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Introduction

Statistics have existed for several centuries. Originally designating
methods to organise and interprete data, modern statistics have evolved
to become a very wide and thriving branch of mathematics, with plen-
tiful applications. The goals of statistics nowadays vary: make predictions,
provide a classification, derive an estimation, etc, are all tackled by sta-
tistical methods. The Leitmotiv behind these different problems is usually
the same: assume that there is some process generating data; given the
observed data, what can we say about the process that generated these?
How can we control the uncertainty in our results?

1 Probability theory

Probability is a mathematical language to model our problems, but it also
offers a rich toolbox. Several theorems of probability (the Law of Large
Numbers, the Central Limit Theorem, Hoeffding's inequality, ...) play a
crucial role in statistics.

There are several ways to interpret the notion of probability.

2 Frequentist inference

In frequentist inference we think of a probablity as an approximate empirical
mean observed when running some random experiment a large number N
of times. Assume that we are measuring a random quantity X, and let xi,
1� i �N be the observed results. Then the probability P (X 2E) of an
outcome E for this experiment is approximately the value, when N is very
large, of the ratio of the number of experiments with outcome E with the
total number N of experiments. Using probabilistic notations,

P (X 2E)= lim
N!1

1
N

X
i=1

1E(xi)

The above equality is justified by the Law of Large Numbers (LLN), one of
the cornerstones of the theory of probability.
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3 Bayesian inference

In some cases the frequentist intrepretation of a probability is not mean-
ingful. One example is in weather forecast: for instance the probability of
the event "it will rain tomorrow" clearly cannot be thought of as the limit
of the empirical mean of some experiment repeated several times. An alter-
native, equally valid interpretation is in terms of degree of belief: the higher
the probability of an event, the more likely this event is to happen. This
interpretation lies at the core of the Bayesian approach.

4 A brief history of statistics

As mentioned above, modern statistics realies on probability theory. Early on
mathematicians used probabilistic concepts to make predictions on random
events. In the 17th Century, gambing games attracted the interest of promi-
nent mathematicians such as Blaise Pascal (1623-1662). The development
of random contracts in Europe further promoted the development of prob-
abilistic techniques. But only in 1933 did modern probability appear, with
the publication of Foundations of the Theory of Probability, by the Soviet
mathematician Andrey Kolmogorv (1903-1987). This article laid the cor-
nerstones of modern probability which, from then on, became recognised
as a rigorous branch of mathematics.

Statistics, a few landmarks: Bayes. Fisher. William Sealy Gosset (Stu-
dent test).

5 How to use these lecture notes?

These lecture notes contain the core lecture material. They also contain sup-
plementary material (remarks, examples, exercises) that you can use to check
your familiarity with the course content and further your understanding.
Remarks indicated with a * are not (always) intended to be discussed in
class: they are indications for students wishing to explore more technical
details than can be addressed in the framework of this course. Students who
wish to consolidate their mathematical background may use the notes below:

https://www.ewi-psy.fu-berlin.de/einrichtungen/
arbeitsbereiche/computational_cogni_neurosc/
teaching/Statistics_for_Data_Science_19_201/
Mathematical_preliminaries.pdf
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Part I

Probability basics









Chapter 1
Probability spaces
To expound the theory of statistics, it is essential to provide a robust,
unequivocal mathematical framework on which our methods will be based.
This framework is provided by Kolmogorv's axioms, which we present in
this chapter, and which provides a mathematical definition for the notion
of probability of an event in a given random experiment. Random exper-
iments can be as diverse as throwing a dice, flipping a coin 3 times, or
tomorrow's weather in Berlin. Events can be thought of as situations encoun-
tered in these experiments, such as �the dice returns 6�, �the coin returns
Heads 3 times� or �it will rain tomorrow in Dahlem�. To any such event
we wish to ascribe a probability, which will be a number between 0 and
1 satisfying certain rules.

In the following, for any non-empty set 
, we denote by P(
) the col-
lection of all subsets of 
 (called the power set of 
):

P(
)= fA:A�
g:

For any finite set A we shall denote by jAj the cardinality of A, i.e. the
number of elements contained in A.

1.1 Sample space and events
Assume we perform a random experiment, e.g. throwing a dice. In order to
model this experiment mathematically, we first choose a sample space 
:
this is a non-empty set encoding all possible outcomes of the experiment.
E.g., when throwing a dice, a natural choice is 
= f1; : : : ; 6g. Events are
then defined as follows:

Definition 1.1. An event is a subset of the sample space 
.

Practically speaking, and event represents a sub-collection of outcomes
of the experiment we are interested in.

Example 1.2. We throw a die. To model this experiment we choose

=f1;: :: ;6gas our sample space. An event is any subset A of f1;: :: ;
6g: for instance, A= f1; 3; 5g represents the event that the result of
the throw is an odd number.
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Given two events A and B, we may consider their union A[B, which
represents the event that either A or B (or both) occur. Likewise the inter-
section A\B (a.k.a. joint occurrence of A and B) represents the event that
both A and B occur simultaneously. If A\B= ; we say that A and B are
incompatible.

Example 1.3. We throw a coin three times. To model this experiment,
we consider 
= fH;T g3, i.e. the set of all vectors with 3 entries, with each
entry taking value H or T . Here H stands for ``Heads� and T for ``Tails� (of
course, choosing e.g. 
= f0; 1g3, with 0 and 1 representing Heads and Tails
respectively, would be eqaully valid). An event is any subset of fH; T g3.
For instance we may consider the events

A= f(H;H; T ); (H;T ;H); (T ;H;H)g get88 Heads exactly twice00

B= f(H;H;H); (T ; T ; T )g get88 3 times the same result00:

Note that A\B=;, so A and B are incompatible. Consider now the event

C= f! 2
:9i=1; 2; 3; !i=Hg get88 Heads at least once00:

Then the joint occurrence of B and C is

B \C= f(H;H;H)g get88 Heads 3 times00

1.2 * A little detour through �¡ algebras
Actually, the real definition of an event in the most general setting is slightly
more complicated than in Definition 1.1, and requires the notion of �-
algebra. However, for simplicity, we skip this notion in class and, in this
course, will stick to Definition 1.1.

Definition 1.4. * Let 
 be a non-empty set. A collection A of subsets of

 is called a sigma-algebra if the following properties hold:

� ;2A and 
2A,
� for all A2A, we also have Ac2A,
� if we have a sequence (An)n�1 with An 2 A for all n � 1, thenS

n=1
1 An2A.

Elements of A are called measurable sets or events, and (
;A) is said
to be a measurable space.

Remark 1.5. * Let A be a �-algebra over 
. Then it follows from the
definition that:

� If A1; : : : ; An is a finite collection of elements of A, then [i=1n Ai2A
� by de Morgan's identities, if An2A for all n� 1, then \n=11 An2F .
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� If A;B 2A then so does A nB.

Let us give a few examples of �-algebras. We start with a very general
couple of examples.

Example 1.6. *: Let 
 be a non-empty set.

1. The smallest �-algebra over A is f;;Ag, the coarse �-algebra

2. The largest �-algebra over A is P(A), the discrete �-algebra

The second case above is used very often in the case where A is finite (or
countably infinite): in such a case we will most often work with the discrete
�-algbera.

What if we want to work with an uncountable set, e.g. the set R of
real numbers? In that case, the choice of a �-algbera is more delicate.

Definition 1.7. * Let n� 1. The Borel �-algbera on Rn is the �-algebra
generated by open subsets of Rn. It is denoted by B(Rn). An element of
B(Rn) is called a Borel (measurable) subset.

We refer to Chapter 3 of [4] for more details. Practically, B(Rn) con-
tains all subsets of Rn one usually works with: intervals, open/closed sets,
singletons, are all Borel measurable. For the applications we have in mind
here, Borel measurability issues will never happen.

1.3 Probability measure

Given a random experiment, and a sample space 
 encoding all possible
outcomes, we wish to assign to each event of 
 a number known as its
probability. Let A denote the collection of all events of 
.

Definition 1.8. A probability measure P on a set 
 is a map P:A! [0;
1] with the following properties:

� P(
)= 1.

� (�-additivity) If fAngn>0 is a countable collection of events that
are pairwise disjoint, i.e. An\Am=; for all n=/ m, then one has

P(
[
n>0

An)=
X
n>0

P(An):

The pair (
;P) is called a probability space.

