algebra and, similarly, R(X)? = @,50R(X)¢. By Nagata’s theorem, R(X)% is
finitely generated, as G is reductive. The inclusion of finitely generated graded k-algebras
R(X)% < R(X) determines a rational morphism of projective schemes

X --» Proj R(X)“

whose indeterminacy locus is the closed subscheme of X defined by the homogeneous ideal
R(X)ﬁ = @0 R(X)C.

Definition 5.2. For a linear action of a reductive group G on a projective scheme X C P",
we define the nullcone N to be the closed subscheme of X defined by the homogeneous ideal
R(X)§ in R(X) (strictly speaking the nullcone is really the affine cone N over N). We define
the semistable set X% = X — N to be the open subset of X given by the complement to the
nullcone. More precisely, x € X is semistable if there exists a G-invariant homogeneous function
f € R(X)S for r > 0 such that f(z) # 0. By construction, the semistable set is the open subset
which is the domain of definition of the rational map

X --» Proj R(X)C.
We call the morphisms X* — X//G := Proj R(X)% the GIT quotient of this action.

Theorem 5.3. For a linear action of a reductive group G on a projective scheme X C P", the
GIT quotient ¢ : X* — X//G is a good quotient of the G-action on the open subset X*° of
semistable points in X. Furthermore, X//G is a projective scheme.

Proof. We let ¢ : X* — Y := X//G denote the projective GIT quotient. By construction
X//G is the projective spectrum of the finitely generated graded k-algebra R(X)“. We claim
that Proj R(X)% is projective over Spec R(X)§ = Speck. If R(X)Y is finitely generated by
R(X)$ as a k-algebra, this result follows immediately from [14] I Corollary 5.16. If not, then as

R(X)€ is a finitely generated k-algebra, we can pick generators fi,..., f. in degrees di,...,d,.
Let d:=dj-... d; then

(RX))D = P RX)G
>0
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is finitely generated by (R(X )G)gd) as k-algebra and so Proj ((R(X )G)(d)) is projective over
Speck. Since X//G = Proj R(X)® = Proj ((R(X)%)@) (see [14] II Exercise 5.13), we can
conclude that X//G is projective.

For f € Rf, the open affine subsets Y; C Y form a basis of the open sets on Y. Since
f € R(X)Y C R(X)4, we can also consider the open affine subset X; C X and, by construction
of o, we have that ¢~ '(Y;) = X;. Let X; (respectively Y;) denote the affine cone over X
(respectively Yy). Then

O(Yy) = O(Yy)o = (R(X)%)p)o = (R(X)£)0)C = (O(Xp)0)" = O(Xy)

and so the corresponding morphism of affine schemes p; : Xy — Y; = Spec O(X f)G is an affine
GIT quotient, and so also a good quotient by Theorem 4.30. The morphism ¢ : X* — Y is
obtained by gluing the good quotients ¢r : Xy — Y}. Since Y; cover Y (and Xf cover X*°)
and being a good quotient is local on the target Remark 3.34, we can conclude that ¢ is also a
good quotient. O

We recall that as ¢ : X — X//G is a good quotient, for two semistable points x1, zo in X*°,

we have
G -o1NG- 22N X% £ <= ¢(x1) = p(z2).

Furthermore, the preimage of each point in X//G contains a unique closed orbit. The presence
of non-closed orbits in the semistable locus will prevent the good quotient ¢ : X% — X//G
from being a geometric quotient.

We can now ask if there is an open subset X* of X*° on which this quotient becomes a
geometric quotient. For this we want the action to be closed on X?*. This motivates the
definition of stability (see also Definition 4.35).

Definition 5.4. Consider a linear action of a reductive group G on a closed subscheme X C P".
Then a point z € X is

(1) stable if dim G, = 0 and there is a G-invariant homogeneous polynomial f € R(X)¢
such that x € X and the action of G on X is closed.
(2) unstable if it is not semistable.

We denote the set of stable points by X® and the set of unstable points by X“* := X — X®¥ = N.

We emphasise that, somewhat confusingly, unstable does not mean not stable, but this ter-
minology has long been accepted by the mathematical community.

Lemma 5.5. The stable and semistable sets X° and X*° are open in X.

Proof. By construction, the semistable set is open in X as it is the complement to the nullcone
N, which is closed. To prove that the stable set is open, we consider the subset X. := UXy
where the union is taken over f € R(X )f such that the action of G on X is closed; then
X, is open in X and it remains to show X°? is open in X.. By Proposition 3.21, the function
z +— dim G, is an upper semi-continuous function on X and so the set of points with zero
dimensional stabiliser is open. Hence, we have open inclusions X°® C X, C X. O

Theorem 5.6. For a linear action of a reductive group G on a closed subscheme X C P", let
¢ : X% =Y = X//G denote the GIT quotient. Then there is an open subscheme Y* C'Y such
that = 1(Y®) = X* and that the GIT quotient restricts to a geometric quotient p : X — Y5,

Proof. Let Y, be the union of Y} for f € R(X){ such that the G-action on X/ is closed and
let X, be the union of Xy over the same index set so that X, = 0 1(Y.). Then ¢ : X, — Y,
is constructed by gluing ¢ : Xy — Yy for f € R(X )f such that the G-action on Xy is closed.
Each ¢y is a good quotient and as the action on Xy is closed, ¢ is also a geometric quotient
by Corollary 3.32. Hence ¢ : X. — Y, is a geometric quotient by Remark 3.34.

By definition, X is the open subset of X, consisting of points with zero dimensional stabilisers
and we let Y5 := p(X*) C Y.. It remains to prove that Y* is open. As ¢ : X, — Y, is a geometric
quotient and X® is a G-invariant subset of X, ¢! (Y*) = X* and also Y, —Y* = o(X.— X*). As
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X.—X? is closed in X, property iv) of good quotient gives that p(X.—X?*) =Y, —Y? is closed
in Y. and so Y® is open in Y,. Since Y, is open in Y, we can conclude that Y* C Y is open.
Finally, the geometric quotient ¢ : X, — Y, restricts to a geometric quotient ¢ : X* — Y* by
Corollary 3.33. O

Remark 5.7. We see from the proof of this theorem that to get a geometric quotient we do
not have to impose the condition dim G, = 0 and in fact in Mumford’s original definition of
stability this condition was omitted. However, the modern definition of stability, which asks for
zero dimensional stabilisers, is now widely accepted. One advantage of the modern definition
is that if the semistable set is nonempty, then the dimension of the geometric quotient equals
its expected dimension. A second advantage of the modern definition of stability is that it is
better suited to moduli problems.

Example 5.8. Consider the linear action of G = G, on X = P" by

tolzo:my - my] = [t o sty c - sty
In this case R(X) = k[zo,...,zy,] which is graded into homogeneous pieces by degree. It is
easy to see that the functions xox1,...,zoz, are all G-invariant. In fact, we claim that these

functions generate the ring of invariants. To prove the claim, suppose we have f € R(X); then
f= Z a(m)zg Ozt .o
m=(my,...,Mn)

and, for t € Gy,

t-f= Z a(m)gmoTI T T g O gt
m=(mg,...,mn)
Then f is G-invariant if and only if a(m) = 0 for all m = (my, ..., m,) such that mg # > ;| m;.
If m satisfies mg = Y1 ; m;, then
zg 0zt g = (ox)™ .. (zoxn) ™™

that is, if f is G-invariant, then f € k[xoz1,...xoz,]. Hence
R(X)G = k[l‘oxl, e ,xol‘n] = k[yg, . ,yn_l]

and after taking the projective spectrum we obtain the projective variety X//G = P"~!. The
explicit choice of generators for R(X)“ allows us to write down the rational morphism

: X =P" - X//G=P""!

[o @yt rap] = [Tomy - Towy)]

and its clear from this description that the nullcone

N=A[xg: -z €P": 29 =00r (21, - ,2,) =0}
is the projective variety defined by the homogeneous ideal I = (zoz1,- - ,zoxy,). In particular,
n
X% = UXwowi ={lxo: - :xy) €P" 2o #0and (z1,...,2,) # 0} = A" — {0}

where we are identifying the affine chart on which xg # 0 in P with A™. Therefore
@: X% =A" {0} - X//G =P"!

is a good quotient of the action on X*°. As the preimage of each point in X//G is a single orbit,
this is also a geometric quotient. Moreover, every semistable point is stable as all orbits are
closed in A" — {0} and have zero dimensional stabilisers.
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In general it can be difficult to determine which points are semistable and stable as it is
necessary to have a description of the graded k-algebra of invariant functions. The ideal situation
is as above where we have an explicit set of generators for the invariant algebra which allows
us to write down the quotient map. However, finding generators and relations for the invariant
algebra in general can be hard. We will soon see that there are other criteria that we can use
to determine (semi)stability of points.

Lemma 5.9. Let G be a reductive group acting linearly on X C P". A k-point v € X (k) is
stable if and only if x is semistable and its orbit G - x is closed in X*° and its stabiliser G, is
zero dimensional.

Proof. Suppose z is stable and 2’ € G -z N X*%; then ¢(z') = ¢(z) and so 2’ € o~ (p(x)) C
e 1Y) = X*. As G acts on X? with zero-dimensional stabiliser, this action must be closed as
the boundary of an orbit is a union of orbits of strictly lower dimension. Therefore, ' € G - x
and so the orbit G - z is closed in X*°.

Conversely, we suppose x is semistable with closed orbit in X*° and zero dimensional sta-
biliser. As z is semistable, there is a homogeneous f € R(X)$ such that * € X;. As G - @
is closed in X*%, it is also closed in the open affine set Xy C X*®. By Proposition 3.21, the
G-invariant set

Z :={z¢€ Xy :dimG, > 0}

is closed in X . Since Z is disjoint from G -z and both sets are closed in the affine scheme X,
by Lemma 4.29, there exists h € O(X ;)¢ such that

hZ)=0 and h(G-z)=1.

We claim that from the function h, we can produce a G-invariant homogeneous polynomial
n e R(X)f such that € Xy and Xy is disjoint from Z, as then all orbits in Xy have
zero dimensional stabilisers and so must be closed in Xy, (as the closure of an orbit is a union
of lower dimensional orbits), in which case we can conclude that x is stable. The proof of the
above claim follows from Lemma 5.10 below and uses the fact that G is geometrically reductive.
More precisely, we have that O(Xy) = O(X;)o is a quotient of A := (k[zg,...,2,]f)o and we
take I to be the kernel. Then A" = h'/f* € A /(I N A%) for some homogeneous polynomial A’
and positive integers r and s. O

Lemma 5.10. Let G be a geometrically reductive group acting rationally on a finitely generated
k-algebra A. For a G-invariant ideal I of A and a € (A/I)C, there is a positive integer r such
that a” € AG /(I N A%).

Proof. Let b € A be an element whose image in A/l is a and we can assume a # 0. As the
action is rational, b is contained in a finite dimensional G-invariant linear subspace V C A
spanned by the translates g-b. Then b ¢ VNI as a # 0; however, g-b—be VNI forall g e G
as a is G-invariant. Therefore dim V' = dim(V N7I)+ 1 and every element in V' can be uniquely
written as Ab+b’ for A € k and b’ € VNI. Consider the linear projection [ : V' — k onto the line
spanned by b, which is G-equivariant. In terms of the dual representation V'V, the projection [
corresponds to a non-zero fixed point {* and so, as G is geometrically reductive, there exists a
G-invariant homogeneous function F' € O(VV) of positive degree r which is not vanishing at [*.
We can take a basis of V' (and dual basis of V) where the first basis vector corresponds to b.
Then the coefficient A of 27 in F' is non-zero. Consider the algebra homomorphism

OVY)=Sym*V — A

and let by € AY be the image of F € O(VVY)%. Then by — A\b" € I, as this belongs to the ideal
generated by a choice of basis vectors for V' N I. Hence a” € A% /(I N A%) as required. O

Remark 5.11. If G is linearly reductive, then taking G-invariants is exact, and so we can take
r =1 in the above lemma.
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5.2. A description of the k-points of the GIT quotient.

Definition 5.12. Let G be a reductive group acting linearly on X C P". A k-point z € X (k)
is said to be polystable if it is semistable and its orbit is closed in X*°. We say two semistable
k-points are S-equivalent if their orbit closures meet in X*®°. We write this equivalence relation
on X*%(k) as ~g.equiv. and let X**(k)/ ~s.equiv. denote the S-equivalence classes of semistable
k-points.

By Lemma 5.9 above, every stable k-point is polystable.

Lemma 5.13. Let G be a reductive group acting linearly on X C P" and let x € X (k) be a
semistable k-point; then its orbit closure G - x contains a unique polystable orbit. Moreover, if
x 18 semistable but not stable, then this unique polystable orbit is also not stable.

Proof. The first statement follows from Corollary 3.32: ¢ is constant on orbit closures and the
preimage of a k-point under ¢ contains a orbit which is closed in X**; this is the polystable
orbit. For the second statement we note that if a semistable orbit G - x is not closed, then the
unique closed orbit in G -z has dimension strictly less than G - x by Proposition 3.15 and so
cannot be stable. U

Corollary 5.14. Let G be a reductive group acting linearly on X C P"™. For two semistable
points x,x’" € X%, we have p(z) = p(z') if and only if x and x’ are S-equivalent. Moreover,
there is a bijection of sets

X//G(k) = Xps(k)/G(k) = Xss(k)/ ~ S-equiv.
where XP5(k) is the set of polystable k-points.

5.3. Linearisations. An abstract projective scheme X does not come with a pre-specified
embedding in a projective space. However, an ample line bundle L on X (or more precisely
some power of L) determines an embedding of X into a projective space. More precisely, the
projective scheme X and ample line bundle L, determine a finitely generated graded k-algebra

R(X,L):= @ HOX, L"),
r>0

We can choose generators of this k-algebra: s; € H(X, L®") for i = 0,,..n, where 7; > 1. Then
these sections determine a closed immersion

X <= P(ro,...,m)

into a weighted projective space, by evaluating each point of X at the sections s;. In fact, if
we replace L by L®™ for m sufficiently large, then we can assume that the generators s; of the
finitely generated k-algebra

R(X,L%™) = H HO(X, L)
r>0

all lie in degree 1. In this case, the sections s; of the line bundle L®™ determine a closed
immersion

X < P" =P(H"(X,L®™)*)
given by evaluation x — (s — s(z)).

Now suppose we have an action of an affine algebraic group G on X; then we would like to do
everything above G-equivariantly, by lifting the G-action to L such that the above embedding
is equivariant and the action of G on P" is linear. This idea is made precise by the notion of a
linearisation.

Definition 5.15. Let X be a scheme and G be an affine algebraic group acting on X via a
morphism o : G x X — X. Then a linearisation of the G-action on X is a line bundle 7 : L — X
over X with an isomorphism of line bundles

mxL=GxL=0c"L,
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where mx : G x X — X is the projection, such that the induced bundle homomorphism
0 :G x L — L defined by

G x L

G x X——X.
g

induces an action of G on L; that is, we have a commutative square of bundle homomorphisms

idgx&

GxGxL GxL
pa Xidr, i&
G x L

ez
We say that a linearisation is (very) ample if the underlying line bundle is (very) ample.

Let us unravel this definition a little. Since ¢ : G x L — L is a homomorphism of vector
bundles, we have

i) the projection 7 : L — X is G-equivariant,
ii) the action of G on the fibres of L is linear: for g € G and = € X, the map on the fibres
L, — Lg.; is linear.

Remark 5.16.

(1) The notion of a linearisation can also be phrased sheaf theoretically: a linearisation of
a G-action on X on an invertible sheaf £ is an isomorphism

O:0"L — XL,
where mx : G x X — X is the projection map, which satisfies the cocycle condition:
(b xidx)*® = 733D o (idg x 0)* P

where mo3 : G X G x X — G x X is the projection onto the last two factors. If w : L — X
denotes the line bundle associated to the invertible sheaf £, then the isomorphism &
determines a bundle isomorphism of line bundles over G x X:

P: (GXX)XnpyxaLl = (GxX)XoxrL

and then we obtain ¢ := wx o . The cocycle condition ensures that ¢ is an action.

(2) The above notion of a linearisation of a G-action on X can be easily modified to larger
rank vector bundles (or locally free sheaves) over X. However, we will only work with
linearisations for line bundles (or equivalently invertible sheaves).

Exercise 5.17. For an action of an affine algebraic group G on a scheme X, the tensor product
of two linearised line bundles has a natural linearisation and the dual of a linearised line bundle
also has a natural linearisation. By an isomorphism of linearisations, we mean an isomorphism
of the underlying line bundles that is G-equivariant; that is, commutes with the actions of G on
these line bundles. We let Pic®(X) denote the group of isomorphism classes of linearisations of
a G-action on X. There is a natural forgetful map a : Pic%(X) — Pic(X).

Example 5.18. (1) Let us consider X = Spec k with necessarily the trivial G-action. Then
there is only one line bundle 7 : A! — Spec k over Spec k, but there are many linearisa-
tions. In fact, the group of linearisations of X is the character group of G. If x : G — G,
is a character of G, then we define an action of G on A! by acting by G x Al — Al
Conversely, any linearisation is given by a linear action of G' on A!; that is, by a group
homomorphism y : G — GL; = G,,,.
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(2) For any scheme X with an action of an affine algebraic group G and any character
x : G — G,,, we can construct a linearisation on the trivial line bundle X x A! — X by

g9 (x,2) = (g9-z,x(9)2)-
More generally, for any linearisation 6 on L — X, we can twist the linearisation by a
character x : G — G,, to obtain a linearisation &X.

(3) Not every linearisation on a trivial line bundle comes from a character. For example,
consider G = pp = {£1} acting on X = A! — {0} by (=1) -2 = z~!. Then the
linearisation on X x Al — X given by (—1) - (z,2) = (27!, 22) is not isomorphic to a
linearisation given by a character, as over the fixed points +1 and —1 in X, the action
of —1 € uo on the fibres is given by z — z and z — —z respectively.

(4) The natural actions of GL, 1 and SL,, 11 on P" inherited from the action of GL, 1 on
A"t by matrix multiplication can be naturally linearised on the line bundle Opx (1). To
see why, we note that the trivial rank n+1-vector bundle on P" has a natural linearisation
of GL,11 (and also SL,;1). The tautological line bundle Opn(—1) C P" x A" is
preserved by this action and so we obtain natural linearisations of these actions on
Opn (£1). However, the action of PGL,,;1 on P" does not admit a linearisation on Opn (1)
(see Exercise Sheet 9), but we can always linearise any G-action on P" to Opn(n + 1)
as this is isomorphic to the nth exterior power of the cotangent bundle, and we can lift
any action on P" to its cotangent bundle.

Lemma 5.19. Let G be an affine algebraic group acting on a scheme X via o : G x X - X
and let 6 : G X L — L be a linearisation of the action on a line bundle L over X. Then there
is a natural linear representation G — GL(H®(X, L)).

Proof. We construct the co-module H°(X, L) — O(G) ®x H°(X, L) defining this representation
by the composition

HO(X,L)~Z=H°G x X,0*L) 2 H(G x X,G x L) = H(G,0g) ® H(X, L)

where the final isomorphism follows from the Kiinneth formula and the middle isomorphism is
defined using the isomorphism G x L = ¢* L. O

Remark 5.20. Suppose that X is a projective scheme and L is a very ample linearisation.
Then the natural evaluation map

HY(X,L)®p Ox — L
is G-equivariant. Moreover, this evaluation map induces a G-equivariant closed embedding
X — P(H(X,L)")

such that L is isomorphic to the pullback of the Serre twisting sheaf O(1) on this projective
space. In this case, we see that we have an embedding of X as a closed subscheme of a
projective space P(H"(X, L)*) such that the action of G on X comes from a linear action of G
on H°(X,L)*. In particular, we see that a linearisation naturally generalises the setting of G
acting linearly on X C P™.

