Übungen zur Vorlesung 'Algebra und Zahlentheorie'

V. Hoskins (WS 2018/2019)

Übungsblatt 11

Abgabe: Bis Montag, den 14.01.2019, 14 Uhr.

Aufgabe 1. (8 Punkte) Berechnen Sie

- a) $\operatorname{Aut}_{\mathbb{R}}(\mathbb{C})$,
- b) $\operatorname{Aut}_{\mathbb{Q}}(\mathbb{Q}(\sqrt[3]{2})).$

Aufgabe 2. (12 = 2 + 1 + 2 + 2 + 2 + 2 + 1 Punkte) Wir definieren die Eulersche Phi-Funktion $\phi: \mathbb{N}_{>0} \to \mathbb{N}$ durch

$$\phi(n) := |\{1 \le k \le n : ggT(k, n) = 1\}|.$$

- a) Berechnen Sie $\phi(n)$ für $1 \le n \le 10$.
- b) Zeigen Sie, dass $\phi(n) = |(\mathbb{Z}/n\mathbb{Z})^{\times}|$.
- c) Wenn ggT(n,m)=1, zeigen Sie, dass $m^{\phi(n)}\equiv 1 \mod n$. [Hinweis: Satz von Lagrange.]
- d) Für $n, m \in \mathbb{N}_{>0}$ mit ggT(n, m) = 1 zeigen Sie, dass $\phi(nm) = \phi(n)\phi(m)$. [Hinweis: Chinesischer Restsatz.]
- e) Für eine Primzahl p und $r \in \mathbb{N}_{>0}$ berechnen Sie $\phi(p^r)$.
- f) Wenn $n = p_1^{r_1} \cdots p_s^{r_s}$ eine Primfaktorzerlegung ist, was ist $\phi(n)$?

Aufgabe 3. (14 = 1 + 2 + 2 + 1 + 1 + 4 + 2 + 1 Punkte) Sei $n \in \mathbb{N}$ und $\phi(n)$ die Eulersche Phi-Funktion von n. Eine Nullstelle $\alpha \in \mathbb{C}$ von $t^n - 1$ heißt primitive n-te Einheitswurzel, wenn die Ordnung von α in \mathbb{Q}^{\times} gleich n ist.

- a) Zeigen Sie, dass es genau $\phi(n)$ primitive n-te Einheitswurzeln von Eins $\alpha_{n,1}, \ldots, \alpha_{n,\phi(n)}$ gibt.
- b) Beweisen Sie, dass $t^n 1 = \prod_{d|n} \Phi_d(t)$, wobei

$$\Phi_d(t) = \prod_{i=1}^{\phi(d)} (t - \alpha_{d,i}).$$

Bitte wenden!

- c) Beweisen Sie, dass Φ_n ein normiertes Polynom in $\mathbb{Z}[t]$ ist.
- d) Sei $\alpha := e^{2\pi i/n}$ und $m_{\alpha}(t) \in \mathbb{Q}[t]$ das Minimalpolynom von α . Zeigen Sie, dass $m_{\alpha} \in \mathbb{Z}[t]$.
- e) Sei β eine andere Nullstelle von m_{α} und p eine Primzahl mit $p \nmid n$. Dann zeigen Sie, dass β^p eine Nullstelle von m_{α} ist. [Hinweis: Zuerst zeigen Sie, dass $m_{\alpha}|t^n-1$ in $\mathbb{Z}[t]$, d.h. $t^n-1=m_{\alpha}(t)g(t)$ mit $g(t)\in\mathbb{Z}[t]$. Falls es $p\nmid n$ mit $m_{\alpha}(\beta)=0$ und $m_{\alpha}(\beta^p)\neq 0$ gibt, zeigen Sie, dass β^p eine Nullstelle von g ist und es gilt $f(t)|g(t^p)$. Betrachten Sie das Bild der Gleichung $t^n-1=m_{\alpha}(t)g(t)$ unter den Ringhomomorphismus $\mathbb{Z}[t]\to\mathbb{Z}/p\mathbb{Z}[t]$ und beweisen Sie, dass dann $t^n-1\in\mathbb{Z}/p\mathbb{Z}[t]$ eine mehrfache Nullstelle hat, was einen Widerspruch liefert (betrachten Sie die Ableitung von $t^n-1\in\mathbb{Z}/p\mathbb{Z}[t]$)].
- f) Beweisen Sie, dass $\Phi_n = m_\alpha$ und insbesondere ist Φ_n irreduzibel.
- g) Berechnen Sie $[\mathbb{Q}(e^{2\pi i/n}):\mathbb{Q}].$

Aufgabe 4. (6 Punkte) Sei $K \subset L \subset M$ eine Kette von Körpererweiterungen. Beweisen Sie, dass $\operatorname{Aut}_L(M)$ eine Untergruppen von $\operatorname{Aut}_K(M)$ ist.