Remark 1.9. * Using the language of measure theory, a probability mea-
sure is a non-negative measure with total mass equal to 1.

1.3 Probability measure 17



1.4 Examples

Definition 1.10. If 
 is a finite, non-empty set, the uniform probability
measure P on 
 is the probability measure defined by

P(A)= jAjj
j ;
for all event A.

Exercise 1.1. Check that P is indeed a probability measure.

The uniform probability measure is often used to model random exper-
iments where the different possible outcomes happen equally often, or are
deemed equally likely to happen.

Example 1.11. We throw a fair die. As outcome space we set 
=f1;:::;6g,
and since the die is fair it is reasonable to consider the uniform probability
measure P on it. With this probability space, for all i=1; : : : ; 6 the event
�the outcome is i� is represented by the event fig, and its probability is
P(fig)= 1

6
: this probability does not depend on i. As an example of event,

consider A=f1;3;5g, which represents the event that the result of the throw
is an odd number: that event has probability

P(A)= 3
6
= 1
2
:

Example 1.12. We throw a fair coin three consecutive times. As outcome
space we set 
 = fH; T g3, interpreting H as heads and T as tails. For
instance, the element !=(H;H; T ) represents the outcome �Heads, Heads,
Tails�. Since the coin is fair it is reasonable to consider the uniform prob-
ability measure P on 
. Under this measure, the event A= f(H; H; H);
(T ; T ; T )g, which represents the event that the three tosses yield the same
outcome, has probability

jAj
j
j =

2
23
= 1
4
:

Note that the uniform probability P on a finite sample space 
 assigns
an event a probability proportional to its cardinality (i.e. its number of
elements): this reveals a link between probability and cardinality. In fact,
many properties of cardinality of a set are also true for the probability of an
event, even in the non-uniform case.

1.5 Case of a finite sample space

Assume that 
 is a finite set. There exists a convenient systematic way to
define a probability measure on the finite set 
:
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Proposition 1.13. Let p: 
!R be a function such that

1. p is non-negative, i.e. p(!)� 0 for all ! 2
,
2. p is normalized, i.e.

P
!2
 p(!)= 1

Then there exists a unique probability measure P on 
 such that P(f!g)=
p(!) for all ! 2
. That probability measure is given by

P(A)=
X
!2A

p(!); A�
:

Remark 1.14. a function p:
!R as above is called a probability mass
function.

Remark 1.15. If one defines p by

p(!)= 1
j
j ; ! 2


the associated prob. measure P is the uniform prob. measure on 
.

1.6 Further properties

Let (
;A;P) be a probability space.

Proposition 1.16. The following properties hold:

1. P(;)= 0.

2. (additivity) for any finite collection of pairiwse disjoint events
A1; : : : ; AN, we have

P(
[
i=1

N

Ai)=
X
i=1

N

P(Ai):

3. If A;B are two events and A�B, then P (B nA)=P(B)¡P(A),

4. If A;B are two events and A�B, then P(A)�P(B),

5. for any event A, we have P(Ac)= 1¡P(A).

Proof. 1. We apply �-additivity by choosing, for n� 1, An= ;.
The events An are pairwise disjoint so by �-addivity

P

 [
n�1

;
!
=
X
n�1

P(;);

i.e. P(;)=
P

n�1P(;). If we had P(;)2 (0; 1], we would necessarily
have

P
n�1P(;)>P(;), hence P(;) has to be 0.
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2. Let A1;:::;AN be pairwise disjoint events. We complete these into an
infinite sequence (An)n�1 by setting An :=; for n>N . The sequence
thus obtained is made of pairwise disjoint events, hence by �-addi-
tivity

P([n�1An)=
X
n�1

P(An):

Now noting that [n�1An=[n=1N An and that P(An) =P(;) = 0 for
n>N , the requested property follows.

3. Note that B=A[ (B nA), where A and B nA are disjoint. Hence,
by additivity, P(B)=P(A)+P (B nA), which yields the result.

4. By the previous point, we have P(A)=P(B)¡P (B nA)�P(B).

5. It suffices to apply point 3. with B=
. �

Note that the seond property above holds for events that are pairwise
disjoint. What can we say if the events are not necessarily disjoint?

Proposition 1.17. [sub-additivity] for any sequence of events (An)n�1,
we have

P(
[
n=1

1

Ai)�
X
n=1

1

P(Ai):

Proof. For n � 1, we define an event Bn as follows. We set B1=A1 and
Bn=An n (A1 [ : : : An¡1) if n> 1. Then the Bn are pairwise disjoint and
[nBn=[nAn, hence

P(
[
n=1

1

An)=P(
[
n=1

1

Bn)=
X
n=1

1

P(Bn):

Since Bn�An for all n, we have P(Bn)�P(An), and the claim follows. �

We finally state an equality in the case of 2 events that are not necessarily
disjoint:

Lemma 1.18. For any two events A and B (not necessarily disjoint), we
have

P (A[B)+P (A\B)=P(A)+P(B);

or equivalently

P (A[B)=P(A)¡P (A\B)+P(B):

Proof. Applying additivity with n=3 and the disjoint events A1=A\Bc,
A2=A\B, and A3=Ac\B, and noting that A1[A2[A3=A[B, we get

P (A[B)=P (A\Bc)+P (A\B)+P (Ac\B):
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Thus

P (A[B)+P (A\B)=P (A\Bc)+ 2P (A\B)+P (Ac\B)
=(P (A\Bc)+P (A\B))||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
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Now since the events A\Bc and A\B are disjoint and their union is A, the
quantity I equals P(A), and similarly the quantity I I equals P(B). Hence

P (A[B)+P (A\B)=P(A)+P(B): �

1.7 Independence and conditional probability

Let (
;A;P) be a probability space.

Definition 1.19. Two events A and B are said to be independent if

P (A\B)=P(A) P(B):

Remark 1.20. Note that the above definition involves the probability
measure P. In particular sets A and B which are independent under the
probability measure P may no longer be independent when we change the
underlying probability measure.

That two events are independent is sometimes an obvious consequence
of the assumptions, but sometimes it has to be checked by a computation.

Example 1.21. We throw a fair coin twice. To model this experiment,
we consider the probability space (
;P) where 
= fH; Tg2 and P is the
uniform probability measure on 
. Let

A= f(H;H); (H;T )g 188 st toss givesHeads00

B= f(H;H); (T ;H)g 288 nd toss givesHeads00

Then

P(A)=P(B)= 1
2
;

while

P(A\B)=P(f(H;H)g)= 1
4
:

Thus P(A\B)=P(A)P(B) so A and B are independent.
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Example 1.22. We toss a fair die. This is modelled by 
 = f1; : : : ; 6g
endowed with the uniform probability P. We consider the events

A= f2; 4; 6g (the outcome is an even number)
and

B= f1; 2; 3; 4g (the outcome is smaller or equal to 4):

These events are independent. Indeed, P(A)= 1

2
, P(B)= 2

3
, and P (A\B)=

P(f2; 4g)= 1

3
, so that

P (A\B)= 1
3
= 1
2
� 2
3
=P(A) P(B):

The above definition of independence generalises to an arbitrary, finite
number of events, but we stick to the case of two events for simplicity.

Definition 1.23. Let A and B be two events. We assume that P(B)>
0. Then the conditional probability of A given B is

P(AjB) := P (A\B)
P(B)

2 [0; 1]:

P(AjB) represents the probability of A once we know that B occurs.
From a frequentist perspective P(AjB) can be thought of as the limiting
fraction of times A occurs among those for which B occurs. In the Bayesian
setting, it represents our degree of belief that A will occur once we have the
information that B occurs.

Remark 1.24. Given an event B such that P(B)>0, the map A!P(AjB)
defines a probability measure on 
. That probability measure is supported
on B, i.e. P(B jB)= 1.

Warning: The quantities P(AjB) and P(B jA) are NOT the same!
Actually the second quantity is not even well-defined if A has probability 0.

The notion of independence can be written in terms of conditional prob-
ability.

Lemma 1.25. Assume P(B)> 0. Then:

� P (A\B)=P(AjB)P(B)
� the events A and B are independent if and only if P(AjB)=P(A).