5.4. Projective GIT with respect to an ample linearisation. Let GG be a reductive group
acting on a projective scheme X and let L be an ample linearisation of the G-action on X.
Then consider the graded finitely generated k-algebra

R:=R(X,L):=@HX,L¥)
r>0
of sections of powers of L. Since each line bundle L®" has an induced linearisation, there is

an induced action of G on the space of sections H°(X, L®") by Lemma 5.19. We consider the
graded algebra of G-invariant sections

R¢ =P HO (X, L7,
r>0



42 VICTORIA HOSKINS

The subalgebra, of invariant sections R® is a finitely generated k-algebra and Proj R is projec-
tive over RS = k¢ = k following a similar argument to above.

Definition 5.21. For a reductive group G acting on a projective scheme X with respect to an
ample line bundle, we make the following definitions.

1) A point x € X is semistable with respect to L if there is an invariant section o €
HO(X, L®")¢ for some r > 0 such that o(z) # 0.

2) A point x € X is stable with respect to L if dim G-z = dim G and there is an invariant
section ¢ € HY(X, L®" )% for some r > 0 such that o(z) # 0 and the action of G on
X, :={zx € X :0(zx) # 0} is closed.

We let X*¢(L) and X*(L) denote the open subset of semistable and stable points in X respec-
tively. Then we define the projective GIT quotient with respect to L to be the morphism

X% — X//1G := Proj R(X, L)“
associated to the inclusion R(X, L)% < R(X,L).

Exercise 5.22. We have already defined notions of semistability and stability when we have a
linear action of G on X C P™. In this case, the action can naturally be linearised using the line
bundle Opn(1). Show that the two notions of semistability agree; that is,

X5 = X3(0pn(1)x).

Theorem 5.23. Let G be a reductive group acting on a projective scheme X and L be an ample
linearisation of this action. Then the GIT quotient

¢ X*(L) = X//L.G = Proj @ HO(X,L®" )¢
r>0

is a good quotient and X//1G is a projective scheme with a natural ample line bundle L' such
that p*L' = L®" for some n > 0. Furthermore, there is an open subset Y C X//1.G such that
e 1(Y*) = X5(L) and ¢ : X*(L) — Y* is a geometric quotient for the G-action on X*(L).

Proof. As L is ample, for each 0 € R(X, L)f, the open set X, is affine and the above GIT
quotient is obtained by gluing affine GIT quotients (we omit the proof as it is very similar to
that of Theorem 5.3 and Theorem 5.6). O

Remark 5.24. In fact, the graded homogeneous ring R(X, L)“ also determines an ample line
bundle L' on its projectivisation X//;G such that R(X//.G, L") = R(X,L)¢. Furthermore,
¢*(L') = L®" for some r > 0 (for example, see [4] Theorem 8.1 for a proof of this statement).

Remark 5.25 (Variation of geometric invariant theory quotient). We note that the GIT
quotient depends on a choice of linearisation of the action. One can study how the semistable
locus X**(L) and the GIT quotient X//; G vary with the linearisation L; this area is known
as variation of GIT. A key result in this area is that there are only finitely many distinct GIT
quotients produced by varying the ample linearisation of a fixed G-action on a projective normal
variety X (for example, see [5] and [41]).

Remark 5.26. For an ample linearisation L, we know that some positive power of L is very
ample. By definition X*%(L) = X*¥(L®") and X*(L) = X5(L®") and X//1G = X//1e.G (as
abstract projective schemes), we can assume without loss of generality that L is very ample
and so X C P" and G acts linearly. However, we note that the induced ample line bundles on
X//1G and X//enG are different, and so these GIT quotients come with different embeddings
into (weighted) projective spaces.

Definition 5.27. We say two semistable k-points z and 2’ in X are S-equivalent if the orbit
closures of z and 2’/ meet in the semistable subset X**(L). We say a semistable k-point is
polystable if its orbit is closed in the semistable locus X*%(L).
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Corollary 5.28. Let x and x’ be k-points in X**(L); then o(x) = o(x') if and only if x and x’
are S-equivalent. Moreover, we have a bijection of sets

(X//LG)(k) = XP*(L)(k)/G (k) = X*(L)(K)/ ~s5-equiv.
where XP*(L)(k) is the set of polystable k-points.

5.5. GIT for general varieties with linearisations. In this section, we give a more gen-
eral theorem of Mumford for constructing GIT quotients of reductive group actions on quasi-
projective schemes with respect to (not necessarily ample) linearisations.

Definition 5.29. Let X be a quasi-projective scheme with an action by a reductive group G
and L be a linearisation of this action.

1) A point x € X is semistable with respect to L if there is an invariant section o €
HO(X, L®")Y for some r > 0 such that o(z) # 0 and X, = {zx € X : o(x) # 0} is affine.

2) A point x € X is stable with respect to L if dim G-z = dim G and there is an invariant
section o € HO(X, L®")% for some r > 0 such that o(x) # 0 and X, is affine and the
action of G on X, is closed.

The open subsets of stable and semistable points with respect to L are denoted X*(L) and
X*5(L) respectively.

Remark 5.30. If X is projective and L is ample, then this agrees with Definition 5.21 as X,
is affine for any non-constant section o (see [14] III Theorem 5.1 and II Proposition 2.5).

In this setting, the GIT quotient X//;G is defined by taking the projective spectrum of the
ring R(X, L)Y of G-invariant sections of powers of L. One proves that ¢ : X*5(L) — Y :=
X//1G is a good quotient by locally showing that this morphism is obtained by gluing affine
GIT quotients ¢, : X,y — Y, in exactly the same way as Theorem 5.3. Then similarly to
Theorem 5.6, one proves that this restricts to a geometric quotient on the stable locus. In
particular, we have the following result.

Theorem 5.31. (Mumford) Let G be a reductive group acting on a quasi-projective scheme X
and L be a linearisation of this action. Then there is a quasi-projective scheme X//1.G and a
good quotient ¢ : X*(L) — X//LG of the G-action on X*°(L). Furthermore, there is an open
subset Y C X//1.G such that ¢~} (Y*) = X*(L) and ¢ : X5(L) — Y* is a geometric quotient
for the G-action on X*(L).

The only part of this theorem which remains to be proved is the statement that the GIT
quotient X//1,G is quasi-projective. To prove this, one notes that the GIT quotient comes with
an ample line bundle L’ which can be used to give an embedding of X into a projective space.

6. CRITERIA FOR (SEMI)STABILITY

Let us suppose that we have a reductive group G acting on a projective scheme X with respect
to an ample linearisation L. In order to determine the GIT semistable locus X*%(L) C X, we
need to calculate the algebra of G-invariant sections of all powers of L. In practice, there are
very few examples in which one can compute these rings of invariants by hand (or even with
the aid of a computer). In this section, we will give alternative criteria for determining the
semistability of a point. The main references for the material covered in this section are [4],
[25], [31] and [42].

We first observe that we can simplify our situation by assuming that X C P"™ and the G-action
is linear. Indeed, by replacing L by some power L®", we get an embedding

X cP"=P(H(X,L®)*)

such that Opn(1)|x = L®" and G acts linearly on P". Furthermore, by Remark 5.26, we have
an agreement of (semi)stable sets X (®)5(L) = X ()s(L®"),
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6.1. A topological criterion. Let G be a reductive group acting linearly on a projective
scheme X C P". Then as G acts via G — GLy+1, the action of G lifts to the affine cones
X C A" We let R(X) = O(X) denote the homogeneous coordinate ring of X.

Proposition 6.1. Let z € X (k) and choose a non-zero lift & € X (k) of x. Then:

i) x is semistable if and only if 0 ¢ G - &; )
it) x is stable if and only if dim Gz =0 and G - T is closed in X.

Proof. 1) If z is semistable, then there is a G-invariant homogeneous polynomial f € R(X)¢

which is non-zero at z. We can view f as a G-invariant function on X such that f(Z) # 0. As
invariant functions are constant on orbits and also their closures we see that f(G - ) # 0 and
so there is a function which separates the closed subschemes G - & and 0; therefore, these closed
subschemes are disjoint.

For the converse, suppose that G - and 0 are disjoint. Then as these are both G-invariant
closed subsets of the affine variety X and G is geometrically reductive, there exists a G-invariant
polynomial f € O(X)% which separates these subsets

f(G-Z)=1 and f(0)=0

by Lemma 4.29. In fact, we can take f to be homogeneous: if we decompose f into homogeneous
elements f = fg+ -+ f., then as the action is linear, each f; must be G-invariant and, in
particular, there is at least one G-invariant homogeneous polynomial f; which does not vanish
on G - Z. Hence, z is semistable.

ii) If x is stable, then dimG, = 0 and there is a G-invariant homogeneous polynomial
f € R(X)Y such that z € Xy and G - x is closed in X. Since Gz C G, the stabiliser of 7 is

also zero dimensional. We can view f as a function on X and consider the closed subscheme
Z:={zeX:f(z)=f(&)}

of X. It suffices to show that G - Z is a closed subset of Z. The projection map X — {0} — X
restricts to a surjective finite morphism 7 : Z — X;. The preimage of the closed orbit G - x
in Xy under 7 is closed and G-invariant and, as 7 is also finite, the preimage 7#~1(G - z) is a
finite number of G-orbits. Since = is finite, the finite number of G-orbits in the preimage of
G -z all have dimension equal to dim GG, and so these orbits must be closed in the preimage (see
Proposition 3.15). Hence G - 7 is closed in Z.

Conversely suppose that dimGz = 0 and G - Z is closed in X; then 0 ¢ G-7=G-7and
so x is semistable by i). As x is semistable there is a non-constant G-invariant homogeneous
polynomial f such that f(z) # 0. As above, we consider the finite surjective morphism

m:Z:={2€X:f(2)=f(@)} — X;.

Since 7(G-Z) = G-z and 7 is finite, z has zero dimensional stabiliser group and G-z is closed in
X . Since this holds for all f such that f(x) # 0, it follows that G - z is closed in X*% = Uy X;.
Hence z is stable by Lemma 5.9. U

6.2. The Hilbert—Mumford Criterion. Suppose we have a linear action of a reductive group
G on a projective scheme X C P" as above. In this section, we give a numerical criterion which
can be used to determine (semi)stability of a point x.

Following the topological criterion above, we see that to determine semistability, it is impor-
tant to understand the closure of an orbit. One way to study the closure of an orbit is by using
1-parameter subgroups of G.

Definition 6.2. A 1-parameter subgroup (1-PS) of G is a non-trivial group homomorphism
A G, — Gl

Fix x € X (k) and a 1-PS X : G, — G. Then we let A\, : G,, — X be the morphism given by
Az (t) = A(t) - z.
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We have a natural embedding of G,,, = A —{0} — P! given by ¢ + [1 : #]. Since X is projective,
it is proper over Speck and so, by the valuative criterion for properness, the morphism A, :
G, — X extends uniquely to a morphism A\, : P! — X:

Az X

I
P!~ =Speck.
We use suggestive notation for the specialisations of this extended morphism at the zero and
infinity points of P!:
Hm A(t) -z := A ([1:0]) and  lim A(¢) -z := A\([0: 1]).
t—=0 t—o0
In fact, we can focus on the specialisation at zero, as

lim A(t) -z = lim A~ (¢) - 2.
t—0

t—o00

Let y := lim;_,o A(¢) - z; then y is fixed by the action of A\(G,,); therefore, on the fibre over y
of the line bundle O(1) := Opn(1)|x, the group A(G,,) acts by a character ¢ > t".

Definition 6.3. We define the Hilbert-Mumford weight of the action of the 1-PS XA on x € X (k)
to be

uOW (x,0) =r
where r is the weight of the A(G,,) on the fibre O(1), over y := lim;_,0 A(¢) - x.

From this definition, it is not so straight forward to compute this Hilbert—Mumford weight;
therefore, we will rephrase this in terms of the weights for the action on the affine cone. Recall
that Opn (1) is the dual of the tautological line bundle on P". Let A"*! be the affine cone over
P"; then Opn(—1) is the blow up of A"t! at the origin. Pick a non-zero lift # € X of = € X.
Then we can consider the morphism

Ai=A—)-7:Gp, — X

which may no longer extend to P!, as X is not proper. If it extends to zero (or infinity), we
will denote the limits by
lm A(¢) -2 (or lim A(¢) - Z).
t—o0

t—0

Any point in the boundary A\z(G,,) — Az(G,,) must be equal to either of these limit points.
The action of the 1-PS A(G,,) on the affine cone A" is linear, and so diagonalisable by
Proposition 3.12; therefore, we can pick a basis e, ..., e, of k"1 such that

At)-e; =t"e; for r; € Z.

We call the integers r; the A-weights of the action on A"*!. For z € X (k) we can pick & € X (k)
lying above this point and write Z = )" , x;e; with respect to this basis; then

n
)\(t) ST = Zt”miei
i=0
and we let A-wt(z) := {r; : ; # 0} be the A-weights of = (note that this does not depend on
the choice of lift z).
Definition 6.4. We define the Hilbert-Mumford weight of z at A to be
p(z, N) == —min{r; : z; # 0}.

We will soon show that this definition agrees with the above definition. However, we first
note some useful properties of the Hilbert—Mumford weight.

Exercise 6.5. Show that the Hilbert—-Mumford weight has the following properties.
(1) p(x, A) is the unique integer p such that limy_,o t#\(¢) - T exists and is non-zero.
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(2) p(xz,A") = nu(x, \) for positive n.

(3) u(g -z, gAg™") = u(z, A) for all g € G.

(4) p(z,A) = u(y, A) where y = limy_0 A(t) - .

Lemma 6.6. The two definitions of the Hilbert—Mumford weight agree:
1O (@, 3) = p(z, A).

Proof. Pick a non-zero lift T in the affine cone which lies over . Then we assume that we have
taken coordinates on A"*! as above so that the action of A(t) is given by

At) -2 =AEt) - (xoy .-y xn) = (t 0w, ..., t"xy).
Since p(x, \) +r; > 0 for all 7 such that x; # 0, with equality for at least one ¢ with z; # 0, we
see that
7 := lim t“($”\)A(t) T =(Y0,---,Yn)
t—0

exists and is non-zero. More precisely, we have

i ifrg = —p(x, A
yi:{x if r w(z, A)

0 else.

Therefore, A(t) - § = t~*(®N 4. Furthermore, § lies over y := lim;_,o A(t) -  and the weight of
the A-action on § is —p(x, A). Since Opn(—1) is the blow up of A"*! at 0, we see that —pu(z, \)
is the weight of the A(G,,)-action on O(—1),. Hence, the weight of the A\(G,,)-action on O(1),
is p(z, A) and this completes the proof of the claim. O

From the second definition of the Hilbert—Mumford weight, we easily deduce the following
lemma.

Lemma 6.7. Let A be a 1-PS of G and let x € X (k). We diagonalise the A\(Gy,)-action on the
affine cone as above and let & = ;" x;e; be a non-zero lift of x.
i)z, \) <0 <= =3 _wie; < lim0A(t)-2=0.
i) p(z,\) = 0 <= I = ), sqzie; and there exists r; = 0 such that z; # 0 <=
lims_,o A(t) - & exists and is non-zero.
i) p(x,\) > 0 < T = > we; and there exists ; < 0 such that z; # 0 <=
lim¢_,0 A(t) - T does not exist.

Remark 6.8. We can use A~! to study lim;_,oo A(t) - & as
. -1 ~ . ~
%g%/\ (t)-z= tlgélo At) - .
Then it follows that
i) puz, A" <0 &= 7= Yoo Ti€i == limoo A(t) -7 = 0.
i) p(z, A7) =0 <= & =3, _gwie; and there exists r; = 0 such that z; # 0 <=
limy_,o0 A(t) - & exists and is non-zero.
i) pu(z,A7Y) >0 <= 7= >, zie; and there exists 7; > 0 such that z; # 0 <=
lim¢ 00 A(t) - Z does not exist.

Following the discussion above and the topological criterion (see Proposition 6.1), we have
the following results for (semi)stability with respect to the action of the subgroup A(G,,) C G.

Lemma 6.9. Let G be a reductive group acting linearly on a projective scheme X C P™. Suppose
x € X(k); then
i) x is semistable for the action of N(G,,) if and only if u(x,\) >0 and p(x, \71) > 0.
ii) x is stable for the action of N(G,) if and only if u(x,A) > 0 and p(x, \=1) > 0.

Proof. For i), by the topological criterion z is semistable for A(G,,) if and only if 0 ¢ A(G,y,) - 7,
where and # € X (k) is a point lying over z. Since any point in the boundary A(G,,) - Z —
MGy, - @ is either

Hm A(t)-& or lim A(t)-&=lmA ™ (¢) -,

t—0 t—o0 t—0
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it follows from Lemma 6.7 that x is semistable if and only if
w(z, ) >0 and p(z, A1) >0.

For ii), by the topological criterion z is stable for \(G,) if and only if dim A\(G,,)z = 0 and
AGyy,) - T is closed. The orbit is closed if and only if the boundary is empty; that is, if and only
if both limits

LmA(t)-Z and  lim A(¢) - = im A71(¢) - &
t—0 t—00 t—0
do not exist, i.e.
pw(z,\) >0 and p(z, A1) > 0.
Furthermore, if these inequalities hold, then \(G,,,) cannot fix Z (as otherwise the above limits
would both exist) and so we must have that dim A(G,,)z = 0. O

Exercise 6.10. Let G,, act on P2 by t- [z : y : 2] = [tz : y : t7'z]. For every point x € P2
and the 1-PS A(t) = t, calculate u(z, \*') and then by using Lemma 6.9 above or otherwise,
determine X*® and X%,

If z is (semi)stable for G, then it is (semi)stable for all subgroups H of G as every G-invariant
function is also H-invariant. Hence, for a k-point x, we have

x is semistable — pu(z,\) >0V 1-PS X of G,
x is stable = p(z,\) >0V 1-PS X of G.

The Hilbert-Mumford criterion gives the converse to these statements; the idea is that because
G is reductive it has enough 1-PSs to detect points in the closure of an orbit (see Theorem 6.13
below).

Theorem 6.11. (Hilbert—-Mumford Criterion) Let G be a reductive group acting linearly on a
projective scheme X C P™. Then, for x € X (k), we have

x € X% < pu(x,\) >0 for all 1-PSs X of G,
r € X® < p(z,\) >0 for all 1-PSs X of G.

Remark 6.12. A 1-PS is primitive if it is not a multiple of any other 1-PS. By Exercise 6.5
ii), it suffices to check the Hilbert—-Mumford criterion for primitive 1-PSs of G.

It follows from the topological criterion given in Proposition 6.1 and also from Lemma 6.9,
that the Hilbert—Mumford criterion is equivalent to the following fundamental theorem in GIT.

Theorem 6.13. [Fundamental Theorem in GIT] Let G be a reductive group acting on an affine
space A"t If o € A" is a closed point and y € G - x, then there is a 1-PS X of G such that
lim; o A(t) -z =y.

The proof of the above fundamental theorem relies on a decomposition theorem of Iwahori
which roughly speaking says there is an abundance of 1-PSs of reductive groups [17]. The proof
of this theorem essentially follows from ideas of Mumford [25] §2.1 and we delay the proof until
the end of this section.

Example 6.14. We consider the action of G = G,, on X = P" as in Example 5.8. As the
group is a 1-dimensional torus, we need only calculate p(x, A) and p(xz, A\™1) for A(t) = t as was
the case in Lemma 6.9. Suppose & = (zo, ..., 2,) lies over z = [z : - -+ : x| € P". Then

lim A(t) - & = (t t@g, tzy ..., txy,)
t—0
exists if and only if 29 = 0. If 29 = 0, then p(z, \) = —1 and otherwise p(z, ) > 0. Similarly
oy -1 = ~1 -1
}%A (t)- & = (two,t” 21 ..., t "xp)
exists if and only if ; = -+ =2, =0. If 21 = --- =z, = 0, then u(x,\) = —1 and otherwise
wu(x, \) > 0. Therefore, the GIT semistable set and stable coincide:
X¥ =X={[zo: - 1axp] 20 #0and (x1,...,2,) # 0} C P™.
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6.3. The Hilbert—Mumford Criterion for ample linearisations. In this section we con-
sider the following more general set up: suppose X is a projective scheme with an action by a
reductive group G and ample linearisation L.

Definition 6.15. The Hilbert—Mumford weight of a 1-PS X and x € X (k) with respect to L is
pl(z,\) =r
where 7 is the weight of the A\(G,,)-action on the fibre L, over the fixed point y = lim;_,o A(¢) - z.

Remark 6.16. We note that when X C P™ and the action of G is linear that this definition is
consistent with the old definition; that is,

pOr X (2, 3) = p(x, A).

Exercise 6.17. Fix € X and a 1-PS \ of G; then show p®(z,)) : Pic(X) — Z is a group
homomorphism where Pic%(X) is the group of G-linearised line bundles on X.

Theorem 6.18. (Hilbert—-Mumford Criterion for ample linearisations) Let G be a reductive

group acting on a projective scheme X and L be an ample linearisation of this action. Then,
for x € X(k), we have

r € X%(L) <= pl(x,\) >0 for all 1-PSs X of G,
r € X5(L) <= uF(z,)\) > 0 for all 1-PSs \ of G.
)

Proof. (Assuming Theorem 6.11) As L is ample, there is n > 0 such that L®" is very ample.
Then since o

pt " (@, N) = (2, )
it suffices to prove the statement for L very ample. If L is very ample then it induces a G-
equivariant embedding i : X <— P" such that L = i*Opn(1). Then we can just apply the first

version of the Hilbert—-Mumford criterion (cf. Theorem 6.11 and Remark 6.16). O

6.4. Proof of the Fundamental Theorem in GIT. In order to complete our proof of the
Hilbert—-Mumford Theorem, it suffices to prove the following slightly weaker version of the
Fundamental Theorem in GIT.

Theorem 6.19. Let G be a reductive group acting linearly on A™ and let z € A™ be a k-point.
If 0 lies in the orbit closure of z, then there exists a 1-PS X of G such that lim;_o A(t) - z = 0.

Proof. Suppose that 0 € G - z; then we will split the proof into 6 steps.

Step 1. We claim there is an irreducible (but not complete and not necessarily smooth)
curve C7 C G - z which contains 0 in its closure. To prove the existence of this curve, we use
an argument similar to Bertini’s Theorem and obtain the curve by intersecting hyperplanes in
a projective completion P of A"; the argument is given in Lemma 6.20 below.

Step 2. We claim that there is a smooth projective curve C, a rational map p : C' --» G
and a k-point ¢y € C such that lim.,., p(c) - z = 0. To prove this claim, we consider the
action morphism o, : G — A" given by g — ¢ - z and find a curve Cs in G which dominates C
under o, (see Lemma 6.21 below) and then let C be a projective completion of the normalisation
Cy — Co; then the rational map p : C' --» G is defined by the morphism Cy — Cy — G. Finally,
as the morphism Cy — Cj is dominant it extends to their smooth projective completions and,
as 0 lies in the closure of C1, we can take a preimage ¢y € C of zero under this extension. Then
lim, ¢, p(c) - z = lime—¢, 02(p(c)) = 0.

Step 3. Since C' is a smooth proper curve, the completion of the local ring O¢ ., of the curve
at co is isomorphic to the formal power series ring k|[[t]], whose field of fractions is the field of
Laurent series k((t)). As the rational map p : C' --» G is defined in a punctured neighbourhood
of ¢p, it induces a morphism

q: K = Speck((t)) = Spec FracO¢,., — Spec FracOc ¢, — G

such that lim;_,o[q(¢) - z] = 0. In Step 5, we will relate this K-valued point of G to a 1-PS.
Step 4. Let R := Speck|[[t]] and K := Speck((t)); then there is a natural morphism K — R
and so the R-valued points of G form a subgroup of the K-valued points (i.e. G(R) C G(K))
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whose limit as t — 0 exists. More precisely, the natural map Speck — R induces a morphism
G(R) — G(k) given by taking the specialisation as ¢ — 0.

There is a morphism K — G, = Speck[s, s~ 1] induced by the homomorphism k[s,s™1] —
k((t)) given by s+ t. For a 1-PS A, we define its Laurent series expansion < A >€ G(K) to be
the composition of the natural morphism K — G,, with .

Step 5. We will use without proof the Cartan-Iwahori decomposition for G which states that
every double coset in G(K) for the subgroup G(R) is represented by a Laurent series expansion
< A > of 1-PS of G (for example, see [25] §2.1). Therefore, as ¢ € G(K), there exists [; € G(R)
for i = 1,2 and a 1-PS X of G such that

ll'q:<>\>-12

and the 1-PS ) is non-trivial, as ¢ is not an R-valued point of G.
Step 6. Let g; :=1;(0) € G; then following the equality in Step 5, we have

0=yg1-0=limh(t) lim(q(t)-2) = Em[(<A> b)) 2].

We claim that lim_,g A(t)-g2-2 = 0 and so \ := 92_1)\92 is a 1-PS of G with lim_,o X' (¢)-2 = 0,
which would complete the proof of the theorem. To prove the claim, we use the fact that the
action of the 1-PS XA on V' = A" decomposes into weight spaces V,. for r € Z. Since ls € G(R)
and go = limy_,002(0), we can write la(t) - 2 = g2 - z + €(t), where €(f) only involves strictly
positive powers of t. Then with respect to the weight space decomposition, we have

g2-z+e(t) =D (g2 2)r + (),
rEZ
Since limy_,o[(< A > +l2)(¢) - 2] = 0, it follows that (g2 - z), = 0 for r < 0, which proves the claim
and completes our proof. O

Lemma 6.20. With the notation and assumptions of the previous theorem, there exists an
irreducible curve C1 C G - z which contains the origin in its closure.

Proof. Fix an embedding A" < P™ and let p € P™ denote the image of the origin. Let Y denote
the closure of G - z in P". We claim there exists a complete curve C] in Y containing the point
p € P" and which is not contained entirely in the boundary Z := Y — G - z. Assuming this
claim, we obtain the desired curve C; C G - z, by removing points of C] that lie in Z. To
prove the claim, let d = dimY’; then we can assume d > 1 as otherwise Y is already a curve.
Then also n > 1. In the following section, we will see that hyperplanes in P" are parametrised
by P" = P(k[xo,...,zn]1) and the space of hyperplanes containing p is a closed codimension 1
subspace H, C P". Let H be the non-empty open subset of the product of (d — 1)-copies of H,
consisting of hypersurfaces (Hi, ..., Hg_1) such that
(1) N;H; NY is a curve (generically, dimN{=' H; NY = dimY — (d — 1) = 1 and so this is a
non-empty open condition), and
(2) N;H; N'Y is not entirely contained in Z (this is also a non-empty open condition, as
Z C Y is a closed subscheme).
Hence, H is a non-empty open subset of (H,)?~!, which has dimension (n — 1)(d — 1) > 0, and
so the desired curve exists: we take C] := N;H; NY, for (Hy,...,Hq_1) € Hp # 0. O

Lemma 6.21. With the notation and assumptions of the previous theorem, there exists a curve
Cy C G that dominates the curve C1 C G - z under the action morphism o, : G — G - z.

Proof. Let n be the generic point of C7. As 7 is not a geometric point and the above arguments
about the existence of curves requires an algebraically closed field, we pick a geometric point 7
over n corresponding to a choice of an algebraically closed finite field extension of k(C7). We
let 07 1(Ch), and 07 1(C1)7 be the base change of the preimage to k(C;) and its fixed algebraic
closure. Then by Lemma 6.20, there exists a curve C C 07 1(Cy);. The curve C maps to a
curve Cy C 03 1(C1), under the finite map o *(C1)7 — o2 1(C),. By construction, Cs is a
curve in o, 1(C1) C G which dominates C; under o. O
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7. MODULI OF PROJECTIVE HYPERSURFACES

In this section, we will consider the moduli problem of classifying hypersurfaces of a fixed
degree d in a projective space P up to linear change of coordinates on P”; that is, up to the
action of the automorphism group PGL, 41 of P*. To avoid some difficulties associated with
fields of positive characteristic, we assume that the characteristic of k is coprime to d.

7.1. The moduli problem. A non-zero homogeneous degree d polynomial F' in n+1 variables
xo,. .., T, determines a projective degree d hypersurface (F' = 0) in P™. If F' is irreducible then
the associated hypersurface is an irreducible closed subvariety of P" of codimension 1. If F
is reducible, then the associated hypersurface is a union of irreducible subvarieties of P" of
codimension 1 counted with multiplicities. For example, the polynomial F(zg,z1) = d gives a
degree d reducible hypersurface in P!: the d-fold point.

Hypersurfaces of degree d in P" are parametrised by points in the space k[xq, ..., z,]q — {0}
of non-zero degree d homogeneous polynomials in n + 1 variables. This variety has dimension

("1

As any non-zero scalar multiple of a homogeneous polynomial F' defines the same hypersurface,
the projectivisation of this space

Yin =P(klxo,...,zn]a)
is a smaller dimensional parameter space for these hypersurfaces.
The automorphism group PGL,41 of P" acts naturally on Yy ,, = P(k[zo, ..., 2s]q) as follows.

The linear representation GL,, ;1 — GL(k"*!) given by acting by left multiplication induces a
linear action of GL,41 on P". Consequently, there is an induced GL,41-action on the homoge-

neous coordinate ring R(P™) = k[zo, ..., x,] which preserves the graded pieces k[xq, ..., Tn]q-.
This determines a linear action of GLy4+1 on P(k[zo,...,zn]a) by

(9-F)(p)=F(g~"p)
for g € GLyy1, F € k[zg,...,2,]q and p € A" (we note that the inverse here makes this a

left action). This descends to an action
PGL,+1 x P(klxo, ..., zn]a) = P(k[xo, ..., Tnld)-

One may expect that a moduli space for degree d hypersurfaces in P™ is given by a categor-
ical quotient of this action and we will soon show that this is the case, by proving that Yy,
parametrises a family with the local universal property. However, the PGL,,1-action on Y, 4
is not linear, but the actions of GL, 41 and SLy1; are both linear. Since we have a surjection
SL,+1 — PGL,,+1 with finite kernel, the SL,,;1-orbits are the same as the PGL,,1-orbits, and
the only small changes is that for SL, 11 there is now a global finite stabiliser group, but from the
perspective of GIT finite groups do not matter. Therefore, we will work with the SL,,1-action.

To prove the tautological family over Y ,, has the local universal property in order to apply
Proposition 3.35, we need to introduce a notion of families of hypersurfaces. Let us start
formulating a reasonable notion of families of hypersurfaces. One natural idea for a family
of hypersurfaces over S is that we have a closed subscheme X C S x P" such that X, =
X N {s} x P" is a degree d hypersurface. For S = A" = Speck|z1,..., 2], this is given by
H € klz1,...,2r,20,...,%,] which is homogeneous of degree d in the variables xo, ...z, and
is non-zero at each point s € S. In this case, a family of hypersurfaces is given by a degree
d homogeneous polynomial in n + 1 variables with coefficients in O(S). In fact, we can take
this as a local definition for our families and generalise this notion to allow coefficients in an
arbitrary line bundle L over S.

Definition 7.1. A family of degree d hypersurfaces in P" over S is a line bundle L over S and
a tuple of sections

n
g = (Uio...in Zij Z O,Zij = d)
7=0
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of L such that for each k-point s € S, the polynomial

F(L,o,s) := E Tig.in ()T ... aln

(I

is non-zero.

We note that to make sense of this final sentence, we must trivialise L locally at s. Then the
tuple of constants o(s) are determined up to multiplication by a non-zero scalar. In particular,
we can determine whether F(L,0,s) is non-zero and the associated hypersurface is uniquely
determined. We denote the family by (L, o) and the hypersurface over a k-point s by (L, 0)s
F(L,o,s)=0.

Definition 7.2. We say two families (L,o) and (L',o") of degree d hypersurfaces in P"™ over S
are equivalent over S if there exists an isomorphism ¢ : L — L’ of line bundles and g € GL,, 41
such that poo =g- 0.

We note that with this definition of equivalence the families (L, ) and (L, Ao) are equivalent
for any non-zero scalar \.

Exercise 7.3. Show that Yy, = P(k[zo,...,2n]q) parametrises a tautological family of degree
d hypersurfaces in P” with the local universal property. Deduce that any coarse moduli space
for hypersurfaces is a categorical quotient of SL,, 1 acting on Yy, as above.

Since SL;, 11 is reductive, we can take a projective GIT quotient of the action on Yy, which
is a good (and categorical) quotient of the semistable locus Y% . There are now two problems
to address:

(1) determine the (semi)stable points in Yy ,;
(2) geometrically interpret (semi)stability of points in terms of properties of the correspond-
ing hypersurfaces.

For small values of d and n, we shall see that it is possible to give a full solution to the above
two problems, although as both values get larger the problem becomes increasingly difficult.

7.2. Singularities of hypersurfaces.

Definition 7.4. A point p in P™ is a singular point of a projective hypersurface defined by a
polynomial F' € klxg,...,zy]q if

OF
F(p) =0 and (p)=0 fori=0,...,n,
8a:i
where p € A"t — {0} is a lift of p € P". We say a hypersurface is non-singular (or smooth) if

it has no singular points.

Remark 7.5.
(1) By using the Euler formula

n

8F

8 =dF

i=0
and the fact that d is coprime to the characteristic of k, we see that p € P" is a singular
point of F' if and only if all partial derivatives OF/Jx; vanish at p.

(2) If we consider F as a function F' : A""! — k, then we can consider its derivative
dsF : T;AM — Trpk =k at p € A"l — 10}, The corresponding point p € P" is a
smgular point of F'if and only if this derivative dzF' is zero.

(3) Let o, : A" — A" denote the action of g € G. By the chain rule, we have dg.5(g-F') =
dsF o dg3o,-1, where dyo,-1 is invertible (as o is an action). Hence dy3(g - F) = 0 if
and only if d3F'; in other words p is a singular point of the hypersurface F' = 0 if and
onlyifg-pisa s1ngular point of the hypersurface g - F' = 0 for any g € G.
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The resultant polynomial of a collection of polynomials is a function in the coefficients of
these polynomials which vanishes if and only if these polynomials all have a common root; for
the existence of the resultant and how to compute it, see [7] Chapter 13 1.A.

Definition 7.6. For a polynomial F' € k[zo, ..., %4, we define the discriminant A(F') of F' to
be the resultant of the polynomials 0F/0x;.

Then A is a homogeneous polynomial in R(Yq,,) and is non-zero at F' if and only if F' defines
a smooth hypersurface. It follows from Remark 7.5 that A is SL,41-invariant.

Example 7.7. If d = 1, then Y7, = (P")" and as the only SL,;-invariant homogeneous
polynomials are the constants:

k[xo, . .. ,xn]SL”“ =k,

there are no semistable points for the action of SL, 1 on Y7 ,. In particular, the discriminant
A is constant on Y;,. Alternatively, as the action of SL,1; on P" is transitive, to show
Y5, = (P")* =0, it suffices to show a single point x = [1: 0 : ---: 0] € P is unstable. For this,
one can use the Hilbert-Mumford criterion: it is easy to check that if \(t) = diag(¢,t~*,1,...,1),
then p(z, \) < 0.

For d > 1, the discriminant is a non-constant SL,;-invariant homogeneous polynomial on
Y4, and as it is non-zero for all smooth hypersurfaces we have:

Proposition 7.8. For d > 1, every smooth degree d hypersurface in P™ is semistable for the
action of SLy41 on Yg,.

To determine whether a semistable point is stable we can check whether its stabiliser subgroup
is finite.

Example 7.9. If d = 2, then we are considering the space Y3, of quadric hypersurfaces in P".
Given F' = ), s ajjzix; € k[zo, ..., xy]2, we can associate to I a symmetric (n +1) x (n+ 1)
matrix B = (b;;) where b;; = bj; = a;; and by = 2a;. This procedure defines an isomorphism
between Y2, and the space P(Sym,,; 1) (n41)(k)) where Sym,, | 1y, (n41)(k) denotes the space of
symmetric (n+1) x (n+1) matrices. The discriminant A on Y3 ,, corresponds to the determinant
on P(Sym,,4 1y (n+1)(k)); thus F' is smooth if and only if its associated matrix is invertible. In
fact if F' corresponds to a matrix B of rank r + 1, then F' is projectively equivalent to the
quadratic form

xg+ -+t

As all non-singular quadratic forms F(xo, ..., ,) are equivalent to 22 +- - -+ 2 (after a change
of coordinates), we see that these points cannot be stable: the stabiliser of x% + o+ 22 s
equal to the special orthogonal group SO(n + 1) which is positive dimensional. Moreover, the
discriminant generates the ring of invariants (for example, see [31] Example 4.2) and so the
semistable locus is just the set of non-singular quadratic forms. In this case, the GIT quotient
consists of a single point and this represents the fact that all non-singular quadratic forms are
projectively equivalent to 23 + - -+ + x2.

The projective automorphism group of a hypersurface is the subgroup of the automorphism
group PGL,, 11 of P™ which leaves this hypersurface invariant. For d > 2, the projective automor-
phism group of any irreducible degree d hypersurface is finite; this is a classical but non-trivial
result (see [20] Lemma 14.2). As PGL,4 is a quotient of SL,4; by a finite subgroup, this
implies the stabiliser subgroup of a point in Y,,, corresponding to an irreducible hypersurface
is finite dimensional. Since every smooth hypersurface is irreducible, the stabiliser group of a
smooth hypersurface is finite. In fact, one can also check that for d > 2, the orbit of a smooth
hypersurface is closed and so the following result holds.

Proposition 7.10 ([25] §4.3). For d > 2, every degree d smooth hypersurface is stable.
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7.3. The Hilbert—-Mumford criterion for hypersurfaces. To determine the (semi)stable
points for the action of SL, 1 on Yy, we can use the Hilbert-Mumford criterion. Any 1-PS of
SLy+1 is conjugate to a 1-PS of the form

7o

trt
A(t) =

t

where r; are integers such that Z?:o ri =0and rg > 7r1 > --- > r,. Then the action of )\ is
diagonal with respect to the basis of the affine cone over Y,,, given by the monomials
10 .01 7

Ty =TyTy --- Ty,

for I = (ig,...,i,) a tuple of non-negative integers which sum to d. Furthermore, the weight of
each monomial z; for the action of A is — Z?:o rjij, where the negative sign arises as we act
by the inverse of A(t).

Let F = > arx; € klxo,...,zp]qa — {0}, where I = (ig,...,in) is a tuple of non-negative
integers which sum to d and z;, and let pr € Yy, be the corresponding class. Then

w(pp, A) = —min{— erij : I = (ig,...,in) and ay # 0}
=0

= max{z rim; : I = (ig,...,i,) and ay # 0}.
=0

For general (d,n), there is not always a clean description of the semistable locus. However
for certain small values, we shall see that this has a nice description. In §7.4 below we discuss
the case when n = 1; in this case, a degree d hypersurface corresponds to d unordered points
(counted with multiplicity) on P!. Then in §7.5 we discuss the case when (d,n) = (3,2); that
is, cubic curves in the projective plane P?. Both of these classical examples were studied by
Hilbert and can also be found in [25] and [31].

7.4. Binary forms of degree d. A binary form of degree d is a degree d homogeneous poly-
nomial in two variables x,y. The set of zeros of a binary form F determine d points (counted
with multiplicity) in P*. In this section we study the action of SLy on

Vi1 = P(k[z,yla) = P

Our aim is to describe the (semi)stable locus and the GIT quotient.