Proof. The first point follows at once from the definition of P(AjB). For
the second point, note that the condition for the independence of A and B,
namely

P (A\B)=P(A)P(B)

can be written, upon dividing both sides by P(B), as

P(AjB)=P(A);
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as requested. �

Heuristically, independence of A and B means that the a priori knowl-
edge that B occurs does not change the probability that A occurs.

We will now state a couple of results that are often used in Bayesian
inference.

Theorem 1.26. [Law of total probability]Let A1;:::;Ak be events that form
a partition of 
 i.e. the Ai are pairwise disjoint and [i=1k Ai=
. Then,
for any event B, we have

P(B)=
X
i=1

k

P(B jAi) P(Ai):

Proof. We have

B=B \
=B \ ([i=1k Ai)=[i=1k B \Ai;

where we used the fact that [i=1k Ai=
 in the third equality. Now, since
the events Ai are pairwise disjoint, so are the events B \Ai, and hence by
additivity we get

P(B)=
X
i=1

k

P (B \Ai):

The result now follows upon applying the first point of Lemma 1.25 to the
events B \Ai. �

Theorem 1.27. [Bayes' Theorem] Let A1; : : : ; Ak be events that form a
partition of 
 i.e. the Ai are pairwise disjoint and [i=1k Ai=
. We assume
that P(Ai)> 0 for all i. Let be B an event such that P(B)> 0. Then, for
all i=1; : : : ; k, we have

P(AijB)=
P(B jAi) P(Ai)P
j=1
k P(B jAj) P(Aj)

:

Proof. We have

P(AijB)=
P (B \Ai)

P(B)
:

By applying the first point of Lemma 1.25 to the numerator, and Theorem
1.26 to the denominator, we get the result. �

Example 1.28. To see what the above theorem says in a simple case,
assume that k = 2: we are thus given events A1 and A2 that partition 
,
as well as an event B, and we assume that all three events have non-zero
probability. Then, choosing i=1, Bayes Theorem says that

P(A1jB)=
P(B jA1) P(A1)

P(B jA1) P(A1)+P(B jA2) P(A2)
:
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Likewise, for i=2, we get

P(A2jB)=
P(B jA2) P(A2)

P(B jA1) P(A1)+P(B jA2) P(A2)
:

Note that in particular we have P(A1jB)+P(A2jB)=1, which makes sense
since, by Remark 1.24 above, we have

P(A1jB)+P(A2jB)=P (A1[A2jB)=P(
jB)=1:

1.8 Exercises
Exercise 1.2. An urn contains 40 balls enumerated from 1 to 40. In a lottery, 6 balls
are drawn without replacement from the urn. Tickets bearing the correct sequence of
numbers, up to permutation of the numbers, win a T-shirt, while the ticket with the
correct ordered sequence wins a car. Compute the probability of winning a T-shirt,
resp. a car.

Exercise 1.3. Let (
;A;P) be a probability space.

� If (An)n�1 is an increasing sequence of events, i.e. An�An+1 for all n� 1,
show that

P

 [
n�1

An

!
= lim
n!1

"P(An);

i.e. that the sequence (P(An))n�1 is non-decreasing and converges from below
to P ([n�1An).

� If (An)n�1 is an decreasing sequence of events, i.e. An+1�An for all n� 1,
show that

P

 \
n�1

An

!
= lim
n!1

#P(An);

i.e. that the sequence (P(An))n�1 is non-increasing and converges from above
to P (\n�1An).

Exercise 1.4. A class in primary school is composed of 25 pupils, all born
outside of a leap year. We are interested in the probability that two or
more children in the class have the same birthday.

1. Model this experiment with an appropriate sample space 
 and probability
measure P. Hint: you may set 
 to be the set of all maps from f1;2;: :: ;mg
to f1; : : : ; N g, for well-chosen numbers m and N .

2. We recall that the number of maps f : f1; 2; : : : ; mg!f1; : : : ; N g such that
f(i)=/ f(j) for all i=/ j is given by

N !

(N ¡m)! :

Represent the event that two or more children in the class have the same
birthday by an appropriate A�
, and compute its probability. Check, using
Python, that this probability is greater than 1/2.

Exercise 1.5. The medical test for a disease D has outcomes + (positive) and ¡
(negative). We assume that

� the probability for an individual to have the disease is 0.01,
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� the probability for an individual who has the disease to be tested positive is 0.9,

� the probability for an individual who does not have the disease to be tested
negative is 0.9,

Compute the probability that an individual who has been tested positive does indeed
have the disease. Comment on the quality of the test.

1.9 Appendix: a few useful formulas

We recall a few formulas that come in handy to compute probabilities.

1. If N > 1 and 06m6N , the number of ways of picking m numbers
f(1); : : : ; f(m) from 1; : : : ; N is given by

Nm:

Mathematically, this corresponds to the number of maps f from
f1; : : : ;mg to f1; : : : ; N g.

2. If N > 1 and 06m6N , the number of ways of picking m distinct
numbers f(1); : : : ; f(m) from 1; : : : ; N is given by

N !
(N ¡m)! =N(N ¡ 1): : :(N ¡m+1):

Mathematically, this corresponds to the number of maps f from
f1; : : : ;mg to f1; : : : ; N g that are injective, i.e. that satisfy

i=/ j=) f(i)=/ f(j)

3. If N > 1 and 06m6N , the number of ways of picking a subset of
m distinct elements from 1; : : : ; N is given by�

N
m

�
:= N !

(N ¡m)!m! :

Mathematically, this corresponds to the number of subsets of the set
f1; : : : ; N g which have cardinality m.

Remark 1.29. Note the difference between the 2nd and the 3rd point
above. In the 2nd point we think of the m elements f(1); : : : ; f(m) as being
drawn one after the other, and we keep track of this labelling. While in
the 3rd point we are drawing m elements simultaneously, without labelling
them.
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Chapter 2

Random variables

2.1 Definition

Let (
;P) be a probability space, and X be a set.

Definition 2.1. A random variable (r.v.) X with values in E is a map X :

!E.

Given a random variable X : 
! E, for any B � E, we will use the
notation fX 2Bg to denote the preimage of B under X :

fX 2Bg :=X¡1(B)= f! 2
:X(!)2Bg:

We will henceforth call E the outcome or target space.

Remark 2.2. * In the standard theory of probability, a random variable is
defined as a measurable map from (
;A) to (X ;F), whereA and F represent
�¡algebras on 
 and X , respectively. We omit this measurability condition
in this course.

When the target space is a subset of R, we say that X is a real-valued
random variable. In the statistics literature, �random variable� often refers
to real-valued random variables. When the target space is a subset of Rd,
d� 2, we call X a �random vector�, or a ``multivariate random variable�.

Example 2.3. Let's throw two fair dice consecutively. We are interested in
the sum of the pips. One can model this experiment by a probability space
given by 
= f1; : : : ; 6g2 endowed with the uniform probability P:

8(i; j)2f1; : : : ; 6g2; P(f(i; j)g)= 1
36
:

The quantity of interest then corresponds to the random variable X :!!R
given by

X((i; j))= i+ j ; (i; j)2f1; : : : ; 6g2:
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Remark 2.4. If X is a random variable on a probability space (
;P), given
! 2
, we call X(!) a realisation of that random variable. Physically, one
can think of a realization of a random variable as some measurement, or
observation performed on a system.

The following is a key notion of probability and statistics.

Definition 2.5. Let (
;P) be a probability space, E a set, and let X :

!E be a random variable. The probability distribution, or law, of X is
the collection of all probabilities

PX(B) :=P(fX 2Bg);

for all subset B of the target space E.

Proposition 2.6. * The map PX defined on all subsets of E by

PX(B) :=P(fX 2Bg); B �E;

defines a probability measure on E.

Definition 2.7. Two random variables X and Y with the same target space
E are said to be equal in distribution or equal in law if they have the same
probability distribution, i.e. if

P(fX 2Bg)=P(fY 2Bg)

for all event B in the target space.

Usually, in probability and statistics, we are ultimately interested in the
laws of random variables, rather than random variables per se.