One method to determine the semistable and stable locus is to compute the ring of invariants
R(Y;1)5"2 for this action. For d < 6, the ring of invariants is known due to classical computa-
tions in invariant theory going back to Hilbert and later work of Schur. For general values of
d, the ring of invariants is still unknown today, which shows how difficult it can be in general
to determine the ring of invariants. For d = 8, a list of generators of the ring of invariants
is given by work of von Gall (1880) and Shioda (1967) [38]. For d = 9, 10, generators for the
ring of invariants were calculated by Brouwer and Popoviciu in (2010). Instead, we will use
the Hilbert—-Mumford criterion to obtain a complete description of the semistable locus, which
bypasses the need to calculate the ring of invariants.

Remark 7.11. If d = 1, then this corresponds to the action of SLy on P!, for which there are
no semistable points as the only invariant functions are constant (see also Example 7.7).

Henceforth, we assume d > 2 and use the Hilbert—-Mumford criterion for semistability. We
fix the maximal torus T" C SLo given by the diagonal matrices

r{(5 2 )uee).
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Any primitive 1-PS of G is conjugate to the 1-PS of T" given by

)\(t):<(t) t01>.

If F(z,y) =Y, a;z "y’ € k[z,yla — {0} lies over pp € Y1, then

At) - Fla,y) =) 2 aat™ly’
and
p(pr, A) = —min{2i — d : a; # 0} = max{d — 2i : a; # 0} = d — 24,
where 7¢ is the smallest integer for which a; # 0. Hence

(1) p(pr,A) > 0 if and only if ig < d/2 if and only if [1 : 0] occurs with multiplicity at most
d/2.

(2) p(pr,A) > 0if and only if iy < d/2 if and only if [1 : 0] occurs as a root with multiplicity
strictly less than n/2.

By the Hilbert-Mumford criterion, pp € Yy is semistable if and only if x(pp, A') > 0 for all
1-PSs ). For a general 1-PS ) we can write A = g~ '\g, then

w(pr, N') = p(g - pr, A).

If F has roots pi,...,pq € P!, then g - F has roots ¢ - p1,...,q - pq. As SLs acts transitively on
P!, we deduce the following result.

Proposition 7.12. Let F € klz,y|q lie over pp € Yy1; then:

i) pr is semistable if and only if all roots of F in P* have multiplicity less than or equal
to d/2.
ii) pr is stable if and only if all roots of F in P! have multiplicity strictly less than d/2.

In particular, if d is odd then Y;] = Y}, and the GIT quotient is a projective variety which is
a geometric quotient of the space of stable degree d hypersurfaces in P'.

Example 7.13. If d = 2, then the semistable locus corresponds to binary forms F' with two
distinct roots and the stable locus is empty. Given any two distinct points (py, p2) on P!, there is
a mobius transformation taking these points to any other two distinct points (g1, g2). However
this mobius transformation is far from unique; in fact given points p3 distinct from (p1,p2)
and ¢3 distinct from (g1,¢2), there is a unique mobius transformation taking p; to ¢;. Hence
all semistable points have positive dimensional stabilisers and so can never be stable. As the
action on the semistable locus is transitive, the GIT quotient is just the point Spec k.

Example 7.14. If d = 3, then the stable locus (which coincides with the stable locus) consists
of forms with 3 distinct roots. We recall that given any 3 distinct points (p1, p2, p3) on P!, there
is a unique mobius transformation taking these points to any other 3 distinct points. Hence
the GIT quotient is the projective variety P® = Spec k. In fact, the SLy-invariants have a single
generator: the discriminant

A (Z aixdﬂ'yi> = 27a3a§ — a%a% — 18apaqasas + 4a0a§ + 4a‘;‘a3
which is zero if and only if there is a repeated root.

Example 7.15. If d = 4, then we are considering binary quartics. In this case the semistable
locus is the set of degree 4 binary forms F' with at most 2 repeated roots and the stable locus
is the set of points in which all 4 roots are distinct. Given 4 distinct ordered points (p1, ..., p4)
there is a unique mobius transformation which takes this ordered set of points to (0,1, 00, A)
where A € A! — {0,1} is the cross-ratio of these points. However, the points in our case do not
have a natural ordering and so there are 6 possible values of the cross-ratio depending on how
we choose to order our points:

1 A-1 A 1

A’l_A’A’ A A—1T1T =X\
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The morphism f: Y} — Al given by

A =1 A=2)A+1)\?
(e
is symmetric in the six possible values of the cross-ratio, and so is SLo-invariant. It is easy to
check that f is surjective and in fact an orbit space: for each value of f in Al — {0, —27}, there
are six distinct possible choices for A as above and so this corresponds to a unique stable orbit.
For the values 0 (resp. —27), there are 3 (resp. 2) possible values for A and these correspond
to a unique stable orbit.

The strictly semistable points have either one or two double roots and so correspond to two
orbits. The orbit consisting of one double root is not closed: its closure contains the orbit
of points with two double roots (imagine choosing a family of mobius transformations h; that
sends (p,p,q,r) to (1,1,0,t), then as t — 0, we see that the point (1,1,0,0) lies in this orbit
closure). This suggests that the GIT quotient Yy ; //SLo is P!, the single point compactification
of AL,

In fact, this is true: there are two independent generators for the SLo-invariants of binary
quartics (called the I and J invariants - for example, see [31] Example 4.5 or [4], where they
are called S and T') and the good quotient is ¢ : Y'7 — PL.

7.5. Plane cubics. In this section, we study moduli of degree 3 hypersurfaces in P?; that is,
plane cubic curves. We write a degree 3 homogeneous polynomial F' in variables z,y, z as

3 3—i
F(x,y,z) = Z Z a3 Iyt
i=0 j=0
We want to describe all plane cubic curves up to projective equivalence; that is, describe the
quotient for the action of SL3 on Y3 5. For simplicity, we assume that the characteristic of £ is
not equal to 2 or 3.

An important classical result about the intersection of plane curves is Bézout’s Theorem,
which says for two projective plane curves C; and Cy in P? with no common components, the
number of points of intersection of C; and Cs counted with multiplicities is equal to the product
of the degrees of these curves. The fact that k is algebraically closed is crucial for this result. For
a basic introduction to algebraic curves and an elementary proof of Bézout’s Theorem, see [19].
In this section, we will use without proof the following easy applications of Bézout’s Theorem.

Proposition 7.16. (1) Any non-singular projective plane curve C C P? is irreducible.
(2) Any irreducible projective plane curve C C P? has at most finitely many singular points.

Furthermore, Bézout’s Theorem can be used to obtain a classification of plane curves of low
degree.

Lemma 7.17. Any irreducible plane conic C C P? is projectively equivalent to the conic defined
by 22 4+ yz = 0, which is isomorphic to P'.

Proof. By the above proposition, C has only finitely many singular points, and so we can choose
coordinates so that [0: 1 : 0] € C is non-singular and the tangent line to the curve at this point
is the line z = 0. Then we must have that C' is the zero locus of a polynomial

P(z,y,2) = ayz + bx? + cxz + d2*

and, as P is irreducible, we must have b # 0. Since OP(p)/0z # 0, we have a # 0. Then the
change of coordinates z’ := bz, y' := ay+ cx + dz, 2’ := z transforms the above conic into the
desired form.

Finally, for C : (22 4+ yz = 0), we have an isomorphism f : C — P! given by

f([x:y:z]):{ Ezy]x] gz;&g

The inverse of f is f~1: P! — C given by [u: v] = [uv : v? : —u?]. O
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This enables us to easily classify all reducible plane cubics up to projective equivalence, as any
reducible plane conic is either the union of an irreducible conic with a line or a union of three
lines. In fact, one can also prove that two reducible plane cubics are projectively equivalent if
and only if they are isomorphic. If the reducible plane cubic curve is a union of a line and a
conic, then the line can either meet the conic at two distinct points or a single point (so that
the line is tangent to the conic). By the above lemma, the irreducible conic is projectively
equivalent to 42 + xz = 0. As the projective automorphism group of this conic acts transitively
on the set of tangents lines to this conic and the set of lines meeting the conic at two distinct
points, any reducible cubic which is a union of a conic and a line is projectively equivalent to
either

e (zz+ y?)y = 0, where the line meets the conic in two distinct points, or
e (22 + y?)z = 0, where the line meets the conic tangentially.

If the reducible cubic curve is a union of three lines, there are four possibilities: one line occurring
with multiplicity three; a union of a double line with another distinct line; a union of three lines
meeting in a single intersection point; a union of three lines which meet in three intersection
points. Since the group of projective transformations acts transitively on the space of 3 lines,
we see that a reducible cubic curve which is a union of three lines is projectively equivalent to
either

y® = 0 (a triple line), or

y*(y + 2) = 0 (a union of a double line with a distinct line), or
yz(y + z) = 0 (three concurrent lines), or

e ryz = 0 (three non-concurrent lines).

The above reducible plane cubics contain a singular point at [1: 0 : 0]. In fact, we can define
a notion of multiplicities for singularities to distinguish between different types of singularities.
For a plane cubic, all points have multiplicity at most 3.

Definition 7.18. A singular point at p of cubic curved defined by F(z,y, z) = 0 is a triple point
if all second order partial derivatives of F' vanish at p; otherwise we say p is a double point. A
non-singular point is called a single point or point of multiplicity 1.

Example 7.19. The cubics defined by y? = 0 (a triple line), ?(y + z) = 0 (a union of a double
line with a distinct line), yz(y + z) = 0 (three concurrent lines) all contain a triple point at
[1:0:0]. The cubic defined by zyz = 0 (three non-concurrent lines) has three double points:
[1:0:0],[0:1:0]and [0:0: 1]. The cubic defined by (xz+y?)y = 0 (a union of an irreducible
conic with a non-tangential line) has two double points: [1 : 0 : 0] and [0 : 0 : 1]. The cubic
defined by (zz + y?)z = 0 (a union of an irreducible conic with a tangential line) has a single
double point at [1: 0 : 0] (with a single tangent direction).

Since tangent lines will play an important role in the classification of semistable plane cubics,
we recall their definition. Every non-singular point has a single tangent line, whereas singular
points have multiple tangents.

Definition 7.20. Let p = [po : p1 : p2] be a point of a plane algebraic curve C : (F(x,y,z) = 0).
(1) If p is a non-singular point, then the tangent line to C' at p is given by

IF(p) | OFG) | OF()

Oz dy 0z 0

where p = (po, p1,p2)-
(2) If p=[po : p1 : p2] is a double point of C; then the tangent lines to C at p are given by

the degree 2 homogeneous polynomial

?F(p) 0°F(p) 0*F(p)

28w2 (gyaz 228$ T — Po

O0°F(p 0°F(p 0°F(p

0= (z—po,y —p1,2 —p2) axa(g) ayé”) 82555) Y —p1
PF(p) 0°F(p) 09*F(p) 2 )

0x0z Y0z 022
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The 3 x 3 matrix appearing in this expression is called the Hessian of F' at p and has
rank 0 < r < 3 as p is a double point. As the Hessian does not have full rank, the above
equation for the tangent lines factorises into a product of two linear polynomials.

For a plane cubic C', there are two types of singular double points:

(1) A node (or ordinary double point) is a double point with two distinct tangent lines (which
is a self intersection of the curve, so that both branches of the curve have distinct tangent
lines at the intersection point).

(2) A cusp is a double point with a single tangent line of multiplicity two (which is not a
self intersection point of the curve).

Example 7.21. Let Fi(z,y, 2) = 22> +4° +y*x and Fy(z,y, z) = 222 +y3. The corresponding
cubics are irreducible and have a singular point at p = [1 : 0 : 0]. The point p is a double point
which is a node of the first cubic corresponding to (F; = 0) as the tangent lines are given by

0=y?+22=(y—V—-12)(y + V—12).
The point p is a double point of the second cubic corresponding to (F» = 0), which is a cusp as
the tangent lines are given by
0 =22
Exercise 7.22. Fix a non-zero homogeneous polynomial
F(z,y,z) = Z Z aijrd Iytsd
i=0 j=0
of degree 3 and let C be the plane cubic curve defined by F' = 0. For p = [1:0: 0] € P?, show
the following statements hold.
i) p € C if and only if agy = 0.
ii) p is a singular point of F' if and only if agg = a19 = ap1 = 0.
iii) p is a triple point of F' if and only if agp = a0 = ap1 = a11 = agp = ag2 = 0.
iv) If p=[1:0:0] is a double point of F', then its tangent lines are defined by
azoy”® + anyz + agzz” = 0.

For non-singular plane cubics, we have a classification following Bézout’s Theorem in terms
of Legendre cubics or Weierstrass cubics. It is important for the following classification, that
we remember that the characteristic of &k is assumed to be not equal to 2 or 3.

Proposition 7.23. Let C C P? be an irreducible plane cubic curve.
(1) If C is non-singular it is projectively equivalent to a Legendre cubic of the form
Y’z = x(x — 2)(x — \2)
for some A € k—{0,1}.
(2) C is projectively equivalent to a Weierstrass cubic of the form
y?z = 2% + axz® +b2°
for scalars a and b.
Proof. i) Let C be a non-singular plane cubic defined by P(z,y,z) = 0. The Hessian Hp of P is
the degree 3 polynomial which is the determinant of the 3 x 3 matrix of second order derivatives
of P. By Bézout’s theorem, Hp and P have at least one common solution, which gives a point
p € C known as an inflection point. By a change of coordinates, we can assume p = [0 : 1 : 0]

and the tangent line 7,,C is defined by z = 0. Hence P, 0P/0x, OP/0y and Hp all vanish at p,
but 0P/0z is non-zero at p. It follows from the Euler relations that

2 92
Hp(p) = —4 (?:(M) g;;)(p)
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and so also 9*P/0x?(p) = 0. Hence, P does not involve the monomials y3, zy? and z2y.
Therefore,
P(z,y,2z) = Q(z,2) + yz(ax + By + 72)
where () is homogeneous of degree 3 and 8 # 0. After a change of coordinates in the y variable,
we may assume that
P(z,y,2) = R(x,2) + y°2
for R a degree 3 homogeneous polynomial in z and z. Since C' is non-singular, z does not divide
R; that is, the coefficient of 2% in R is non-zero. We can factorise this homogeneous polynomial
in two variables as:
R(z,z) = u(x — az)(z — bz)(x — cz)

where u # 0 and a,b, c are distinct as C' is non-singular. Let A = (b — ¢)/(b — a); then one
further change of coordinates reduces the equation to a Legendre cubic. As the characteristic
of k is not equal to 3, any Legendre cubic can be transformed into a Weierstrass cubic by a
change of coordinates.

ii) It suffices to consider irreducible singular plane conics. By a change of coordinates, we
can assume that [0 : 0 : 1] is a singular point and the equation of our cubic has the form

2Q(z,y) + R(z,y) =0

where @ is homogeneous of degree 2 and R is homogeneous of degree 3. After a linear change of
variables in z,y, the degree 2 polynomial @ in two variables is either Q(z,y) = y? or Q(x,y) =
xy. T he first case corresponds to a cuspidal cubic and the second case corresponds to a nodal
cubic; we merely sketch the argument below and refer to [4] §10.3 for further details, where a
classification for fields of characteristic 2 and 3 is also given.

Consider the first case: Q(z,y) = y2. Then our conic has the form

y?z + ax® + b’y + cxy? +dy® =0

where a # 0, as the conic is irreducible. By a linear change in the z-coordinate, we can assume

¢ = d = 0 and by scaling x, we may assume a = 1. A final change of coordinates which fixes

the singular point [0 : 0 : 1] and moves the unique non-singular inflection point to [0 : 1 : 0],

with tangent line z = 0, reduces the equation to zy? = 23, which is the Weierstrass cusp.
Consider the second case: Q(x,y) = xy. Then our conic has the form

zyz + ax’ + baty + cxy? + dy’ = 0.

By the change of coordinates in z, we can assume b = ¢ = 0. Since C' is irreducible, both «a
and d must be non-zero and so we can scale them to both be 1. After one more change of
coordinates, we obtain a nodal Weierstrass form: y?z = x?(x + y). O

Remark 7.24. The constant A occurring in the Legendre cubic is not unique: it depends on
which two roots of the cubic equation are sent to 0 and 1. Hence, there are 6 possible choices
of A for each non-singular cubic: A\, 1 —X, 1/A, 1/(1 —X), A\/(A—1) and (A—1)/A. Similarly, in
the Weierstrass cubic, the constants a and b are not unique: as a change of coordinates y' = 1’y
and 2’ = nz gives a new Weierstrass cubic with a’ = n*a and b’ = 15b.

Weierstrass cubics arise in the study of elliptic curves, which are classified up to isomorphism
using the j-invariant. Elliptic curves are the non-singular Weierstrass cubics (those for which
4a®4-27b% # 0). Two elliptic curves are isomorphic if and only if they have the same j-invariant,

where
4a3

4a + 276
In terms of the Legendre cubic, we can write the j-invariant in terms of A as
. 256(A\2 — A +1)3
A2\ —1)2

For further details on elliptic curves and the j-invariant, see [14] IV §4.

j=1738
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This classification of plane cubics does not tell us anything about which ones are (semi)stable.
We will use the Hilbert—-Mumford criterion to give a complete description of the (semi)stable
locus. Any 1-PS of SL3 is conjugate to a 1-PS of the form

tro

A(t) = e

tr

where r; are integers such that Z?:o r; = 0 and r9 > r1 > r9. It is easy to calculate that
p(F,A) = —min{—(3 —i— j)ro —iry — jra : a;; # 0} = max{(3 —i — j)ro +ir1 + jra2 : a;; # 0}.

Lemma 7.25. A plane cubic curve C is semistable if and only if it has no triple point and
no double point with a unique tangent. A plane cubic curve C is stable if and only if it is
non-singular.

Proof. Let C be defined by the vanishing of the non-zero degree 3 homogeneous polynomial
3 3—1

Fley.2) =3 > aye® 7y

=0 j=0

If F (or really the class of F in Y3,) is not semistable, then by the Hilbert-Mumford criterion
there is a 1-PS X of SL3 such that u(F,\) < 0. For some g € SL3, the 1-PS \ := gA\g™! is of
the form X' (t) = diag(t",¢™,¢"2) for integers ro > r1 > ro which satisfy Y r; = 0. Then

w(g- FoX) = p(F,\) <0
Let us write F' :=g- F =3}, .a; x3 =JyizI; then

N(t) - F'(z,y,2) = Z t_ro(3_i_j)_Tli_mja;jx?’_i_jyizj.
12
Since p(F’, N') < 0, we conclude that
—min{—7ro(3 —i — j) —rii —roj : aj; # 0} = max{ro(3 —i — j) +r1i +72j : aj; # 0} <0;

that is, all weights of F’ must be positive. The inequalities rg > r; > ro imply that the
monomials with non-positive weights are: 23, 2%y (which have strictly negative weights), and
xy 22z, and ryz. Hence, u(F,\) < 0 implies af, = a}jy = ahy = a}; = a); = 0 and so

= [1:0: 0] is a singular point of F’ by Exercise 7.22. Then ¢! - p is a singular point of
F = g_1 F'. Moreover, if a, = 0 also then [1: 0 : 0] is a triple point of F’ and if ap2 # 0 then
[1:0:0] is a double point with a smgle tangent.

Suppose that F' =) a;jx; 3=y z%x} has a double point with a unique tangent or triple point,
then we can assume Wlthout loss of generality (by using the action of SL3) that this point is
p=1[1:0:0] and that agg = ajp = ag1 = azg = ay1 = 0. Then if A(¢) = diag(t3,t~1,t72), we
see u(F,\) < 0. Therefore F' is semistable if and only if it has no triple point or double point
with a unique tangent.

For the second statement, if p is a singular point of C' defined by F' = 0, then using the SL3-
action, we can assume p = [1 : 0 : 0] and so agp = a10 = ag1 = 0. For A\(t) = diag(t?,¢~1,¢71),
we see p(F, \) <0 by direct calculation; that is, F' is not stable.

It remains to show that if F' is not stable then F' is not smooth. Without loss of generality,
using the Hilbert-Mumford criterion and the action of SL3 we can assume that p(F,\) < 0
for A\(t) = diag(t™,¢™,t™) where 79 > r; > ro and ) 7; = 0. In this case, we must have
ago = a1o = 0, as 23 and 2%y have strictly negative weights. If also ag; = 0, then p = [1:0: 0]
is a singular point as required. If ap; # 0, then

(1) 0> p(F\A) = (2ro +12).

The inequalities between the r; imply that we must have equality in (1) and so ry = ry and
r9 = —2rg. Then
p(F,\) =max{(3 —3j)ro:a;; =0} <0
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and rg > 0; thus agg = agg = 0. In this case, F' is reducible, as z divides F', and any reducible
plane cubic has a singular point. O

There are three strictly semistable orbits:

(1) nodal irreducible cubics,
(2) cubics which are a union of a conic and a non-tangential line, and
(3) cubics which are the union of three non-concurrent lines.

The lowest dimensional strictly semistable orbit, which is the orbit of three non-concurrent lines
(this has a two dimensional stabiliser group and so the orbit has dimension 6 = dim SL3 —2), is
closed in the semistable locus. One can show that the closure of the orbit of nodal irreducible
cubics (which is 8 dimensional) contains both other strictly semistable orbits. In particular, the
compactification of the geometric quotient Y3’y — Y35 /SL3 of smooth cubics is given by adding
a single point corresponding to these three strictly semistable orbits.

The geometric quotient of the stable locus classifies isomorphism classes of non-singular plane
cubics, and so via the theory of elliptic curves and the j-invariant, is isomorphic to A! (see [14]
IV Theorem 4.1). Hence its compactification, which is a good quotient of Y55, is P!

The ring of invariants R(Y32)%"2 is known to be freely generated by two invariants S and T

by a classical result of Aaronhold (1850). In terms of the Weierstrass normal form, we have
4b
N

27 27
which both vanish on the cuspidal Weierstrass cubic (where a = b = 0), and S # 0 for the nodal
Weierstrass cubic, which is strictly semi-stable.

Finally, we list the unstable orbits: cuspidal cubics, cubics which are the union of a conic
and a tangent line, cubics which are the union of three lines with a common intersection, cubics
which are the union of a double line with a distinct line and cubics which are given by a triple
line.

S

8. MODULI OF VECTOR BUNDLES ON A CURVE

In this section, we describe the construction of the moduli space of (semi)stable vector bundles
on a smooth projective curve X (always assumed to be connected) using geometric invariant
theory.

The outline of the construction follows the general method described in §2.6. First of all,
we fix the available discrete invariants, namely the rank n and degree d. This gives a moduli
problem M (n, d), which is unbounded by Example 2.22. We can overcome this unboundedness
problem by restricting to moduli of semistable vector bundles and get a new moduli problem
M?*3(n,d). This moduli problem has a family with the local universal property over a scheme
R. Moreover, we show there is a reductive group G acting on R such that two points lie in
the same orbits if and only if they correspond to isomorphic bundles. Then the moduli space
is constructed as a GIT quotient of the G-action on R. In fact, the notion of semistability
for vector bundles was introduced by David Mumford following his study of semistability in
geometric invariant theory, and we will see both concepts are closely related.

The construction of the moduli space of stable vector bundles on a curve was given by Seshadri
[37], and later Newstead in [30, 31]. In these notes, we will essentially follow the construction
due to Simpson [39] which generalises the curve case to a higher dimensional projective scheme.
An in-depth treatment of the general construction following Simpson can be found in the book
of Huybrechts and Lehn [16]. However, we will exploit some features of the curve case to simplify
the situation; for example, we directly show that the family of semistable vector bundles with
fixed invariants over a smooth projective curve is bounded, without using the Le Potier-Simpson
estimates which are used to show boundedness in higher dimensions.

Convention: Throughout this section, X denotes a connected smooth projective curve. By
‘sheaf’ on a scheme Y, we always mean a coherent sheaf of Oy-modules.
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8.1. An overview of sheaf cohomology. We briefly recall the definition of the cohomology

groups of a sheaf F over X. By definition, the sheaf cohomology groups H’(X, F) are obtained

by taking the right derived functors of the left exact global sections functor I'(X, —). Therefore,
HY(X,F)=T(X,F).

As X is projective, H (X, F) are finite dimensional k-vector spaces and, as X has dimension
1, we have H'(X,F) = 0 for i« > 1. The cohomology groups can be calculated using Cech
cohomology. The first Cech cohomology group is the group of 1-cochains modulo the group
of 1-coboundaries. More precisely, given a cover U = {U;} of X, we let U;; = U; N U; and
Uijr = U; NU; NUj, denote the double and triple intersections; then we define
H'U,F):=Z"U,F)/B'U,F)
where
Z' U, F) = Ker 6 = {(f;;) € @ H Uiy, F) : Vi, gk, fij — fi + fui = 0 € FUijn)}
12

BY(U, F) := Tmage & = {(h; — h;) for (h;) € @}"(Ui)}

are the group of 1-cochains and 1-coboundaries respectively. If V is a refinement of I, then there
is an induced homomorphism H(U,F) — H*(V,F) and the first cohomology group H'(X, F)
is the direct limit of the groups H'(U,F) over all covers U of X. In fact, these definitions of
Cech cohomology groups make sense for any scheme X and any coherent sheaf F; however,
higher dimensional X, will in general have non-zero higher degree cohomology groups.

The above definition does not seem useful for computational purposes, but it is because of
the following vanishing theorem of Serre.

Theorem 8.1 ([14] III Theorem 3.7). Let Y be an affine scheme and F be a coherent sheaf on
Y'; then for all i > 0, we have ‘
H(Y,F) = 0.

Consequently, we can calculate cohomology of coherent sheaves on a separated scheme using
an affine open cover.

Theorem 8.2 ([14] III Theorem 4.5). Let Y be a separated scheme and U be an open affine
cover of Y. Then for any coherent sheaf F on'Y and any i > 0, the natural homomorphism

H' U, F) — H(Y,F)
s an tsomorphism.

The assumption that Y is separated is used to ensure that the intersection of two open affine
subsets is also affine (see [14] II Exercise 4.3). Hence, we can apply the above Serre vanishing
theorem to all multi-intersections of the open affine subsets in the cover i.

Exercise 8.3. Using the above theorem, calculate the sheaf cohomology groups
H'(P', Op1 (n))
by taking the standard affine cover of P! consisting of two open sets isomorphic to Al.

One of the main reasons for introducing sheaf cohomology is that short exact sequences of
coherent sheaves give long exact sequences in cohomology. The category of coherent sheaves
on X is an abelian category, where a sequence of sheaves is exact if it is exact at every stalk.
Furthermore, a short exact sequence of sheaves

0=+&E—=F—=G—-0
induces a long exact sequence in sheaf cohomology
0— HYX,E) - H'(X,F) - H(X,G) - HY(X,E) - HY(X,F) = H(X,G) — 0,

which terminates at this point as dim X = 1.
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Definition 8.4. For a coherent sheaf F on X, we let h'(X,F) = dim H (X, F) as a k-vector
space. Then we define the Fuler characteristic of F by

X(F) = %X, F) — k' (X, F).
In particular, the Euler characteristic is additive on short exact sequences:
X(F) = x(€) + x(9).
8.2. Line bundles and divisors on curves.

Example 8.5.

(1) For z € X, we let Ox(—=z) denote the sheaf of functions vanishing at x; that is, for

U Cc X, we have
Ox(=2)(U) = {f € Ox(U) : f(x) = O}.

By construction, this is a subsheaf of Ox and, in fact, Ox(—z) is an invertible sheaf on
X.

(2) For x € X, we let k; denote the skyscraper sheaf of = whose sections over U C X are
given by

k ifxelU

0 else.

k. (U) := {
The skyscraper sheaf is not a locally free sheaf; it is a torsion sheaf which is supported
on the point z. Since H°(X,k,) = ky(X) = k and H*(X, k,) = 0, we have x(k;) = 1.
There is a short exact sequence of sheaves
(2) 0= Ox(—x) > Ox =k, —0

where for U C X, the homomorphism Ox(U) — k,;(U) is given by evaluating a function
f€0x(U)at xif x € U. We can tensor this exact sequence by an invertible sheaf £ to obtain

0= L(—x) > L=k —0

where £(—x) is also an invertible sheaf, whose sections over U C X are the sections of £ over
U which vanish at z. Hence, we have the following formula

(3) X(£) = x(L(—==z)) + 1.
Definition 8.6. Let X be a smooth projective curve.

(i) A Weil divisor on X is a finite formal sum of points D = > m,x, for m, € Z.
(ii) The degree of D is deg D = > my.

(iii) We say D is effective, denoted D > 0, if m, > 0 for all z.

(iv) For a rational function f € k(X), we define the associated principal divisor

div(f) = Z ord,(f)z,

zeX (k)

where ord;(f) is the order of vanishing of f at « (as Ox, is a discrete valuation ring,
we have a valuation ord, : k(X)* — Z).

(v) We say two divisors are linearly equivalent if their difference is a principal divisor.

(vi) For a Weil divisor D, we define an invertible sheaf Ox (D) by

Ox(D)(U) := {0t U{f € k(X)": (divf + D)|v = 0}.
Remark 8.7.

(1) For D = —, this definition of Ox (D) coincides with the definition of Ox(—x) above.

(2) As X is smooth, the notions of Weil and Cartier divisors coincide. The above construc-
tion D — Ox (D) determines a homomorphism from the group of Weil divisors modulo
linear equivalence to the Picard group of isomorphism classes of line bundles, and this
homomorphism is an isomorphism as X is smooth. In particular, any invertible sheaf £

over X is isomorphic to an invertible sheaf Ox (D). For proofs of these statements, see
[14] I §6.
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For an effective divisor D, the dual line bundle O(—D) is isomorphic to the ideal sheaf of the
(possibly non-reduced) subscheme D C X given by this effective divisor (see [14] II Proposition
6.18) and we have a short exact sequence

(4) 0— Ox(—D) — Ox — kp — 0,

where kp denotes the skyscraper sheaf supported on D; thus kp is a torsion sheaf. This short
exact sequence generalises the short exact sequence (2). In particular, any effective divisor
admits a non-zero section Ox — Ox (D). In fact, a line bundle Ox (D) admits a non-zero
section if and only if D is linearly equivalent to an effective divisor D by [14] II Proposition 7.7.

Definition 8.8. The Grothendieck group of X, denoted K¢(X), is the free group generated by
classes [£] ,for £ a coherent sheaf on X, modulo the relations [£] — [F] + [G] = 0 for short exact
sequences 0 - & - F — G — 0.

We claim that there is a homomorphism
(5) (det,rk) : Ko(X) — Pic(X)® Z

which sends a locally free sheaf £ to (det & := A™€E, 1k £). To extend this to a homomorphism
on Ko(X), we need to define the map for coherent sheaves F: for this, we can take a finite
resolution of F by locally free sheaves, which exists because X is smooth, and use the relations
defining Ko(X). This map is surjective and in fact is an isomorphism (see [14] II, Exercise
6.11). Using this homomorphism we can define the degree of any coherent sheaf on X.

Definition 8.9. (The degree of a coherent sheaf).

(i) If D is a divisor, we define deg Ox (D) := deg D.
(ii) If F is a torsion sheaf, we define deg F' =} length(F,).
i

ii)

(iii) If € is a locally free sheaf, deg & = deg(det &).

(iv) If F is a coherent sheaf, we define deg & := deg(det F), where det F is the image of F
in Pic(X) under the homomorphism (5).

In fact, the degree is uniquely determined by the first two properties and the fact that
the degree is additive on short exact sequences (that is, if we have a short exact sequence
0—&—F—G—0,then deg F = deg & + deg G); see [14] 11, Exercise 6.12.

Example 8.10. The skyscraper sheaf k, has degree 1.
8.3. Serre duality and the Riemann-Roch Theorem.

Proposition 8.11 (Riemann-Roch Theorem, version I). Let £ = Ox (D) be an invertible sheaf
on a smooth projective curve X. Then

x(Ox (D)) = x(Ox) + deg D

Proof. We can write D = 1+ --- + 2z, —y1 — -+ — Ym and then proceed by induction on
n +m € Z. The base case where D = 0 is immediate. Now assume that the equality has been
proved for D; then we can deduce the statement for D+z (and D —x) from the equality (3). O

Definition 8.12. For a smooth projective curve X, the sheaf of differentials wx := Q}( on X
is called the canonical sheaf. The genus of X is g(X) := h%(X,wx).

The canonical bundle is a locally free sheaf of rank 1 = dim X; see [14] IT Theorem 8.15.

Theorem 8.13 (Serre duality for a curve). Let X be a smooth projective curve and & be a
locally free sheaf over X. There exists a natural perfect pairing

HY(X, &Y ®@wx) x HY(X,E) — k.
Hence, H)(X, &Y @ wyx) = HY(X, &)Y and h°(X, &Y @ wx) = h1(X, E).
Remark 8.14.
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(1) Once one chooses an isomorphism H!(X,wyx) =~ k, the pairing can be described as the
composition

HY(X,EY @wx) x HY(X,E) = HY(X,EV @ £ @wy) — H (X, wx) ~ k

where the first map is a cup-product and the map €Y ® & — Ox is the trace.

(2) In fact, Serre duality can be generalised to any projective scheme (see [14] III Theorem
7.6 for the proof) where wx is replaced by a dualising sheaf. If Y is a smooth projective
variety of dimension n, then the dualising sheaf is the canonical sheaf wy = A"Qy,
which is the nth exterior power of the sheaf of differentials, and the first cohomology
group is replaced by the nth cohomology group.

An important consequence of Serre duality on curves is the Riemann—Roch Theorem.

Theorem 8.15 (Riemann—Roch theorem, version II). Let X be a smooth projective curve of
genus g and let L be a degree d invertible sheaf on X. Then

(X, L) —h(X, LY ®uwx)=d+1—g.
Proof. First, we use Serre duality to calculate the Euler characteristic of the structure sheaf
x(0x) :=h(X,0x) = hY(X,0x) =1 - (X, wx)=1—g.
Then by Serre duality and the baby version of Riemann—Roch it follows that
RO(X, L) —h(X, LY @uwx)=x(L)=d+x(OX))=d+1—¢g
as required. O

There is a Riemann—Roch formula for locally free sheaves due to Weil. The proof is given
by induction on the rank of the locally free sheaf with the above version giving the base case.
To go from a given locally free sheaf £ to a locally free sheaf of lower rank £’ one uses a short
exact sequence

0L E—=E =0,

where L is an invertible subsheaf of £ of maximal degree (this forces the quotient £’ to be locally
free; see Exercise 8.23 for the existence of such a short exact sequence).

Corollary 8.16 (Riemann-Roch for locally free sheaves on a curve). Let X be a smooth pro-
jective curve of genus g and F be a locally free sheaf of rank n and degree d over X. Then

X(F) = d+n(l-g).

Example 8.17. On a curve X of genus g, the canonical bundle has degree 2g — 2 by the
Riemann—Roch Theorem:

RO(X,wx) —h'(X,0x)=g—1=degwx +1—g.
Therefore, on P!, we have wp1 = Op1(—2).

8.4. Vector bundles and locally free sheaves. We will often use the equivalence between
the category of algebraic vector bundles on X and the category of locally free sheaves. We recall
that this equivalence is given by associating to an algebraic vector bundle F' — X the sheaf F
of sections of F. Under this equivalence, the trivial line bundle X x A! on X corresponds to
the structure sheaf Ox.

We will use the notation £ to mean a sheaf or locally free sheaf and E to mean a vector
bundle. We also denote the stalk of £ at x by &, and the fibre of F at x by E,.

For a smooth projective curve X, the local rings Ox , are DVRs, which are PIDs. Using this
one can show the following.

Exercise 8.18. Prove the following statements for a smooth projective curve X.

a) Any torsion free sheaf on X is locally free.

b) A subsheaf of a locally free sheaf over X is locally free.

¢) A non-zero homomorphism f : £ — &£ of locally free sheaves over X with rk £ = 1 is
injective.
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One should be careful when going between vector bundles and locally free sheaves, as this
correspondence does not preserve subobjects. More precisely, if F is a locally free sheaf with
associated vector bundle F' and £ C F is a subsheaf, then the map on stalks £, — F, is injective
for all z € X. However, the map on fibres of the associated vector bundles E, — F, is not
necessarily injective, as E, is obtained by tensoring &, with the residue field k(z) = k, which is
not exact in general.

Example 8.19. For an effective divisor D, we have that Ox(—D) — Ox is a locally free
subsheaf but this does not induce a vector subbundle of the trivial line bundle, as a line bundle
has no non-trivial vector subbundles.

However, if we have a subsheaf £ of a locally free sheaf F for which the quotient G := F/&
is torsion free (and so locally free, as X is a curve), then the associated vector bundle E is a
vector subbundle of F', because if we tensor the short exact sequence

0=&& > F,—>G,—0
with the residue field, then we get a long exact sequence
- = Torp, (K, Gr) = Ex = Fy = Gy = 0,
where TOI‘}QX,_,(k? G.) =0 as G, is flat.

Definition 8.20. Let £ be a subsheaf of a locally free sheaf F and let F and F' denote the
corresponding vector bundles. Then the vector subbundle of F' generically generated by E is a
vector subbundle F of F' which is the vector bundle associated the locally free sheaf

E =1 YT (F/E))
where 7 : F — F/E and T(F/E) denotes the torsion subsheaf of F/E (i.e. (F/E)/T(F/E) is

torsion free).

Indeed, as F/€ is torsion free (and so locally free), the vector bundle homomorphism as-
sociated to & — F is injective; that is, F is a vector subbundle of F'. Furthermore, we have
that

k& =1k & and deg€ > €.

Example 8.21. Let D be an effective divisor and consider the subsheaf £ := Ox(—D) of
L := Ox; then the vector subbundle of L generically generated by L’ is L' = L.

The category of locally free sheaves is not an abelian category and also the category of vector
bundles is not abelian. Given a homomorphism of locally free sheaves f : &€ — G, the quotient
E/kerf may not be locally free (and similarly for the image). Similarly, the kernel (and the
image) of a morphism of vector bundles may not be a vector bundle; essentially because the
rank can jump. Instead, we can define the vector subbundle that is generically generated by
the kernel (and the same for the image) sheaf theoretically.

Definition 8.22. Let f: E — F be a morphism of vector bundles; then we can define
(1) the vector subbundle K of E generically generated by the kernel Ker f, which satisfies

rk K = rk Kerf deg K > deg Kerf;
(2) the vector subbundle I of F' generically generated by the image Imagef, which satisfies
rk I = rkImagef deg I > deglImagef.

Exercise 8.23. Let £ be a locally free sheaf of rank r over X. In this exercise, we will prove
that there exists a short exact sequence of locally free sheaves over X

0=+L—=>E—=F—=0

such that £ is an invertible sheaf and F has rank » — 1.
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a) Show that for any effective divisor D with rdeg D > h!(£), the vector bundle (D)
admits a section by considering the long exact sequence in cohomology associated to the
short exact sequence

0—0x —>0x(D)—kp—0

tensored by &£ (here kp denotes the skyscraper sheaf with support D). Deduce that £ has
an invertible subsheaf.

b) For an invertible sheaf £ with deg £ > 2g — 2, prove that h!'(£) = 0 using Serre duality.

c) Show that the degree of an invertible subsheaf £ of £ is bounded above, using the
Riemann-Roch formula for invertible sheaves and part b).

d) Let £ to be an invertible subsheaf of £ of maximal degree; then verify that the quotient
F of L C & is locally free.