Example 2.8. Two players play Heads and Tails on a fair coin. The coin is
thrown 10 times, the gain of player 1 (resp. player 2) is the total number of
Heads (resp. the total number of tails). This situation is modeled by intro-
ducing 
= fH; T g10 endowed with the uniform distribution, and defining
random variables X and Y by

X(!)=#fi=1 : : : 10:!i=Hg; Y (!)=#fi=1 : : : 10:!i=T g;

for all ! 2 fH; T g10. Then X + Y = 10. Clearly X and Y are not equal,
however they have equal distribution, indeed, for all k,

P (X = k)= 1
210
�10
k

�
= 1
210
� 10
10¡ k

�
=P (X = 10¡ k)=P (Y = k):

This implies that X and Y are equal in distribution as we shall see below.
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There exist several functions that one can use to characterize the law of
a random variable.

2.2 CDF, PMF, and PDF of a random vari-
able

Definition 2.9. If the target space E is countable, the random variable X
is said to be discrete.

If X is discrete, then for all subset B�E of the target space we can write

P (X 2B)=
X
x2B

pX(x); (2.1)

where pX(x) :=P (X =x), for all x2E. We call pX the probability mass
function (PMF) of X .

Remark 2.10. The PMF pX of a discrete r.v. X is :

� non-negative: pX(x)� 0 for all x2E,

� normalised:
P

x2E pX(x)= 1

In particular, as a consequence of these two properties, it follows that pX(x)�
1 for all x2E.

Proposition 2.11. The law of a discrete random variable X with target
space E is uniquely determined by its PMF.

Proof. Equation (2.1) shows that, for all event B of the target space,

PX(B) :=P (X 2B)=
X
x2B

pX(x):

Hence we are able to completely retrieve the law of X from its PMF. Hence
the claim. �

Definition 2.12. A function f :R!R is called a probability density
function (PDF) if the following conditions hold:

� f(x)� 0 for all x2R,

�
R
R
f(x) d x=1.

A real-valued random variable is said to be continuous if there exists a PDF
fX:R!R such that, for all a� b; we have

P (a�X � b)=
Z
a

b

fX(x) d x: (2.2)

We then call fX the probability density function (PDF) of X.
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Remark 2.13. * Strictly speaking, the PDF of a given random variableX is
not unique: two functions fX and f~X may both satisfy (2.2) for all subset A
as soons as fX= f~X almost-everywhere (not necessarily everywhere). How-
ever, in most practical cases there is a unique �nice� (e.g. continuous) version
of a PDF for X. We therefore intentionally ignore this subtlety in the sequel.

Proposition 2.14. The law of a continuous random variable X with
target space E is uniquely determined by its PDF.

Proof idea Equation (2.2) shows that, for all subset A of R which is a
closed interval, we have

PX(A) :=P (X 2A)=
Z
A

fX(x) d x:

By measure-theoretical arguments (see Theorem 5.7 in [4]), we can show
that the above equality remains true for any measurable subset A, so we are
able to completely retrieve the law of X from its PDF. Hence the claim.

Remark 2.15. One can think of (2.2) as a continuous version of (2.1).
However be careful that PMF and PDF are two, quite different, types of
functions. For instance, for a continuous r.v. with PDF fX, the probability
P (X=x) that X equals some real number x is generally not equal to fX(x):
actually, for X a continuous r.v., we have

P (X =x)=
Z
x

x

fX(y) d y=0:

An informal, but morally correct way of thinking of the PDF is

fX(x)�
P (X 2 [x¡ �; x+ �])

2 �

where �>0 is very small. PMF and PDF are thus two quite different objects,
with different properties, and which have their use in two mutually exclusive
contexts: discrete r.v. for the first, continuous r.v. for the second.

2.3 Important examples of discrete random
variables

Definition 2.16. Let p2 (0; 1). Let X be a random variable with values
in f0; 1g and with PMF given by

Ber (0; p)= 1¡ p; Ber(1; p)= p:

We then say that X is a Bernoulli random variable with parameter p, and
we write

X=
(d)

Ber(p) or X�Ber(p):
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A Bernoulli r.v. with parameter p represents the result of throwing a
coin that falls on Heads and Tails with probability p and 1¡ p, respectively
(p=1/2 if the coin is fair). The next example corresponds to the count of
the number of Heads after n consecutive tosses of such a coin.

Definition 2.17. Let p2 (0; 1) and n� 1 an integer. Let X be a random
variable with values in f0; ng and with PMF given by

Bin(k;n; p)=
�
n
k

�
pk (1¡ p)n¡k; k=0; : : : ; n:

We then say that X is a binomial random variable with parameters n and
p, and we write

X=
(d)

Bin(n; p) or X�Bin(n; p):

Let us throw a coin with probability of hitting Heads equal to p, repeat-
edly. When does the coin hit Heads for the first time?

Definition 2.18. Let p2 (0; 1). Let X be a random variable with values
in N and with PMF given by

Geo(k; p)= (1¡ p)k¡1 p; k � 1:

We then say that X is a geometric random variable with parameter p, and
we write

X=
(d)

Geo(p) or X�Geo(p):

Another important class of discrete probability distribution is the
Poisson2.1 distribution:

Definition 2.19. Let �> 0. Let X be a random variable with values in
N[f0g and with PMF given by

P(k;�)= e¡� �
k

k!
; k � 0:

We then say that X is a Poisson random variable with parameter �, and
we write

X=
(d)P(�) or X�P(�):

Poisson random variables can be used to model the count of rare events
such as phone calls in a large city or nuclei deacaying in a radioactive sample.

2.1. Named after the French mathematician Siméon-Denis Poisson (1781-1840).
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2.4 Important examples of continuous real-
valued random variables

Definition 2.20. Let � > 0. Let X be a real-valued continuous random
variable with PDF fX(x)= E(x;�) given by

E(x;�)=� e¡� x 1fx�0g; x2R:

We then say that X is an exponential random variable with parameter �,
, and we write

X=
(d)E(�) or X�E(�):

Definition 2.21. Let �2R and �> 0. Let X be a real-valued continuous
random variable with PDF given by

N (x; �; �2)= 1
2 ��2

p e
¡(x¡�)2

2�2 ; x2R:

We then say that X is a Gaussian random variable with parameters � and
�2, and we write

X=
(d)N (�; �2) or X�N (�; �2):

� is called the mean (or center) and � is called the standard deviation (or
spread) of X.

2.5 Cumulative distribution function (CDF)

Definition 2.22. The cumulative distribution function (CDF) of a
real-valued random variable X is the function FX:R! [0; 1] given by

FX(a) :=P (X � a); a2R:

Note that the CDF is defined for any r.v. taking values in R, whether
discrete or continuous.

Proposition 2.23. Let FX:R! [0; 1] be the CDF of a real-valued r.v. X.
Then:

� FX is non-decreasing: if a� b then FX(a)�FX(b).
� FX is right-continuous: for all a2R,

FX (a+) := lim
b!a
b>a

FX(b)=FX(a)

� FX (¡1) := lim
a!¡1

FX(a)= 0; FX (+1) := lim
a!+1

FX(a)= 1.
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One can read off relevent information on the distribution of X from its
CDF.

Lemma 2.24. Let FX:R! [0;1] be the CDF of a real-valued r.v. X. Then:

� For any real numbers a< b,

P (X 2 (a; b])=FX(b)¡FX(a);
� For any a2R,

P (X >a)= 1¡FX(a);
� For any x2R,

P (X =x)=FX(x)¡FX (x¡ );

where FX (x¡ ) := lim
y!x
y<x

FX(y).

Remark 2.25. In particular, if X is a continuous r.v., we have FX(x) =
FX (x¡ ) for all x2R: no jumps occur. For a discrete r.v. the situation is
very different: FX is then a pure-jump function, meaning that it increases
purely through jumps.