Exercise 8.24. In this exercise, we will prove for locally free sheaves £ and F over X that
deg(E @ F) =rkEdeg F + rk Fdeg &

by induction on the rank of £.

a) Prove the base case where £ = Ox (D) by splitting into two cases. If D is effective, use
the short exact sequence

0—0x = Ox(D)—0Op—0

and the Riemann—Roch Theorem to prove the result. If D is not effective, write D as
Dy — Dy for effective divisors D; and modify F by twisting by a line bundle.
b) For the inductive step, use Exercise 8.23.

Example 8.25. Let £ be a locally free sheaf of rank r and degree d over a genus g smooth
projective curve X; then for any line bundle £, we have that

X(E® LY =d+rmdeg L+ (1 —g)
is a degree 1 polynomial in m.

8.5. Semistability. In order to construct moduli spaces of algebraic vector bundles over a
smooth projective curve, Mumford introduced a notion of semistability for algebraic vector
bundles. One advantage to restricting to semistable bundles of fixed rank and degree is that
the moduli problem is then bounded (without adding the semistability hypothesis, the mod-
uli problem is unbounded; see Example 2.22). A second advantage, which explains the term
semistable, is that the notion of semistability for vector bundles corresponds to the notion of
semistability coming from an associated GIT problem (which we will describe later on).

Definition 8.26. The slope of a non-zero vector bundle £ on X is the ratio
deg B

FE) .= .

wE) = p

Remark 8.27. Since the degree and rank are both additive on short exact sequences of vector
bundles

0—>F—F—G—D0,
it follows that

(1) If two out of the three bundles have the same slope pu, the third also has slope p;
(2) W(E) < u(F) (vesp. p(E) > p(F)) if and only if p(F) < u(G) (resp. u(F) > u(G)).

Definition 8.28. A vector bundle F is stable (resp. semistable) if every proper non-zero vector
subbundle S C E satisfies

w(S) < pu(E) (resp. u(S) < p(E) for semistability).
A vector bundle E is polystable if it is a direct sum of stable bundles of the same slope.

Remark 8.29. If we fix a rank n and degree d such that n and d are coprime, then the notion
of semistability for vector bundles with invariants (n, d) coincides with the notion of stability.
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Lemma 8.30. Let L be a line bundle and E a vector bundle over X ; then

i) L is stable.
it) If E is stable (resp. semistable), then E @ L is stable (resp. semistable).

Proof. Exercise. O

Lemma 8.31. Let f: E — F be a non-zero homomorphism of vector bundles over X ; then

i) If E and F are semistable, u(E) < u(F).
it) If E and F are stable of the same slope, then f is an isomorphism.
i11) Every stable vector bundle E is simple i.e. End E = k.

Proof. Exercise. O

If E is a vector bundle which is not semistable, then there exists a subbundle £/ C E with
larger slope that FE, by taking the sum of all vector subbundles of F with maximal slope,
one obtains a unique maximal destabilising vector subbundle of FE, which is semistable by
construction. By iterating this process, one obtains a unique maximal destabilising filtration of
E known as the Harder-Narasimhan filtration of E [13].

Definition 8.32. Let E be a vector bundle; then E has a Harder—Narasimhan filtration
0=EOcEOc...cEG) =F
where E; := £ /E(~1) are semistable with slopes
p(Er) > p(Ea) > - > p(E).

As we have already mentioned, the moduli problem of vector bundles on X with fixed rank
n and degree d is unbounded. Therefore, we restrict to the moduli functors M(®)%(n, d) of
(semi)stable locally free sheaves. Let us refine our notion of families to families of semistable
vector bundles.

Definition 8.33. A family over a scheme S of (semi)stable vector bundles on X with invariants
(n,d) is a coherent sheaf £ over X x S which is flat over S and such that for each s € S, the
sheaf & is a (semi)stable vector bundle on X with invariants (n,d).
We say two families £ and F over S are equivalent if there exists an invertible sheaf £ over
S and an isomorphism
E=FRngl
where g : X x § — S denotes the projection.

Lemma 8.34. If there exists a semistable vector bundle over X with invariants (n,d) which is
not polystable, then the moduli problem of semistable vector bundles M?*3(n,d) does not admit
a coarse moduli space.

Proof. 1f there exists a semistable sheaf F on X which is not polystable, then there is a non-split
short exact sequence
0F -F—=>F" =0,

where F' and F” are semistable vector bundles with the same slope as F. The above short
exact sequence corresponds to a non-zero point in Ext(F”, F') and if we take the affine line
through this extension class then we obtain a family of extensions over A! = Speck[t]. More
precisely, let £ be the coherent sheaf over X x Al given by this extension class. Then & is flat
over A! and

E=2F fort#0, and E=2F' @ F.

Since £ is a family of semistable locally free sheaves with the fixed invariants (n,d) which
exhibits the jump phenomenon, there is no coarse moduli space by Lemma 2.27. U

However, this cannot happen if the notions of semistability and stability coincide, which
happens when n and d are coprime.
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8.6. Boundedness of semistable vector bundles. To construct a moduli space of vector
bundles on X using GIT, we would like to find a scheme R that parametrises a family F of
semistable vector bundles on X of fixed rank n and degree d such that any vector bundle of
the given invariants is isomorphic to J, for some p € R. In this section, we prove an important
boundedness result for the family of semistable vector bundles on X of fixed rank and degree
which will enable us to construct such a scheme. In fact, we will show that we can construct a
scheme R which parametrises a family with the local universal property.

First, we note that we can assume, without loss of generality, that the degree of our vector
bundle is sufficiently large: for, if we take a line bundle L of degree e, then tensoring with £ pre-
serves (semi)stability and so induces an isomorphism between the moduli functor of (semi)stable
vector bundles with rank and degree (n,d) and those with rank and degree (n,d + ne)

—® L: M*(n,d) =2 M**(n,d+ ne).

Hence, we can assume that d > n(2g — 1) where g is the genus of X. This assumption will be
used to prove the boundedness result for semistable vector bundles. However, first we need to
recall the definition of a sheaf being generated by global sections.

Definition 8.35. A sheaf F is generated by its global sections if the natural evaluation map
evr: H(X,F)® Ox — F
is a surjection.

Lemma 8.36. Let F be a locally free sheaf over X of rank n and degree d > n(2g — 1). If the
associated vector bundle F' is semistable, then the following statements hold:

i) HY(X,F) =0;

i1) F is generated by its global sections.

Proof. For i), we argue by contradiction using Serre duality: if H'(X,F) # 0, then dually there
would be a non-zero homomorphism f : F — wx. We let K C F be the vector subbundle
generically generated by the kernel of f which is a vector subbundle of rank n — 1 with

deg K > degker f > deg F — degwyx = d — (29 — 2).

In this case, by semistability of F', we have

d— (29 —2) d
—2 L < u(K) < pu(F) = —;
1 SHE) S uF) =
this gives d < n(2g — 2), which contradicts our assumption on the degree of F.
For ii), we let F, denote the fibre of the vector bundle at a point z € X. If we consider the
fibre F,, as a torsion sheaf over X, then we have a short exact sequence

0= F(—z) =0x(—2) @ F > F > F, =FQky; =0
which gives rise to an associated long exact sequence in cohomology
0— H'(X,F(~2)) - HY(X,F) = H(F,) - HY(X, F(~x)) = -

Then we need to prove that, for each z € X, the map H°(X, F) — H°(X, F,) = F, is surjective.
We prove this map is surjective by showing that H'(X, F(—z)) = 0 using the same argument
as in part i) above, where we use the fact that twisting by a line bundle does not change
semistability: F(—z) := Ox(—x) ® F is semistable with degree d —n > n(2g — 2) and thus
HY(X,0x(~z)® F) = 0. O

As mentioned above, these two properties are important for showing boundedness. In fact,
we will see that a strictly larger family of vector bundles of fixed rank and degree are bounded;
namely those that are generated by their global sections and have vanishing 1st cohomology.
Given a locally free sheaf F of rank n and degree d that is generated by its global sections, we
can consider the evaluation map

evr: H(X, F)®@ Ox - F
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which is, by assumption, surjective. If also H'(X,F) = 0, then by the Riemann-Roch formula
X(F)=d+n(l—g) =dim H(X, F) — dim H (X, F) = dim H*(X, F);

that is, the dimension of the Oth cohomology is fixed and equal to N := d+n(1— g). Therefore,
we can choose an isomorphism H%(X, F) = k" and combine this with the evaluation map for
F, to produce a surjection

O =N o0x - F
from a fixed trivial vector bundle. Such surjective homomorphisms from a fixed coherent sheaf
are parametrised by a projective scheme known as a Quot scheme, which generalises the Grass-
mannians.

8.7. The Quot scheme. The Quot scheme is a fine moduli space which generalises the Grass-
mannian in the sense that it parametrises quotients of a fixed sheaf. In this section, we will define
the moduli problem that the Quot scheme represents and give an overview of the construction
of the Quot scheme following [33].

Let Y be a projective scheme and F be a fixed coherent sheaf on X. Then one can consider
the moduli problem of classifying quotients of F. More precisely, we consider surjective sheaf
homomorphisms ¢g : F — £ up to the equivalence relation

(q: F—=&E)~(¢: F—E) < kerq=kerq.

Equivalently, there is a sheaf isomorphism ¢ : £ — £’ such that the following diagram commutes

F-1.¢

‘!

F—=E'.
q
This gives the naive moduli problem and the following definition of families gives the extended
moduli problem.

Definition 8.37. Let F be a coherent sheaf over Y. Then for any scheme S, we let Fg := 75, F
denote the pullback of F to Y x S via the projection 7wy : Y x S — Y. A family of quotients
of F over a scheme S is a surjective Oy yg-linear homomorphism of sheaves over Y x §

qS:]:S—>5,

such that & is flat over S. Two families ¢s : F¢ — € and ¢y : Fs — &' are equivalent if
ker gs = ker ¢y. It is easy to check that we can pullback families, as flatness is preserved by
base change; therefore, we let

Quoty (F) : Sch — Set

denote the associated moduli functor.

Remark 8.38.

(1) With these definitions, it is clear that we can think of the Quot scheme as instead
parametrising coherent subsheaves of F up to equality rather than quotients of F up to
the above equivalence. Indeed this perspective can also be taken with the Grassmannian
(and even projective space). For us, the quotient perspective will be the most useful.

(2) For the moduli problem of the Grassmannian, we fix the dimension of the quotient
vector spaces. Similarly for the quotient moduli problem, we can fix invariants, as for
two quotient sheaves to be equivalent, they must be isomorphic. Thus we can refine the
above moduli functor by fixing the invariants of our quotient sheaves.

Definition 8.39. For a coherent sheaf £ over a projective scheme Y equipped with a fixed ample
invertible sheaf £, the Hilbert polynomial of £ with respect to £ is a polynomial P(&, L) € Q[t]
such that for [ € N sufficiently large,

P(E,L,1) = x(E® L) = (~1)'dim H(Y,E @ L),

120
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Serre’s vanishing theorem states that for [ sufficiently large (depending on &), all the higher
cohomology groups of £ ® £ vanish (see [14] IIT Theorem 5.2). Hence, for [ sufficiently large,
P(E,L,1) = dim H(Y, € @ L&),

The proof that there is such a polynomial is given by reducing to the case of P (as L is
ample, we can use a power of L to embed X into a projective space) and then the proof proceeds
by induction on the dimension d of the support of the sheaf (where the inductive step is given
by restricting to a hypersurface and the base case d = 0 is trivial as the Hilbert polynomial
is constant); for a proof, see [16] Lemma 1.2.1. However, for a smooth projective curve X,
we can explicitly write down the Hilbert polynomial of a locally free sheaf over X using the
Riemann—Roch Theorem.

Example 8.40. On a smooth projective genus g curve X, we fix a degree 1 line bundle £ =
Ox(x) =: Ox(1). For a vector bundle £ over X of rank n and degree d, the twist £(m) :=
€ ® Ox(m) has rank n and degree d + mn. The Riemann-Roch formula gives

x(E(m)) =d+ mn+n(1l —g).

Thus € has Hilbert polynomial P(t) = nt + d + n(1 — g) of degree 1 with leading coefficient
given by the rank n.

Definition 8.41. For a fixed ample line bundle L on Y, we have a decomposition
Quoty (F) = |_| Quot}]i’L(}')
PeqQ[t]

into Hilbert polynomials P taken with respect to L.

If Y = X is a curve, then we have a decomposition of the Quot moduli functor by ranks and
degrees of the quotient sheaf:

Quotx (F) = |_| Quot'y (F).
(n,d)

Example 8.42. The grassmannian moduli functor is a special example of the Quot moduli
functor:

gr(d,n) = Quotg;e‘ik(k").

Theorem 8.43 (Grothendieck). Let Y be a projective scheme and L an ample invertible sheaf
on Y. Then for any coherent sheaf F over 'Y and any polynomial P, the functor Quot{i’ﬁ(}")
. .. P.L

is represented by a projective scheme Quoty ™ (F).

The idea of the construction is very beautiful but also technical; therefore, we will just give
an outline of a proof. We split the proof up into the 4 following steps.

Step 1. Reduce to the case where Y = P", L = Opn(1) and F is a trivial vector bundle (’)ﬁl.

Step 2. For m sufficiently large, construct an injective natural transformation of moduli func-
tors
Quot,” ™V (OR) = Gr(V, P(m))

to the Grassmannian moduli functor of P(m)-dimensional quotients of V := k% @ H°(Opn(m)).
Step 3. Prove that Quotl{;’? ) (OZ),) is represented by a locally closed subscheme of Gr(V, P(m)).
Step 4. Prove that the Quot scheme is proper using the valuative criterion for properness.

Before we explain the proof of each step, we need the following definition.

Definition 8.44. A natural transformation of presheaves n : M’ — M is a closed (resp. open,
resp. locally closed) immersion if ng is injective for every scheme S and moreover, for any
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natural transformation 7 : hg — M from the functor of points of a scheme S, there is a closed
(resp. open, resp. locally closed) subscheme S’ C S such that

hg =2 M’ Xz hs
where the fibre product is given by
(M xpmhs)(T) = {(f : T = S € hs(T), F € M'(T)) : yr(f) = nr(F) € M(T)} .

Sketch of Step 1. First, we can assume that L is very ample by replacing L by a sufficiently
large positive power of L; this will only change the Hilbert polynomial. Then L defines a
projective embedding i : Y < P" such that L is the pullback of Opn(1). Since i is a closed
immersion, i, is coherent and, moreover i, is exact; therefore, we can push-forward quotient
sheaves on Y to P". Hence, one obtains a natural transformation

Quoty (F) — Quotpn (ixF),

which is injective as i*i, = Id. We claim that this natural transformation is a closed immersion
in the sense of the above definition. More precisely, we claim for any scheme S and natural
transformation hg — Quotpn (i, F) there exists a closed subscheme S’ C S with the following
property: a morphism f : 7" — S determines a family in Quoty (F)(T) if and only if the
morphism [ factors via S’. To define the closed subscheme associated to a map 7 : hg —
Quotpn (i, F), we let (ixF)g — & denote the family over S of quotients associated to ns(ids)
and apply (idg x i)* to obtain a homomorphism of sheaves over Y x §

(F)s 2 i*(ixF)g — i*E;

then we take S’ C S to be the closed subscheme on which this homomorphism is surjective (the
fact that this is closed follows from a semi-continuity argument). Hence, we may assume that
(Y, L) = (B, O(1)).

We can tensor any quotient sheaf by a power of O(1) and this induces a natural transformation
between

Quotpn (F) = Quotpn (F @ O(r))

(under this natural transformation the Hilbert polynomial undergoes a explicit transformation
corresponding to this tensorisation). Hence, by replacing F with F(r) := F ® O(r), we can
assume without loss of generality that F has trivial higher cohomology groups and is globally
generated; that is, the evaluation map

OZN = HO(P", F) @ Opn — F
is surjective and N = P(F,0). By composition, this surjection induces a natural transformation
Quotpn (F) — Qpn (Opn)

which can also be shown to be a closed embedding. In conclusion, we obtain a natural trans-
formation

Quot?’L(]:) — Quotggo(l)((’)ﬁ)

which is a closed embedding of moduli functors.

Sketch of Step 2. By a result of Mumford and Castelnuovo concerning ‘Castelnuovo—
Mumford regularity’ of subsheaves of OI]PXL, there exists M € N (depending on P, n and N) such
that for all m > M, the following holds for any short exact sequence of sheaves

0=+K—=0 +F—=0

such that F has Hilbert polynomial P:

(1) the sheaf cohomology groups H' of K(m), F(m) vanish for i > 0,
(2) K(m) and F(m) are globally generated.
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The proof of this result is by induction on n, where one restricts to a hyperplane H =2 P*~! in
P™ to do the inductive step; for a full proof, see [33] Theorem 2.3. Now if we fix m > M, we
claim there is a natural transformation

n: Quoth.ZM(ON) < Gr(kN @ HO(Opn(m)), P(m)).
First, let us define this for families over S = Speck: for a quotient g : C’)g{v — F with kernel
K, we have an associated long exact sequence in cohomology
0 — H%(K(m)) — HY(OP.(m)) — H°(F(m)) — H (K(m)) = 0.
Hence, we define
MSpec(q : O — F) = (H(g(m)) : W — H(F(m))) ,

where W = H°(O,(m)) = kN ® H°(Opn(m)) and we have dim H*(F(m)) = P(m), as all
higher cohomology of F(m) vanishes.

To define ng for a family of quotients gg : OIQLX g — & over an arbitrary scheme S, we
essentially do the above process in a family. More precisely, we let mg : X x .S — S be the
projection and push forward gg(m) by mg to S to obtain a surjective homomorphism of sheaves
over S

Os @ W 2 15.(Opny 5(m)) — s:(E(m)).
By our assumptions on m and the semi-continuity theorem, mg.(E(m)) is locally free of rank
P(m) (as the higher rank direct images of £(m) vanish so the claim follows by EGA III 7.9.9).
Hence, we have a family of P(m)-dimensional quotients of W over S, which defines the desired
S-point in the Grassmannian.

Let Gr = Gr(W, P(m)). We claim this natural transformation n is an injection. Let us
explain how to reconstruct gg from the morphism f,, : S — Gr corresponding to the surjection

WS*(qS(m)) :0s@W — WS*(g(m))
Over the Grassmannian, we have a universal inclusion (and a corresponding surjection)
,CGr — OGr ® W7
whose pullback to S via the morphism S — Gr is the homomorphism
Tems«(Cs(m)) = V @ Og = mém5.(Opn y 5(m)),
where Kg := ker gg. We claim that the homomorphism
[ mimsa(Ks(m)) = wmss(Ophxg(m)) = Ophy g(m)

has cokernel gg(m). To prove the claim, consider the following commutative diagram

0—mgms.(Ks(m)—=5ms. (O, s (m) —=ims. (€(m)—=0

0 Ks(m) O g(m) E(m) 0

whose rows are exact and whose columns are surjective by our assumption on m. Finally, we
can recover gg from gg(m) by twisting by O(—m).

Sketch of Step 3. For any morphism f : T — Gr = Gr(W, P(m)), we let 7 s denote the
pullback of the universal subsheaf Kg; on the Grassmannian to 7" via f. Then consider the
induced composition

hrp: WK — 7p (W @ Or) = wpmrs (O p(m) — O pn (m)

where 7 : P" x T — T denotes the projection. Let gz s(m) : O, 1(m) — Fr ¢(m) denote the
cokernel of hr y; then Fr ¢ is a coherent sheaf over P" x T'.