2.6 Relation between CDF and PMF/PDF

Proposition 2.26. [Discrete case]Let X be a discrete r.v. taking values in
a countable subset E of R. Denoting the PMF of X by pX, and its CDF
by FX, we have

8a2R; FX(a)=
X
x2X
x�a

pX(x);

8x2X ; pX(x)=FX(x)¡FX(x¡):

Proof. The first relation follows upon applying equality (2.1) with B=fx2
E:x� ag. For the second relation, note that

fX =xg=
\
n�1

fX 2 (x¡ 1/n; x]g:

Since the sets fX 2 (x¡ 1/n; x]g form a decreasing sequence of events, by
Exercise 1.3 above we have

P

 \
n�1

fX 2 (x¡ 1/n; x]g
!
= lim
n!1

P(X 2 (x¡ 1/n; x])

= lim
n!1

FX(x)¡FX (x¡ 1/n)

=FX(x)¡FX (x¡ );
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whence the claim. �

Proposition 2.27. [Continuous case] Let X be a continuous real-valued
r.v. Denoting the PDF of X by fX, and its CDF by FX, we have

8a2R; FX(a)=
Z
¡1

a

fX(y) d y:

In addition, if FX is differentiable at x, we have

8x2E; fX(x)=FX0 (x):

Proof. For the first statement, note that, for all u<a, we have

FX(a)¡FX(u)=P (X 2 (u; a])=P (X 2 [u; a]) =
Z
u

a

fX(y) d y

where in the second equality we used the fact that P (X =u)=0 since X is
a continuous r.v. Sending u!1, and recalling that FX (¡1)=0, we obtain
FX(a)=

R
¡1
a

fX(y) d y as requested. We admit the second statement. �

Proposition 2.28. The probability distribution of a real-valued r.v. is
uniquely determined by its CDF

Proof. We give a proof in the discrete case. Let X and Y be two discrete
real-valued r.v. sharing the same CDF:

8a2R; FX(a)=FY (a):

By Proposition 2.26 above, it follows that, for all x2E,

pX(x)=FX(x)¡FX (x¡ )=FY (x)¡FY (x¡ )= pY (x):

Thus X and Y have the same PMF, whence it follows that X=
(d)
Y . �

2.7 Quantile function

Definition 2.29. [Quantile function] Let X be a real-valued r.v. with CDF
F. We define the quantile function F¡1: (0; 1)!R of X as

F¡1(q) := inf fx2R; F (x)> qg; q 2R:

Beware, F¡1 is not always the proper inverse of the CDF F , as F may
not be invertible. For instance, the CDF of a Bernoulli random variable of
paramter 1/2 is given by

F (x)=

8<: 0 if x< 0
1/2 if 0�x< 1
1 if x� 1

:
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Such a function is not invertible in the usual sense as it is not injective.
However the quantile function F¡1 as defined above does still make sense.

Exercise 2.1. Compute F¡1 in that case.

Proposition 2.30. Let X be a real-valued random variable with CDF FX.
Then

1. For all q 2 (0; 1), FX(FX¡1(q))� q.
2. If X is a continuous r.v. then, for all q 2 (0; 1), FX(FX¡1(q))= q.

Proof. 1. Let q 2 (0; 1). By definition of FX
¡1(q), there is a

sequence of real numbers an such that FX(an)> q and converging
to FX

¡1(q) from above. By right-continuity of FX, we then have

FX(FX
¡1(q))= lim

n!1
FX(an)� q:

2. From the previous point we have FX(FX
¡1(q))� q. Assume by con-

tradiction that FX(FX
¡1(q))> q. Since FX is CDF of a continuous

r.v., it is continuous. By continuity of FX at the point FX
¡1(q) there

exists some a<FX
¡1(q) such that FX(a)> q, but this contradicts the

definition of FX
¡1(q). Hence FX(FX

¡1(q))= q as requested. �

Beware, even in the continuous setting, we do not necessarily have
F¡1(F (q))= q for all q 2 (0; 1).

Example 2.31. [CDF of a normal random variable]The CDF of a normal
random variable X is often denoted by �.

�(x)=P (X �x)=
Z
¡1

x 1
2 �

p exp
�
¡t

2

2

�
d t; x2R:

Typical values to remember:

�(1.645)=P (X � 1.645)� 0.95

�(1.960)=P (X � 1.960)� 0.975

In this case the CDF � is injective and the quantile function, denoted by
�¡1, coincides with its inverse. The above equalities can be re-expressed as

�¡1(0.95)� 1.645;

�¡1(0.975)� 1.960:

2.8 Exercises
Exercise 2.2. John claims: �If X is a continuous r.v. with PDF fX, then for all x2R,

P (X =x) =

Z
x

x

fX(y) d y=0:
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Therefore, for any event A,

P (X 2A) =P

 [
x2A

fX =xg
!
=
X
x2A

P (X =x)=
X
x2A

0=0;

where we used the fact that the sets fX = xg are disjoint for different values of x�.
What do you think of John's claim? Carefully justify your answer.

Exercise 2.3. Let (pn)n�1 be a sequence of real numbers in (0; 1) and �> 0. We
assume that limnn pn=�. Show that, for all k� 0,

lim
n!1

Bin(k;n; pn)=P(k;�):

How do you interpret this result?

Exercise 2.4. Compute the CDF of:

� a geometric r.v.

� an exponential r.v.

Exercise 2.5. [Median of a r.v.] For a real-valued r.v. X, we say that m2R is a
median for X if P(X �m)� 1/2 and P (X �m)� 1/2.

1. If X is a continuous r.v. with CDF F , show that a median is provided by
F¡1 (1/2).

2. Compute a median for X when X is a uniform random variable. Do the same
with a Gaussian random variable and an exponential random variable.
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Chapter 3

Joint distributions

3.1 Definition: joint distribution, marginal dis-
tributions

Let (
;P) be a probability space, and let X; Y be two random variables
with target spaces E and F . One can see (X;Y ) as a random variable taking
values in E �F .

Definition 3.1. The joint distribution of (X;Y ) is the collection of prob-
abilities

PX;Y (C) :=P ((X;Y )2C);

for all subset C of the target set E �F.

By contrast to the above definition, we shall refer to

PX(A) :=P (X 2A); A�E
and

PY (B) :=P (Y 2B); B�F

as the marginal distributions of (X;Y ). Note the relations

PX(A)=PX;Y (A�F )
and

PY (A)=PX;Y (E �B);

which allow to retrieve the marginal distributions from the joint distribution.
Warning: The joint distribution of (X; Y ) is in general NOT deter-

mined by its marginal distributions.

3.2 Discrete case

Assume that X and Y are discrete, i.e. E and F are countable. Then the
product space E �F is countable as well, and (X; Y ) may thus be studied
as a discrete r.v.
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Definition 3.2. The joint PMF of (X;Y ) is the function pX;Y :E�F!
[0; 1] defined, for all (x; y)2E �F, by

pX;Y (x; y) :=P ((X;Y )= (x; y))=P(X =x; Y = y):

Note that, as in the univariate case, the joint PMF of (X;Y ) is:

1. non-negative: pX;Y (x; y)� 0 for all (x; y)2E �F

2. normalised:
P

x;y pX;Y (x; y)= 1.

Lemma 3.3. If (X; Y ) admits a joint PMF pX;Y, then the PMFs of X
and Y are respectively given by

pX(x)=
X
y2F

pX;Y (x; y); x2E;

and

pY (y)=
X
x2E

pX;Y (x; y); y 2F:

We call pX and pY the marginal PMFs of (X;Y )

Example 3.4. Let (X;Y ) be a bi-variate r.v. taking values in f1; 2g�f1;
2; 3g and with joint PMF p given as below

p (x; y) y=1 y=2 y=3
x=1 0.1 0.3 0.2
x=2 0.2 0.2 0

The values of the marginal PMF pX(x) for x= 1; 2 are obtained by
summing up the probabilities in each of the corresponding rows. Thus

pX(1)= 0.1+ 0.3+ 0.2= 0.6;

pX(2)= 0.2+ 0.2+0= 0.4:

Likewise, the values of the marginal PMF pY (y) for y=1; 2; 3 are obtained
by summing up the probabilities in each of the corresponding columns:

pY (1)=0.1+0.2=0.3; pY (2)=0.3+0.2=0.5; pY (3)=0.2+0=0.2:

3.3 Continuous case

A bi-variate PDF is defined in a way very similar to the univariate case.
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Definition 3.5. A function f :R2!R is called a probability density
function (PDF) if the following conditions hold:

� f(x; y)� 0 for all (x; y)2R2,

�
R
1
+1R

1
+1

f(x; y) d y d x=1.

Two real-valued random variables X and Y are said to admit a continuous
joint distribution (or to admit a joint density) if there exists a PDF fX;Y :
R2!R such that, for all subset A of R2, we have

P ((X;Y )2A)=
Z
A

fX;Y (x; y) dx dy : (3.1)

We then call fX the probability density function (PDF) of X.