We claim that the natural transformation defined in Step 2 is a locally closed immersion.
To prove the claim, we need to show for any morphism h : S — Gr, there is a unique locally
closed subscheme S’ < S with the property that a morphism f : T'— S factors via S/ — S if
and only if the sheaf F7jor is flat over T" and has Hilbert polynomial P at each ¢t € T'. This
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locally closed subscheme S’ C S is constructed as the stratum with Hilbert polynomial P in
the flattening stratification for the sheaf Frp s over T' x P™. For details, see [33] Theorem 4.3.
Let Quotlf;n((’)ﬁ) be the locally closed subscheme of Gr associated to the identity morphism
on Gr (which corresponds to the universal family on the Grassmannian); then it follows from
the above arguments that this scheme represents the functor Quotk, (O5,).
The Grassmannian Gr = Gr(W, P(m)) has its Piicker embedding into projective space

Gr(W, P(m)) — P(APMWwY).
Therefore, we have a locally closed embedding
(6) Quotpn (0PN, P) < P(APMIWY).

In particular, the Quot scheme is quasi-projective; hence, separated and of finite type.

Sketch of Step 4. We will prove the valuative criterion for the Quot scheme using its moduli
functor. The Quot scheme Quotf;n (OE?,{V ) is proper over Spec k if and only if for every discrete
valuation ring R over k with quotient field K, the restriction map

Quothn (OP)(Spec R) — Quotin (OP)(Spec K)
is bijective. Since the Quot scheme is separated, we already know that this map is injective.
Let j : P% — P’ denote the open immersion. Any quotient sheaf g : (’)[]FXIL{ — Fx can be lifted
to a quotient sheaf qp : (9@% — Fr where Fg is the image of the homomorphism

qRr : OH%N — j*((’)]%iv) — JuFK-

The sheaf Fg is torsion free as it as a subsheaf of j,Fx , which is torsion free as j* is exact,
J*i«Fx = Fi and Fk is torsion free (as it is flat over K). Hence, Fp is flat over R, as over
a DVR flat is equivalent to torsion free and so this gives a well defined R-valued point of the
Quot scheme. It remains to check that the image of ¢r under the restriction map is qx. As j* is
left exact, the map j*Fr — j*j.Fx = Fx is injective and the following commutative diagram

N Jtar .
Oi%{ 4»3*.73

N

Fr

implies that the vertical homomorphism must also be surjective; thus j*Fr = j*j.Fx = Fx as
required. Hence, the Quot scheme is proper over Spec k.
Since Quotpn((’)gfv ; P) is proper over Spec k, the embedding (6) is a closed embedding.

Remark 8.45.

(1) As the Quot scheme @ := Quoti’c (F) is a fine moduli space, the identity morphism on
() corresponds to a universal quotient homomorphism

Ty F - U

over () X Y, where my : Q X Y — Y denotes the projection to Y.

(2) The Quot scheme can also be defined in the relative setting, where we replace our field &
by a general base scheme S and look at quotients of a fixed coherent sheaf on a scheme
X — S; the construction in the relative case is carried out in [33].

The Hilbert schemes are special examples of Quot schemes, which also play an important
role in the construction of many moduli spaces.

Definition 8.46. A Hilbert scheme is a Quot scheme of the form Quot{i((’)y) and represents
the moduli functor that sends a scheme S to the set of closed subschemes Z C Y x S that are
proper and flat over S with the given Hilbert polynomial.
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Exercise 8.47. For a natural number d > 1, prove that the Hilbert scheme
Quotd, (Op)

is isomorphic to P? by showing they both have the same functor of points in the following way.

a) Show that any family Z C P! over Spec k in this Hilbert scheme is a degree d hypersurface
in PL.

b) Let S be a scheme and mg : P := P! x S — S denote the projection. Show that any
family Z C IP% over S in this Hilbert scheme is a Cartier divisor in P}g and so there is a
line subbundle of 7Tg*((’)19119 (d)) which determines a morphism f7 : S — P?. In particular,
this gives a natural transformation

Q’U,Otﬁdn (O]Pvl) — h]pd .

c¢) Construct the inverse to the above natural transformation using the tautological family
of degree d hypersurfaces in P! parametrised by P¢.

8.8. GIT set up for construction of the moduli space. Throughout this section, we fix a
connected smooth projective curve X and we assume the genus of X is greater than or equal to
2 to avoid special cases in low genus. We fix a rank n and a degree d > n(2g — 1) (recall that
tensoring with a line bundle does not alter semistability and so we can pick the degree to be
arbitrarily large; in fact, eventually we will choose d to be even larger). It follows from Lemma
8.36 that any locally free semistable sheaf £ of rank r and degree d is globally generated with
H'(X,€) = 0. By the Riemann-Roch Theorem,

dim H°(X,€) = d +n(1 —g) =: N.
If we choose an identification H°(X,&) = kv, then the evaluation map
HY(X,&)® Ox — &,

which is surjective as &£ is globally generated, determines a quotient sheaf q : (’)§ — E&.

Let Q := Quot%%@% ) be the Quot scheme of quotient sheaves of the trivial rank N vector
bundle O% of rank n and degree d. Let R()$ « @ denote the open subscheme consisting
of quotients ¢ : OF — F such that F is a (semi)stable locally free sheaf and H(q) is an
isomorphism. For a proof that these conditions are open see [16] Proposition 2.3.1.

The Quot scheme () parametrises a universal quotient

qqQ - ngX U

and we let ¢(®)s : Og(s)SxX — UGS = U| p(s)s denote the restriction to R()s,

Lemma 8.48. The universal quotient sheaf U'®* over R®)® x X is a family over R®)S of
(semi)stable locally free sheaves over X with invariants (n,d) with the local universal property.

Proof. Let F be a family over a scheme S of (semi)stable locally free sheaves over X with fixed
invariants (n,d). Then for each s € S, the locally free semistable sheaf F; is globally generated
with vanishing first cohomology by our assumption on d. Therefore, by the semi-continuity
Theorem, g, F is a locally free sheaf over S of rank N = d+n(1 —g). For each s € S, we need
to show there is an open neighbourhood U C S of s € S and a morphism f : S — R®)® such
that F|y ~ *U®)s. Pick an open neighbourhood U > s on which 7g,F is trivial; that is, we
have an isomorphism

®: O = (15, F)|v.
Then the surjective homomorphism of sheaves over U x X

®

qu : ngX U« (Flu) Flu



MODULI PROBLEMS AND GEOMETRIC INVARIANT THEORY 75

determines a morphism f : U — @ to the quot scheme such that there is a commutative diagram

N qu
OUXX f|U
Id =
f*aq
N
OUXX f*u

In particular Fly = f*U and, as F is a family of (semi)stable vector bundles, the morphism
f:U — Q factors via R()s. O

These families U()% over R(®)* are not universal families as the morphisms described above
are not unique: if we take S = Spec k and £ to be a (semi)stable locally free sheaf, then different
choices of isomorphism HO(X, &) = kN give rise to different points in R(*)s.

Any two choices of the above isomorphism are related by an element in the general linear
group GLy and so it is natural to mod out by the action of this group.

Lemma 8.49. There is an action of GLy on Q := Quot?(’d(O%) such that the orbits in R()
are in bijective correspondence with the isomorphism classes of (semi)stable locally free sheaves
on X with invariants (n,d).

Proof. We claim there is a (left) action
c:GLy xQ — Q
which on k-points is given by

-1
g- (O ——=€) = (O +—OY —"—~¢).

To construct the action morphism it suffices to give a family over GLy x @ of quotients of (’))]\(7

with invariants (n,d). The inverse map on the group i~! : GLy — GLy determines a universal

inversion which is a sheaf isomorphism

(7) 7 kN ® Oary — kY ® OgLy-
Let qg : kN ® Ogxx — U denote the universal quotient homomorphism on ) x X. Then the
action o : GLy x Q — @Q is determined by the following family of quotient maps over GLy x Q

PGLyT (Poxx)*aQ

kN & OGLNXQXX

N ® Ogry xoxx Poxx!U

where pgry 1 GLy X Q X X — GLy and pgxx : GLy X Q x X — @ x X denote the projection
morphisms.

From the definition of R(®)*, we see these subschemes are preserved by the action. Consider
quotient sheaves q¢ : (’)% — & and q¢ : (’))]\g —» Fin R®)s. If g- g5 ~ qF, then there is an isomor-
phism & 2 F which fits into a commutative square, and so £ and F are isomorphic. Conversely,
if £ = F, then there is an induced isomorphism ¢ : H°(€) = H°(F). The composition

HO HO —1
k’N (ge) HO((":) ¢ HO(.F) (ar) ]ﬁN
is an isomorphism which determines a point g € GLy such that g - qg ~ qp. O

Remark 8.50. In particular, any coarse moduli space for (semi)stable vector bundles is con-
structed as a categorical quotient of the GLy-action on R(®)*. Furthermore, if there is an orbit
space quotient of the GLy-action on R(®)%, then this is a coarse moduli space. In fact, as the
diagonal G,, C GLx acts trivially on the Quot scheme, we do not lose anything by instead
working with the SL y-action.

Finally, we would like to linearise the action to construct a categorical quotient via GIT.
There is a natural family of invertible sheaves on the Quot scheme arising from Grothendieck’s
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embedding of the Quot scheme into the Grassmannians: for sufficiently large m, we have a
closed immersion

Q = Quotv (O — Gr(H(O¥ (m)), M) — P := P(AM HO(OF (m))Y)

where M = mr+d+r(1—g). Welet £,,, denote the pull back of Op(1) to the Quot scheme via this
closed immersion. There is a natural linear action of SLy on HY(OY (m)) = (kN @ H*(Ox(m)),
which induces a linear action of SLy on P(AM HO(O¥ (m))Y); hence, L,, admits a linearisation
of the SL-action.

We can define the linearisation £, using the universal quotient sheaf i/ on Q X X: we have

Ly = det(mgu(U © T Ox(m)))

where 7x : Q x X — X and 7@ : @ x X — @ are the projection morphisms. Furthermore, the
universal quotient sheaf i/ admits a SLy-linearisation: we have equivalent families of quotients
sheaves over SLy x @) given by

(O'Xidx)*qQ

]{N®OSLN><Q><X (J X idx)*u

and

PSLyT PoHxx9Q

kN®OSLN><Q><X kN®OSLN><Q><X p*Qqua

where qg : kN @ Ogxx — U denotes the universal quotient homomorphism, o : SLy x @ — @
denotes the group action, pgxx and psr,, denote the projections from SLy x @ x X to the
relevant factor and 7 is the isomorphism given in (7). Hence, there is an isomorphism

O : (0 xidy)U — (pQXx)*U

satisfying the cocycle condition, which gives a linearisation of the SLy-action on . For m
sufficiently large, £, is ample and admits an SLy-linearisation, as the construction of £,
commutes with base change for m sufficiently large. Hence, at ¢ : (9)]\([ — F in @, the fibre of
the of the associated line bundle L,, is naturally isomorphic to an alternating tensor product
of exterior powers of the cohomology groups of F(m):

Ling = det H*(X, F(m)) = ) det H' (X, F(m))® V",
i>0
In fact, by the Castelnuovo-Mumford regularity result explained in the second step of the
construction of the quot scheme, for m sufficiently large, we have H*(X, F(m)) = 0 for all i > 0
for all points q : O% — F in Q. Therefore, for m sufficiently large, the fibre at ¢ is

Lim,g = det H(X, F(m)).

8.9. Analysis of semistability. Let SLy act on @ := Quot%d((’)ﬁ) as above. In this section,
we will determine the GIT (semi)stable points in () with respect to the SLy-linearisation L,,.
In fact, we will prove that Q**(L,,) = R*® and Q°*(L,,) = R®.

We will use the Hilbert—Mumford criterion for our stability analysis. Let ¢ : OQ — F denote
a closed point in the Quot scheme @ and let A : G,,, — SLy be a 1-parameter subgroup. We
recall that the action is given by

A7) q

A1) -q: OF o¥ F.
First of all, we would like to calculate the limit as t — 0. For this, we need some notation. The
action of A™! on V := k% determines a weight space decomposition
V= @TGZVP

where V, := {v € V : \™}(t)v = t"v} are zero except for finitely many weights r and, as X is a
1-PS of the special linear group, we have

(8) > rdimV, =0.

reZ
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There is an induced ascending filtration of V = k¥ given by V=" := @<, V; and an induced
ascending filtration of F given by

F=r=q(V="® Ox)

and ¢ induces surjections ¢, : V;, ® Ox — F, := F<,/F<r—1 which fit into a commutative
diagram

Vel Oy V'@ Ox V, ® Ox
Fsr-l F=r Fo.

Lemma 8.51. Let q: O% — F be a k-point in Q and X : G, — SLy be a 1-PS as above; then

%I_E%)‘(t) g = @QT'

Proof. Asthe quot scheme is projective, there is a unique limit. Therefore, it suffices to construct
a family of quotient sheaves of OF over A = Spec k[t]

(I):O%XAl —»g

such that ®; = A(t) - ¢ for all ¢t # 0 and ®¢ = B¢,
We will use the equivalence between quasi-coherent sheaves on A! and k[t]-modules. Consider
the k[t]-module

V.= @ VST Rk t"k
with action given by t - (vS" @ t") = v=" @ ¢! € V="t @ r, which works as the filtration
is increasing. Since the filtration on V is zero for sufficiently small r and stabilises to V for
sufficiently large r: there is an integer R such that V=" =0forallr < Randso V C V @ t7kt];
hence, V is coherent. The 1-PS A~! determines a sheaf homomorphism over Al

v:Varklt] V=V tk

given by v @ t* = Y v, ® t° — Y v, ® t"7%, where v, € V, and so, as s is non-negative,
vy € V=TT, By construction, |y, = t"-Idy,.. We leave it to the reader to write down an inverse
which shows that ~ is an isomorphism.

Over Speck, the k-module k[t] determines a quasi-coherent (but not coherent) sheaf, we let
Ox ®y, k[t] denote the pullback of this quasi-coherent sheaf to X. Then to describe coherent
sheaves on X x A!', we will use the equivalence between the category of quasi-coherent sheaves
on X x Al and the category of Oy ®; k[t]-modules. Using the filtration F<" we construct a
quasi-coherent sheaf £ over X x Al as follows. Let

E=EF @tk C F @ tTk[t]

n

for R as above. The action of ¢ is identical to the action of £ on V given above. Furthermore,
we have the above inclusion as the filtration is zero for r sufficiently small and stabilises to F
for r sufficiently large; in particular & is a coherent sheaf on X x Al

The homomorphism ¢ induces a surjective homomorphism of coherent sheaves over X x A!

g PV ertk - =P F @tk

and we define our family of quotient sheaves over X x Al to be ® := g1 o T, where myn
X x At — Al is the projection.
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If we restrict ® to A — {0}, then this corresponds to inverting the variable ¢. In this case,
we have an commutative diagram

7"21_{0}(’7)

O @ k[t t71] O¥ @y k[t t71]
(I>|A17{0} iq@id
E @ k[t t71] F @y kt, t71]

where v gives the action of A™!; hence [®;] = [A(¢) - ¢] for all t # 0. Let i : 0 — A! denote the
closed immersion; then the composition i,:* kills the action of ¢. We have

W' (E) =E/t-E= (P F e t'k) /(P F= @rt™k) =P Fr @i t'k,

r>R r>R

with trivial action by ¢. Hence, the restriction of € to the special fibre 0 € Al is & = @, F, and
this completes the proof of the lemma. O

Lemma 8.52. Let A : G,, — SLy be a 1-PS and q : (’)% — F be a k-point in Q. Then using
the notation introduced above for the weight decomposition of A\™' acting on V = kY, we have

P (g A) = = rP(Frm) = <P(ff’",m) - %P(F, m)> .

reZ rez

Proof. By definition, this Hilbert—-Mumford weight is negative the weight of the action of A\(G,;,)
on the fibre of the line bundle L,, over the fixed point ¢’ := @, .y ¢» = limy—0 A(t) - ¢. The fibre
over this fixed point is
Ly = @) det H*(X, F,.(m)),
rEL
where H*(X, F,(m)) denotes the complex defining the cohomology groups H'(X, F.(m)) for
i = 1,2 and the determinant of this complex is the 1-dimensional vector space

&) det H' (X, F,(m))® D" = APEFm O (X F, (m)) @ AV ST (X, F (m)).
>0

i

The virtual dimension of H*(X, F.(m)) is given by the alternating sums of the dimensions
of the cohomology groups of F.(m) and thus is equal to P(F,,m). Since A\ acts with weight
r on F,, it also acts with weight » on H'(X,F.(m)). Therefore, the weight of A acting on
det H*(X, F-(m)) is rP(F,,m). The first equality then follows from this and the definition of
the Hilbert—Mumford weight.

For the second equality, we recall that as A is a 1-PS of SLy, we have a relation (8) and by
definition, we have dimV;, = dim V<" — dim V="~!. Furthermore, as F, := F="/F<""1 we
have

P(F,) = P(F=")— P(F="1).
The second equality then follows from these observations. O

Remark 8.53. The second expression for the Hilbert—Mumford weight is of greater use to us,
as it is expressed in terms of subsheaves of 7. The number of distinct weights for the A\~ !-action
on V = k", tells us the number of jumps in the filtration of F.

If we suppose there are only two weights r1 < ro for A, then we get a filtration of F by a
single subsheaf 0 C F' C F:

0= =0=F" 1 CF =F=...=FlCcFsn=rF=...F
Let V'’ := V="1; then we have

1Em (g ) = (ra — 1) (P(]—"’,m) - iii“nll“//lpm m)) ,

where ro — 11 > 0.
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Proposition 8.54. Let g : (’)% — F be a k-point in Q. Then q € Q(s)s(ﬁm) if and only if for
all subspaces 0 # V' CV = KN we have an inequality
dim V' dim V
9 (<)
) PF.m) = PEm)
where F' :=q(V' ® Ox) C F.

Proof. Suppose the inequality (9) holds for all subspaces V’. We will show ¢ is (semi)stable using
the Hilbert-Mumford criterion. For any 1-PS A : G,, — GLy, there are finitely many weights
rL <r9 < --- <1y for the \~l-action on V = KN, which give rise to subspaces v —ysri cy
and subsheaves F(9) ;= q(V(i) ® Ox) C F. Furthermore, we have F<" = F@ for r; <n < riqy.
Therefore, by Lemma 8.52, we have

s—1 . i
: dim V'
Lo _ Z e () - >
1% (Q7 )\) < (TH-I Tz) (P(}— >m) dim V P(J_"v m)) (—)0'

Conversely, if there exists a subspace 0 C V! C kV for which the inequality (9) does not hold
(or holds with equality respectively), then we can construct a 1-PS A with two weights 71 > ro
such that V) =V’ and V® = V. Then

L ’ dim V’ L
= (q,A) = (r2 —r1) | P(F',m) = ——=P(F,m) | <0 (resp. =" (q,\) = 0);
dim V'
that is ¢ is unstable for the SLy-action with respect to L,,. O

Remark 8.55. For m sufficiently large P(F’,m) and P(F,m) are both positive; thus, we can
multiply by the denominators in the inequality (9) to obtain an equivalent inequality

(dim V' tk F)m+(dim V') (deg F+rk F(1—g))(<)(dim V rk F')ym~+(dim V') (deg F'+rk F'(1—g)).

An inequality of polynomials in a variable m holds for all m sufficiently large if and only if there
is an inequality of their leading terms. If rk F’ # 0, then the leading term of the polynomial
P(F') is tk F' and if rk 7/ = 0, then the Hilbert polynomial of 7" is constant. Therefore, there
exists M (depending on F and F’) such that for m > M
, dimV’',  dimV dim V' dimV

e F >0 and S ()57 >0 = E S eE
In fact, M only depends on P(F) and P(F’). Moreover, as the subspaces 0 # V' C V = gV
form a bounded family (they are parametrised by a product of Grassmannians) and the quotient
sheaves ¢ : OF — F form a bounded family (they are parametrised by the Quot scheme Q),
the family of sheaves 7' = (V' ® F) are also bounded. Therefore, there are only finitely many
possibilities for P(F"). Hence, there exists M such that for m > M the following holds: for any
q:O¥ > FinQand 0#£ V' CV =k, we have
dimV’, dimV dim V' dim V'

(<) >0 (<)

rk rk F P(F',m) ~" P(F,m)

rk 7/ >0 and

where F' = ¢(V' ® Ox).