Lemma 3.6. If (X; Y ) admits a joint density fX;Y, then X and Y are
continuous r.v. with pdf respectively given by

fX(x)=
Z
¡1

+1
fX;Y (x; y) d y; x2R;

and

fY (y)=
Z
¡1

+1
fX;Y (x; y) d x; y 2R:

We call fX and fY the marginal PDFs of (X;Y ).

Warning: If X and Y are both continuous random variables, this does
NOT necessarily imply that (X; Y ) has a continuous joint distribution.
For instance, if X=Y �N(0; 1), then X and Y are clearly both continuous
random variables, however, (X;Y ) does not admit a joint density (exercise:
justify why).

Example 3.7. Let a;b; c;d2R2 such that a<b and c<d. Then the function
f :R2!R given by

f(z)= 1
(b¡a) (d¡ c) 1[a;b]�[c;d](z); z 2R2;

is a PDF. It corresponds to the uniform distribution on the rectangle [a;
b]� [c; d]. The marginal distributions are univariate uniform distributions
on the intervals [a; b] and [c; d], respectively;

X�U(a; b); Y �U(c; d)

Example 3.8. [bivariate Gaussian distribution] Let � 2R2 and let K 2
R2�2 be a symmetric, positive definite 2-dimensional square matrix. The
function f :R2!R given by

f(z)= 1
2� det (K)
p exp

�
¡1
2
(z¡ �)TK¡1 (z¡ �)

�
; z 2R2;
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is a PDF. A random vector Z=(X;Y ) with PDF p is said to have Gaussian
distribution with mean � and covariance matrix K (see below for justifica-
tion of this treminology). Denoting

�=
�
�X
�Y

�
; K =

 
�X
2 �XY

2

�XY
2 �Y

2

!
;

then the marginal PDFs are given by

fX(x)=
1
2 ��X2

p exp
�
¡(x¡ �X)

2

2 �X2

�
and

fY (y)=
1
2 ��Y2

p exp
�
¡(y¡ �Y )

2

2 �Y2

�
:

Thus X�N (�X ; �X2 ) and Y �N (�Y ; �Y2 ). A very special case corresponds
to �=0 and K= I2, that is �X= �Y =0, �XY2 =0 and �X2 =�Y2 =1. Then

f(z)= 1
2 �

exp
�
¡1
2
kzk2

�
; z 2R2;

where, for z=(x; y), kzk := x2+ y2
p

denotes the Euclidean norm of z.

3.4 Independence
Let (
;P) be a probability space, and let again X;Y be two random vari-
ables with target spaces E and F .

Definition 3.9. X and Y are said to be independent if, for any subsets
A of E and B of F, the events fX 2Ag and fY 2Bg are independent, i.e.

P(X 2A; Y 2B)=P (X 2A) P (Y 2B):

Theorem 3.10. [Independence: discrete case] Assume that (X; Y ) is a
discrete random variable, with joint PMF pX;Y and marginal PMFs pX and
pY. Then X and Y are independent if and only if

pX;Y (x; y)= pX(x) pY (y); (x; y)2E �F :

Proof. First assume that X and Y are independent. Then for all x2E and
y 2F ,

pX;Y (x; y)=P(X =x; Y = y)=P (X =x) P (Y = y)= pX(x) pY (y);

where we used independence of X and Y in the second equality. Conversely,
assume that pX;Y (x; y) = pX(x) pY (y) for all (x; y)2E � F . Then for all
subsets A of E and B of F respectively, we have

P(X 2A; Y 2B)=
X

(x;y)2A�B
pX;Y (x; y)=

X
(x;y)2A�B

pX(x) pY (y):
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The last sum factorizes and takes the formX
x2A

pX(x)
X
y2B

pY (y)=P (X 2A) P (X 2B):

Thus we have shown P(X 2A; Y 2B)=P (X 2A) P (X 2B), so A and B
are indeed independent. �

A similar result can be shown in the continuous case. We will not give
a proof.

Theorem 3.11. [Independence: continuous case] Assume that (X; Y ) is
a continuous random variable. with joint PDF fX;Y and marginal PDFs
fX and fY. Then X and Y are independent if and only if

fX;Y (x; y)= fX(x) fY (y); (x; y)2E �F:

3.5 Conditional distribution

Definition 3.12. Let (X; Y ) be a discrete random variable with joint
PMF pX;Y and marginal PMFs pX and pY. The conditional PMF pX jY of
X given Y is defined by

pX jY (xjy) :=
pX;Y (x; y)
pY (y)

;

for all x2E and y 2F such that pY (y)> 0.

Definition 3.13. Let (X;Y ) be a continuous random variable in R2 with
joint PDF fX;Y and marginal PDFs fX and fY. The conditional PDF fX jY
of X given Y is defined by

fX jY (xjy) :=
fX;Y (x; y)
fY (y)

;

for all x2R and y 2R such that fY (y)> 0.

3.6 Multivariate distributions
Let n � 1 and let X1; : : : ; Xn be n random variables defined on the same
probability space (
;P), and with realization spaces E1; : : : ; En. One can
see the map

X := (X1; : : : ; Xn):! 7! (X1(!); : : : ; Xn(!))

as a single, multi-variate, random variable with values in the product space
E1� : : :�En.
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Remark 3.14. When X1; : : : ;Xn all take values in R, the random variable
(X1; : : : ; Xn) takes values in Rn: it is then common to refer to (X1; : : : ; Xn)
as an n-dimensional random vector.

The definitions and properties stated above for bi-variate random vari-
ables can be naturally generalised to the multi-variate case.

Definition 3.15. By the joint distribution of X1; : : : ; Xn we mean the
specification of the probabilities

PX1; : : : ;Xn(C) :=P ((X1; : : : ; Xn)2C);

for all C 2E1� :::�En. In contrast the respective probability distributions
PX1; : : : ; PXn of the random variables X1; : : : ; Xn are referred to as the
marginal probabilities.

Remark 3.16. For all i=1; : : : ; n, the marginal distribution PXi is related
to the joint distribution PX1; : : : ;Xn by

PXi(A)=PX1; : : : ;Xn(E1� : : : ; Ei¡1�A�Ei+1� : : :�En):

for all event A�Ei.

3.6.1 Discrete case

Definition 3.17. Assume that the realization spaces E1;:: :;En are count-
able, so that X1; : : : ; Xn are discrete random variables. Their joint PMF
pX1; : : : Xn:E1� : : :�En! [0; 1] is defined as

pX1; : : : ;Xn (x1;:::; xn) :=P(X1=x1;:::;Xn=xn); (x1;:::; xn)2E1� :::�
En:

Proposition 3.18. For all event C �E1� : : :�En, we have

PX1; : : : ;Xn(C)=
X

(x1; : : : ;xn)2C
pX1; : : : ;Xn (x1; : : : ; xn):

Proof. Follows by �-additivity upon noting the equality of events

f(X1; : : : ; Xn)2Cg=
[

(x1; : : : ;xn)2C
fX1=x1; : : : ; Xn=xng: �

One can recover the individual PMFs of the random variables X1; : : : ;
Xn from the joint PMF pX1; : : : ;Xn

pXi(x)=
X
x12E1
: : :

xi¡12Ei¡1
xi+12Ei+1

: : :
xn2En

pX1; : : : ;Xn (x1; : : : ; xi¡1; x; xi+1; : : : ; xn):
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Remark 3.19. More generally, for any subset of indices I �f1; : : : ; kg we
can recover the joint PMF of the random variables Xi, i2 I from the joint
PMF of X1; : : : ; Xn, by summing up pX1; : : : ;Xn over all possible values in
the coordinates j 2/ I. For instance, if n=4, we can recover the joint PMF
of X2; X3 as follows:

pX2;X3 (x; y)=
X
x12E1
x42E4

pX1;X2;X3;X4 (x1; x; y; x4):

3.6.2 Continuous case
A multi-variate PDF is defined in a way very similar to the univariate or
bivariate case.

Definition 3.20. A function f :Rn!R is called a probability density
function (PDF) if the following conditions hold:

� f(x1; : : : ; xn)� 0 for all (x1; : : : ; xn)2Rn,

�
R
1
+1

: : :
R
1
+1

f(x1; : : : ; xn) d xn : : : ; d x1=1.

n real-valued random variables X1; : : : ; Xn are said to admit a contin-
uous joint distribution (or to admit a joint density) if there exists a PDF
fX1; : : : ;Xn:Rn!R such that, for all subset A of Rn, we have

P ((X1; : : : ; Xn)2A)=
Z
A

fX1; : : : ;Xn(x1; : : : ; xn) d x1 : : : d xn: (3.2)

We then call fX1; : : : ;Xn the probability density function (PDF) of X.