Remark 8.56. Let ¢ : OF — F € Q(k). Then we note
(1) o V' cV =kN and 7' := q(V' ® Ox), then V' C H(q)"*(H(F")),
(2) fGC Fand V' = Hq) Y (HG)), then ¢(V' ® Ox) C G.
Using these two remarks, we obtain a corollary to Proposition 8.54.
Corollary 8.57. There exists M such that for m > M and for a k-point q : (’))]\(7 - F in Q,
the following statements are equivalent:

(1) q is GIT (semi)stable for SLy-acting on Q with respect to Ly,;
(2) for all subsheaves F' C F with V' := H°(q)"Y(H°(F")) # 0, we have tk F' > 0 and

dim V’(<)dimV
rk 7 =7 rk F
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In the remaining part of this section, we prove some additional results concerning semistability
of vector bundles, which we will eventually relate to GIT semistability.

Lemma 8.58. Let n and d be fived such that d > n*(2g — 2). Then a locally free sheaf F of
rank n and degree d is (semi)stable if for all F' C F we have

fﬂxph)ﬂﬂ
rtk 7 Ttk F

Proof. Suppose F is not semistable; then there exists a subsheaf ' C F with u(F’) > u(F).
In fact, we can assume F’ is semistable (if not, there is a vector subbundle F” of F’ with larger
slope, and so we can replace F’ with F”). Then

(10)

d d
deg F' > =tk F' > — > n(2g — 2) > rk F'(2g — 2).
n n
Then it follow from Lemma 8.36 that H'(X, F’') = 0. However, in this case

0 /
hif‘;f)=M(.7-"’)+(1—g)>u(]-")_|_(1_g):);1({-72

which contradicts (10). Furthermore, if the inequality (10) holds with a strict inequality and
F is not stable, then we can apply the above argument to any subsheaf 7/ C F with the same
slope as F and get a contradiction. O

The converse to this lemma also holds for d sufficiently large, as we will demonstrate in
Proposition 8.61; however, first we need some preliminary results.

Lemma 8.59. (Le Potier bounds) For any semi-stable locally free sheaf F of rank n and slope
, we have
hO(X,F)
n

Proof. If u < 0, then H(X, F) = 0. For > 0, we proceed by induction on the degree d of F.
If we assume the lemma holds for all degrees less than d, then we can consider the short exact
sequence

< [p+ 1]+ := max(u+ 1,0)

0—=F(—z) > F = F, =0
where x € X. By considering the associated long exact sequence, we see that
(X, F) < hO(X, F(—x)) + n.
Since u(F) = p(F(—x)) + 1, the result follows by applying the inductive hypothesis to F(—x).
O

We recall that any vector bundle has a unique maximal destabilising sequence of vector
subbundles, known as its Harder—Narasimhan filtration (cf. Definition 8.32).

Corollary 8.60. Let F be a locally free sheaf of rank n and slope p with Harder—Narasimhan
filtration

0=FOcrOc...c F&) = F

ie. Fi=F@W/FU=1 are semistable and pimax(F) = p(F1) > -+ > p(Fs) = pimin(F); then
0 s .

HXF) 5k

n

P+ 11 = (13 ) Do e+ in(5) + 1
=1

Proposition 8.61. Let n and d be fized such that d > gn?® + n(2g — 2). Let F be a semistable
locally free sheaf over X with rank r and degree d. Then for all non-zero subsheaves 0 #= F' C F,

we have
WOXLF) _ ()
rk '~ rkF
and if equality holds, then h'(X, F') = 0 and u(F'") = u(F).
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Proof. Let = d/n denote the slope and pick a constant C' such that 29 —2 < C' < p — gn (this

is possible, as u — gn > 2g — 2 by our choice of d). We will prove the following statements for
subsheaves F' C F.

(1) If pimin (F') < C, then
WX, F) _ x(F)
rk F/ rk F -
(2) If pimin(F') > C, then h'(X,F) =0 and
WX, F) _ x(F)
rk &~ rkF
and if equality holds, then u(F') = u(F).
We can apply Corollary 8.60 to a subsheaf 7' C F to obtain the bound
RO(X, F") 1 1 ,
S it AARVASGN I [ = [ftmi .
rk F/ = (1 TL) [/1’+1]++ n[umm(f)‘i‘l]-{-

It ,umin("r,) < C, then
X(F)

RY(X, F) 1 1
— < |1-= 1 — 1 1 = —
kF = n (n+ )+n(c+ )<p+l+g K F
by our choice of C, which proves (1).
For (2), suppose pimin(F') > C; then we claim that H'(X, F’) = 0. To prove the claim, it
suffices to show that H' (X, F!) =0, where F] are the semistable subquotients appearing in the
Harder-Narasimhan filtration of . For each F], we have

(F7) > pmin(F') > C > 29 — 2.
Hence, deg F! > rk F/(2g — 2) and, as F/ is semistable, we conclude that H'(X,F/) = 0 by

(2

Lemma 8.36. Then by semistability of F, we have u(F’) < u(F); hence

ho(;ia‘; ) y xX(F)
rk pF) I —gspuF)+1-g rk F
with equality only if u(F’) = u(F). O

Remark 8.62. Proposition 8.61 and Lemma 8.58 together say, for sufficiently large degree d,
that (semi)stability of a locally free sheaf F over X is equivalent to

WX, F) WX )
rk 7' 77 rkF
for all non-zero proper subsheaves 7' C F. This result was first proved by Le Potier for curves

(see [35] Propositions 7.1.1 and 7.1.3) and was later generalised to higher dimensions by Simpson
39).

We recall that we defined open subschemes R(®)5 ¢ Q := Quot?(’d((’)N ) whose k-points are

quotient sheaves ¢ : OF — F such that F is a locally free (semi)stable sheaf and H%(q) is
an isomorphism. The following theorem shows that GIT semistability for SLy acting on @
coincides with vector bundle semistability (provided d and m are sufficiently large).

Theorem 8.63. Let n and d be fized such that d > max(n?(2g — 2), gn? +n(2g — 2)). Then
there exists a natural number M > 0 such that for all m > M, we have

st(ﬁm) — RSS and Qs(ﬁm) — RS,

Proof. We pick M as required by Corollary 8.57. Since these subschemes are all open subschemes
of (), it suffices to check these equalities of schemes on k-points.

First, let ¢ : OF — F be a k-point in R*%; that is, F is a semistable locally free sheaf
and H%(q) : V — HY(X,F) is an isomorphism. We will show that ¢ is GIT semistable using
Corollary 8.57. Let ' C F be a subsheaf with rk 7/ > 0 and let V' := H(q)"'(H°(X, F'). As
H'(q) is a isomorphism, we have dim V’ = (X, F'). By Proposition 8.61, we have either

(1) WX, F) <tk F'x(F)/tk F, or



82 VICTORIA HOSKINS

(2) WYX, F') =0 and pu(F') = p(F).
In the first case,
dimV’ KX, F) x(F) dimV
kF tkF 1kF | kF
and in the second case, dim V' = h%(X, F’) = P(F’), and we have
dimV"  x(F) x(F) dimV
tk 7 tkF  tkF  rtkF’
Hence ¢ € Q”°(L,,) by Corollary 8.57. In fact, this argument shows that if, moreover, F is a
stable locally free sheaf, then ¢ € Q°(L,,), because, in this case, condition (2) is not possible
and so we always have a strict inequality. Hence, we have inclusions R(®)*(k) C Q)3(L,,)(k).
Suppose that q : O% — F is a k-point in Q(s)s(ﬁm); then for every subsheaf 7' C F such
that V' := H%(q)"1(H°(X,F")) is non-zero, we have rk 7/ > 0 and an inequality
dim V' dim V
(<)
rk F’ rk F

by Corollary 8.57.

We first observe that H%(q) : V — H?(X,F) is injective, as otherwise let K be the kernel,
then 7/ = q(K ® Ox) = 0 has rank equal to zero, and so contradicts GIT semistability of ¢. In
fact, we claim that GIT semistability also implies H!(X, F) = 0; thus, dim H°(X, F) = x(F) =
N = dimV and so the injective map H°(q) is an isomorphism. If H'(X, F) # 0, then by Serre
duality, there is a non-zero homomorphism F — wx whose image F C wy is an invertible
sheaf. We can equivalently phrase the GIT (semi)stability of ¢ in terms of quotient sheaves
F — F" as giving an inequality

dim V < dim V"
n — rkF”
where V" denotes the image of the composition V — H°(X, F) — H°(X,F"). We note that
dimV” < g, as V" C HY(X, F") € H°(X,wx). Therefore, GIT semistability would imply

d
Tra-g<
n+( g) < g,

which contradicts our choice of d. Thus H%(g) is an isomorphism.

We next claim that F is locally free. Since we are working over a curve, the claim is equiv-
alent to showing that F is torsion free. If ' C F is a torsion subsheaf (i.e. rkF = 0),
then H°(X,F') # 0, as every torsion sheaf has a section, and so this would contradict GIT
semistability.

Let 7' C F be a subsheaf and V' := H%(q)"'(H°(X, F")); then by GIT (semi)stability

AO(X,F')  dim V’(<)dimV ~ x(F)
tk 7 tkF =/ rkF 1k F’

Hence, F is (semi)stable by Lemma 8.58. Since also H%(g) is an isomorphism, we have shown
that ¢ € R(®)*. This completes the proof of the opposite inclusion Q®)*(L,,)(k) ¢ R®*(k). O

8.10. Construction of the moduli space. Let X be a connected smooth projective curve of
genus g > 2. We fix a rank n and a degree d. In this section, we will give the construction of
the moduli space of stable vector bundles on X.

We defined open subschemes R(®)* ¢ Q := Quot&d(ON) (where N := d + n(1 — g)) whose
k-points are quotients ¢ : OF — F such that F is (semi)stable and H(g) is an isomorphism.

The construction of the moduli space of stable vector bundles is originally due to Seshadri
[37]; however, we have not followed his construction (Seshadri uses a different linearisation
which embeds the Quot scheme in a product of Grassmannians). Instead, we are following the
construction due to Le Potier [35] and Simpson [39], which generalises more naturally to higher
dimensions; see Remark 8.70 for some comments on the additional complications for higher
dimensional base schemes.
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Theorem 8.64. There is a coarse moduli space M*(n,d) for moduli of stable vector bundles of
rank n and degree d over X that has a natural projective completion M**(n,d) whose k-points
parametrise polystable vector bundles of rank n and degree d.

Proof. We first construct these spaces for large d and then, by tensoring with invertible sheaves
of negative degree, we obtain the moduli spaces for smaller degree d. Hence, we may assume
that d > max(n?(2g — 2), gn? + n(2g — 2)) We linearise the SLy-action on Q in the invertible
sheaf L,,, where m is taken sufficiently large as required for the statement of Theorem 8.63.
Then Q)3(L,,) = R®)* and there is a projective GIT quotient

m: R¥ =Q*(Ly) = Q//r,, SLy =: M**(n,d)
which is a categorical quotient of the SLy-action on R*® and 7 restrict to a geometric quotient
7 R =Q°%(Ly) = Q°(Ly)/SLy =: M?(n,d).

Furthermore, R(*)* parametrises a family 2(*)* of (semi)stable vector bundles over X of rank
n and degree d which has the local universal property and such that two k-points in RO)s lie
in the same orbit if and only if the corresponding vector bundles parametrised by these points
are isomorphic; see Lemmas 8.48 and 8.49. By Proposition 3.35, a coarse moduli space is a
categorical quotient of the SLy-action on R(®)® if and only if it is an orbit space. Therefore, as
m° is a categorical quotient which is also an orbit space, M*(n,d) is a coarse moduli space for
stable vector bundles on X of rank n and degree d.

Since the k-points of the GIT quotient parametrise closed orbits, to complete the proof it
remains to show that the orbit of ¢ : O% — F in R*® is closed if and only if F is polystable. If
F is not polystable, then there is a non-split short exact sequence

0—-F - F—=F"=0

where 7’ and F” are semistable with the same slope as F. In this case, we can find a 1-PS A
such that lim_,0 A(t) - [¢] = [OF — F” @ F'], which shows that the orbit is not closed. In fact,
by repeating this argument one case show that a quotient homomorphism for a semistable sheaf
contains a quotient homomorphism for a polystable sheaf in its orbit closure. More precisely,
one can define a Jordan—Holder filtration of F by stable vector bundles of the same slope as F:

0CFy & & GFe=F

and then pick out a 1-PS A which inducing this filtration so that the limit as ¢ — 0 is the asso-
ciated graded object gr;p (F) := @i F(;)/Fi—1)- We note that unlike the Harder-Narasimhan
filtration, the Jordan—Holder filtration is not unique but the associated graded object is unique.
Now suppose that F is polystable so we have F = 69]-'1-@"1' for non-isomorphic stable vector
bundles JF;; then we want to show the orbit of g is closed: i.e. for every point ¢’ : O — F’
in the closure of the orbit of ¢, we have an isomorphism F = F’. Using Theorem 6.13, we can
produce a 1-PS A such that lim; ,o A(t) - ¢ = ¢’. This corresponds to a family & over A! of
semistable vector bundles such that

Ex=F for t#0, and & =F.

Since the stable bundles F; are simple and any non-zero homomorphism between stable vector
bundles of the same slope is an isomorphism, we see that dim Hom(F;, F) = n;. As £ is flat
over Al this dimension function is upper semi-continuous; hence dim Hom(F;, F') =: n} > n;.
As F; is stable, the evaluation map e; : F; ® Hom(F;, ') — F' must be injective. Moreover

s)s

sum fin " C F'is a direct sum as F; 2 F; by assumption. By comparing the ranks, we must
have n; = n} for all i and F' = EB]:Z@"Z' = F. O
Proposition 8.65. The moduli space M*(n,d) of stable vector bundles is a smooth quasi-
projective variety of dimension n?(g — 1) + 1.

Proof. We claim that the open subscheme R* C @ is smooth and has dimension n?(g— 1)+ N2.
To prove this claim, we use the following results concerning the local smoothness and Zariski
tangent spaces of the quot scheme: for a k-point ¢ : O% — F of @, we have
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(1) T,Q = Hom(KC, F), where IC = kerg.

(2) If Ext!(KC, F) = 0, then Q is smooth in a neighbourhood of g.
For a proof of these results, see [16] Propositions 2.2.7 and 2.2.8; in fact, the description of the
tangent spaces should remind you of the description of the tangent spaces to the Grassmannian.
To prove the claim, for ¢ € R®, we apply Hom(—, F) to the short exact sequence

0-K—-0¥ = F—=0
to obtain a long exact sequence
.-+ = Hom(K, F) — Ext!(F, F) — Ext}(O¥, F) = Ext'(K, F) = 0.

Since Extl(O)Ag,]:) = H'(X,F)N =0 (by our assumption on the degree of d), we see that @ is
smooth in a neighbourhood of every point ¢ € ). To calculate the dimension, we consider the
following long exact sequence for g € R®:

0 — Hom(F, F) — Hom(O¥, F) — Hom(K, F) — Ext!(F, F) = 0

where hom(F, F) = 1 as every stable bundle is simple, and hom(O¥, F) = N? as our assumption
on d implies H'(X, F) = 0, and Ext!(F, F) = H (FV®F) = n?(g—1)+1 by the Riemann-Roch
formula. Hence,

dim R** = dim 7,Q = dim Hom(K, F) = n*(g — 1) + 1+ N? — 1 = n?*(g — 1) + N2

Since SLy acts with only a finite global stabiliser on the smooth quasi-projective variety R® and
the quotient R® — M?#(n,d) is geometric, it follows from a deep result concerning étale slices of
GIT quotients known as Luna’s slice theorem [21], that M*(n,d) is smooth. Furthermore, we
have

dim M*(n,d) = dim R® — dimSLy = n?(g — 1) + 1
which completes the proof. O

Remark 8.66. In fact, using deformation theory of vector bundles, one can identify the Zariski
tangent space to M?®(n,d) at the isomorphism class [E] of a stable vector bundle E as follows

Ty M*®(n,d) = Ext' (E, E).

The obstruction to M#*(n,d) being smooth is controlled by Ext?(E, E), which vanishes as we
are working over a curve. The same description holds in higher dimensions, except now this
second Ext group could be non-zero and so in general the moduli space is not smooth; see [16]
Corollary 4.52.

If the degree and rank are coprime, the notions of semistability and stability coincide; hence,
in the coprime case, the moduli space of stable vector bundles of rank r and degree d on X is
a smooth projective variety.

Finally, we ask whether this coarse moduli space is ever a fine moduli space. In fact, we see
why it is necessary to allow a more general notion of equivalence of families of vector bundles
with a twist by a line bundle:

Remark 8.67. Two families £ and F parametrised by S determine the same morphism to
M?(n,d) if £ =2 F @ wgL for aline bundle £ on S where 75 : S x X — S is the projection map
and, in fact, this is an if and only if statement by [31] Lemma 5.10.

It is a result of Mumford and Newstead, for n = 2 [26], and Tjurin [43] in general that the
moduli space of stable vector bundles is a fine moduli space for coprime rank and degree.

Theorem 8.68. If (n,d) =1, then M*(n,d) = M*%(n,d) is a fine moduli space.

The idea of the proof is to construct a universal family over this moduli space by descending
the universal family U over R® x X to the GIT quotient. For more details, we recommend the
exposition given by Newstead [31], Theorem 5.12.

Remark 8.69. If (n,d) # 1, then Ramanan observes that a fine moduli space for stable sheaves
does not exist [36].
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Remark 8.70. In this remark, we briefly explain some of the additional complications that

arise when studying moduli of vector bundles over a higher dimensional projective base Y.

(1) Instead of fixing just the rank and degree, one must fix higher Chern classes (or the
Hilbert polynomial) of the sheaves.

(2) In higher dimensions, torsion free and locally free not longer agree; therefore, rather
than working with locally free sheaves, we must enlarge our category to torsion free
sheaves in order to get a projective completion of the moduli space of stable sheaves.

(3) As we have seen for curves, slope (semi)stability is equivalent to an inequality of reduced
Hilbert polynomials, known as Gieseker (semi)stability

pE) _ PE)
"< < :
mE) < m8) = [ < e
However, in higher dimensions, slope (semi)stability and Gieseker (semi)stability do not
coincide: we have

slope stable = Gieseker stable = Gieseker semistable = slope semistable.

In higher dimensions, one constructs a moduli space for Gieseker stable torsion free
sheaves (or for Gieseker semistable pure sheaves).

(4) Since the Hilbert polynomial is taken with respect to a choice of ample line bundle on
Y, the notion of Gieseker (semi)stability also depends on this choice. Over a curve,
the Hilbert polynomial of a vector bundle only depends on the degree of the ample line
bundle we take and consequently all ample line bundles determine the same notion of
semistability. In particular, one can study how the moduli space changes as we vary
this ample line bundle on Y.

(5) The Quot scheme is longer smooth, due to the existence of some non-vanishing second
Ext groups. In particular, the moduli space of stable torsion free sheaves is no longer
smooth in general.

(6) To construct the moduli spaces in higher dimensions, we do not take a GIT quotient of
the whole Quot scheme, but rather the closure of R** in (). The reason for this, is that
there may be semistable points in the quot scheme which are not torsion free (or pure)
sheaves;

(7) In higher dimensions, the Le Potier bounds become more difficult to prove; although
there are essentially analogous statements.

For the interested reader, we recommend the excellent book of Huybrechts and Lehn [16].
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