Lemma 3.21. If X1; : : : ;Xn admit a joint density fX1; : : : ;Xn, then X1; : : : ;
Xn are continuous r.v. with PDF given by

fXi(x) =
Z
¡1

+1
: : :

Z
¡1

+1
fX1; : : : ;Xn(x1; : : : ; xi¡1; x; xi+1; : : : ;

xn) d xn : : : d xi+1 d xi¡1; : : : ; d x1; x2R:

We call fXi, i=1; : : : ; n, the marginal PDFs of X1; : : : ; Xn.

Thus the value at x of the marginal PDF in the i-th coordinate is given
by the joint PDF where we insert x as the i-th coordinate and we integrate
over all possible values in the other coordinates.

Remark 3.22. More generally, for any subset of indices I�f1;:::;kg we can
recover the joint PDF of the random variablesXi, i2I from the joint PDF of
X1;:::;Xn, by integrating fX1; : : : ;Xn over all possible values in the coordinates
j2/ I. For instance, if n=4, we can recover the joint PDF of X2;X3 as follows:

fX2;X3(x; y)=
Z
x1=¡1

+1 Z
x4=¡1

+1
fX1;X2;X3;X4(x1; x; y; x4) d x4 d x1:
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3.6.3 Independence

Definition 3.23. The random variables X1; : : : ; Xn are said to be inde-
pendent if, for any subsets A1�E1; A2�E2; : : : ; An�En, we have

P(X12A1; : : : ; Xn2An)=P (X12A1) : : : P (Xn2An):

Theorem 3.24. [Independence: discrete case] Assume that X1; : : : Xn are
discrete random variables, with joint PMF pX1; : : : ;Xn and marginal PMFs
pX1; : : : ; pXn. Then X1; : : : Xn are independent if and only if

pX1; : : : ;Xn (x1; :: :; xn)= pX1(x1) :: : pXn(xn); (x1;: :: ; xn)2E1� :: :�En:

Theorem 3.25. [Independence: continuous case] Assume that X1; : : : Xn

are discrete random variables admitting a joint density fX1; : : : ;Xn and mar-
ginal PDFs fX1; : : : ; fXn. Then X1; : : : Xn are independent if and only if

fX1; : : : ;Xn(x1; : : : ; xn)= fX1(x1) : : : fXn(xn); (x1; : : : ; xn)2Rn:
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Chapter 4

Transformations of random vari-
ables

4.1 Probability integral transform

Let X be a continuous real-valued random variable with CDF FX and quan-
tile function FX

¡1.

Theorem 4.1. 1. The random variable U =FX(X) is distrib-
uted uniformly in [0; 1], i.e. U �U(0; 1).

2. If U is a uniform random variable in [0;1], then the random variable
FX
¡1(U) has the same distribution as X, i.e. FX

¡1(U)=
(d)
X.

The above theorem is very useful for simulations: it allows one to sim-
ulate any real-valued random variable X using a uniform random variable
on [0; 1]. To do so, one "only" needs to have an expression for the CDF of
X. More generally, we can simulate n i.i.d. random variables X1; : : : ; Xn

with common CDF F as follows: we simulate n i.i.d. uniform r.v.'s on [0;1],
U1; : : : ; Un, and construct the sequence F¡1(U1); : : : ; F¡1(Un).

Example 4.2. Assume we want to simulate an exponential random variable
X. That is X � E(�) for some � > 0, see Definition 2.20. The associated
CDF FX is given by

FX(a)=
Z
¡1

a

fX(x) d x=1[0;+1)(a)
Z
0

a

� e¡�x d x=1[0;+1)(a) (1¡ e¡�a):

It follows that

FX
¡1(q)=¡1

�
log (1¡ q); q 2 (0; 1):

Hence, to simulate X�E(�), it suffices to generate a random variable U �
U(0; 1), and compute X =¡ 1

�
log (1¡U).

Exercise 4.1. By noting that if U � U(0; 1), then V := 1¡ U also satifies
V �U(0; 1), show that, in the above, one can alternatively compute X =¡ 1

�
log (U)

to obtain the desired result.
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4.2 Change of variable formulae

Suppose we know the distribution of a random variable X, and Y = r(X),
where f is some map. How can one compute the distribution of Y?

4.2.1 Discrete Case
Assume that X and Y are discrete random variables with outcome spaces
E, F and PMF pX, pY , respectively. Assume that y= r(X), where r:E!F
is a map.

Proposition 4.3. The PMF of Y is given by:

pY (y)=
X
x2E
r(x)=y

pX(x):

In words, the PMF of Y at a point y is computed by summing up the
PMF of X over the preimage of {y}.

Proof. We have

pY (y)=P (Y = y)=P (r(X)= y):

Now the event fr(X)= yg can be rewritten as the disjoint union of events[
x2E
r(x)=y

fX =xg;

so by �-additivity,

P (r(X)= y)=
X
x2E
r(x)=y

P (X =x)||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
pX(x)

: �

4.2.2 Continuous case: univariate framework
The continuous case is more involved. Let us assume that X is a continuous
real-valued r.v. with PDF X, and that r:R!R is a function. Does the r.v.
Y := r(X) admit a PDF? If so, how can one compute it? We first make a
remark:

Remark 4.4. Denoting by FY the CDF of Y , we have

FY (y)=P (Y � y)=P (r(X)� y)=P (X 2Ay); y 2R;

where Ay= fx2R: r(x)� yg

Here is a general method to derive the PDF of Y , which is based on first
computing the CDF of Y .
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Three steps for transformations (see Wasserman, Section 2.12):

1. For y 2R, compute the set

Ay := fx2R: r(x)� yg

2. Compute the CDF FY of Y using the relation

FY (y)=P (X 2Ay)

3. If FY is differentiable, then Y has a PDF fY given by fY =FY0 .

Example 4.5. Assume that X�U(0;1). Let r:R!R be the map given by
r(x)=x2, for x2R. We compute the PDF of r(X) using the above method.
First note that, for y 2R, we have

Ay= fx2R:x2� yg=

(
; if y < 0if
[¡ y
p

; y
p

]; if y> 0 :

Now, if y � 0, we have

P (X 2 [¡ y
p

; y
p

]) =
Z
¡ y
p

y
p

1[0;1](x) d x=

(
y

p
if y 2 [0; 1]

1 if y > 1:

It follows that

FY (y)=

8>><>>:
0 if y < 0
y

p
if y 2 [0; 1]

1 if y > 1:

By differentiation we obtain

fY (y)= 1[0;1](y)
1

2 y
p ; y 2R:

In the special case where r:R!R is a strictly increasing (or strictly
decreasing) function, one has a general formula:

Theorem 4.6. Assume that r:R!R is a C1-differentiable and strictly
increasing (or strictly decreasing) function. Then Y admits a PDF fY given
by

fY (y)=
1

jr 0(r¡1(y))j fX(r
¡1(y)); y 2R: (4.1)

4.2.3 Continuous case: multivariate setting
The above methods generalise to higher dimensions. For instance, assume
that we have two realvalued random variables X;Y , a function r:R2!R,
and we wish to derive the PDF of the real-valued random variable Z= r(X;
Y ). For example, Z could be X +Y , X ¡Y , min (X;Y ), etc.
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Three steps for transformations (see Wasserman, Section 2.12):

1. For z 2R, compute the set

Az := f(x; y)2R2: r(x; y)� zg

2. Compute the CDF FZ of Z using the relation

FZ(z)=P ((X;Y )2Az)

3. If FZ is differentiable, then Z has a PDF fZ given by fZ=FZ0 .

Example 4.7. Assume thatX;Y �U(0;1) (i.e. X;Y are indepdent uniform
random variables on [0; 1]). Let Z=max (X;Y ). We can compute the PDF
fZ of Z using the above methods. Since Z takes values in [0;1], we will have
fZ(z)= 0 for z 2/ [0; 1]. Let now z 2 [0; 1]. First note that

Az=f(x; y)2R2:max (x; y)�zg=f(x; y)2R2:x�z and y�zg=(¡1; z]2:

Hence,

FZ(z)=P ((X;Y )2Az)=P(X � z; Y � z):

Since X ??Y and both r.v.'s are uniformly distributed in (0; 1), we get

FZ(z)=P (X � z) P (Y � z)=
�Z

¡1

z

1[0;1](t) d t
�
2

= z2:

Differentiating the above yields fZ(z) = 2 z, which holds for all z 2 [0; 1].
Finally:

fZ(z)=2 1[0;1](z) z; z 2R:

A last change of variable tool we present pertains to the case where X is
an n-dimensional random vector, n�1, r:Rn!Rn, and we aim at obtaining
the PDF of the random vector Y := r(X).

Theorem 4.8. Assume that r:Rn!Rn is C1-diffeormorphism, i.e., r is
a bijective transformation of Rn, and both r and r¡1 are C1-continuous.
Then Y = r(X) admits the PDF fY given by

fY (y)=
1

jdet (Jr(r¡1(y))j fX(r
¡1(y); y 2Rn: (4.2)

Example 4.9. Assume that r is an affine transformation:

r(x)=Ax+ b; x2Rn;

for some fixed vector b 2Rn and invertible matrix A 2Rn�n. Then the
Jacobian matrix of r is given by

J r(x)=A; x2Rn
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and we have

r¡1(y)=A¡1 (y¡ b); y 2Rn

therefore (4.2) yields

fY (y)=
1

jdet (A)j fX (A
¡1 (y¡ b)); y 2Rn:

We sum up the different change of variable methods explained above in
the following chart:

Case Technique
discrete case sum up PMF over preimage

continuous case, r:R!R 3-steps to transformation
continuous case, r:R!R s.t. r 0=/ 0 univariate Jacobian formula

continuous case, r:Rd!Rd s.t. det (Jr)=/ 0 multivariate Jacobian formula

4.3 Sums of independent random variables

.
LetX;Y be two independent random variables. How does one compute

the probability distribution of X +Y .

4.3.1 Discrete case
Assume that X and Y are independent, discrete, real-valued random vari-
ables with PMFs pX, pY , respectively.

Theorem 4.10. The random variable Z =X +Y has PMF given by

pZ(z)=
X
x;y

x+y=z

pX(x) pY (y)=
X
x

pX(x) pY (z¡x):

Example 4.11. Let X�P(�) and Y �P(�) be two independent Poisson
random variables with parameters �; �> 0. Then X +Y �P (�+ �).

4.3.2 Continuous case

Theorem 4.12. The random variable Z =X +Y has PDF given by

pZ(z)=
Z
¡1

+1
fX(x) fY (z¡x) d x; z 2R: (4.3)

Remark 4.13. * The integral appearing in (4.3) is often called convolution
product of fX and fY , and sometimes written fX � fY .
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4.4 Transformations of Gaussian random vari-
ables

In this section we present results that show how Gaussian random variables
(and vectors) behave under certain specific transformations.

Proposition 4.14. [Z-transform]The ( 1-dimensional) Gaussian distrib-
ution satisfies the following properties:

1. Let �2R and �> 0. If X�N (0; 1), then Y := �+�X�N (�;�2).
2. Conversely, if Y �N (�; �2), then X := 1

�
(Y ¡ �)�N (0; 1).

Proof. 1. Let

r(x)=� x+ �; x2R:

Then, in virtue of the Jacobian change of formula(4.1), Y = r(X)
admits the PDF

fY (y)=
1
�
fX

�
1
�
(y¡ �)

�
:

But by assumption fX(x)=
1

2 �
p exp

�
¡x2

2

�
, so the expression above

yields

fY (y)=
1
2 ��2

p exp
�
¡ 1
2 �2

(y¡ �)2
�
; y 2R:

We recognise the PDF of a Gaussian with mean � and �2: the claim
follows.

2. It suffices to apply (4.1), now to the function

r¡1(y)=�¡1 (y¡ �); y 2R: �

Proposition 4.15. If X1;: : :;Xn are independent Gaussian variables with
parameters �i and �i2, and if X :=

P
i=1
n

Xi, then

X�N

 X
i=1

n

�i;
X
i=1

n

�i
2

!
:

Proof. By induction it is sufficient to treat the case n= 2. In turn the
formula for n=2 can be proven using (4.3). We omit the details. �

The above results generalise to the multivariate case. We first state:

Lemma 4.16. Let d�1, let �2Rd, let K 2Rd�d be a symmetric, strictly
positive definite matrix, and consider a d-dimensional Gaussian vector X�
N (�; K). If p � d and A 2Rp�d is a p � d matrix with full rank, then
Y :=AX is a p-dimesnional Gaussian vector, namely Y �N (A�;AKAT).
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Remark 4.17. In the above, we can for example take p= 1 and, for all
i= 1; : : : ; d, we can choose Ai 2R1�d=Rd to be the i-th vector of the
canonical basis of Rd. Then Y =Xi and

Ai�= �i; AKAT =Ki;i;

we thus retrieve the result on the marginal distribution of Xi.

We now state a multivariate version of the Z-transform. Recall that if
d�1 and K 2Rd� is symmetric, strictly positive definite, then K admits a
square-root, i.e. there exists a symmetric, strictly positive matrix A, some-
times denoted by K1/2, such that A2=K.

Proposition 4.18. Let d� 1. The multivariate d-dimensional Gaussian
distribution satisfies the following properties:

1. Let �2Rd, let K 2Rd�d be a symmetric, strictly positive definite
matrix, and let A be a square-root of K. If X�N (0; Id), then Y :=
�+AX�N (�;K).

2. Conversely, if Y �N (�;K), then X :=A¡1 (Y ¡ �)�N (0; Id).

Proposition 4.19. If X1; : : : ; Xn are independent Gaussian vectors with
parameters �i and Ki

2, and if X :=
P

i=1
n

Xi, then

X�N

 X
i=1

n

�i;
X
i=1

n

Ki

!
:

We end this chapter with a result on squares of Gaussian random vari-
ables.

Definition 4.20. For n� 1, the �2(n) distribution is the continuous dis-
tribution with PDF

�2(x;n)=1fx>0g
1

¡
¡ n
2

�
2

4.5 Exercises

Exercise 4.2. [The Box-Muller transform] Let R�Exp(1/2) and ��U([0;2�]). We
assume that R and � are independent. Show that X :=R cos (�) and Y :=R sin (�)
are two i.i.d. standard normal random variables.
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Chapter 5
Expectation and covariance
This Chapter follows Chapter 3 of Wasserman.

5.1 Expectation: Definition and examples
We wish to give a proper meaning to the notion of "mean" or "average" of
a real-valued random variable X. If the random variable takes finitely many
values x1; : : : ; xn with equal probability 1

n
, then it is natural to define the

average of X as the arithmetic average 1

n

P
i=1
n xi. More generally, if X takes

the value xi with some probability pi for all i, then it is natural to define the
average of X , as being the weighted average

P
i=1
n pi xi. With this definition,

values xi that are more likely to be realised are assigned a stronger weight
pi, while xi that are less likely to occur are assigned a smaller weight.

Definition 5.1. Let X be a discrete, resp. continuous, real-valued random
variable with PMF pX, resp. with PDF fX. We define the expectation
(also called mean) of X as

E(X)=
Z
x dFX(x)=

8<:
P

xxpX(x) if X is discreteR
¡1
+1

x fX(x) d x if X is continuous ;
(5.1)

this quantity being well-defined provided the sum, resp. the integral above
is absolutely convergent: we then say that X is integrable.

Remark 5.2. The integrability condition ensures that the sum
P

xxpX(x),
resp. the integral

R
¡1
+1

x fX(x) d x, is well-defined. Note that this condition
is automatically fulfilled in the case of a discrete r.v. with finite outcome
space. Most real-valued r.v's we will encounter in the sequel will be inte-
grable. However there does exist random variables that are not integrable,
see Exercise 5.2 below.

The expectation of X can be interpeted as the value that X will take on
average. Heuristically, if we observe realisations x1; : : : ; xn of X , then, for
large n, the empirical mean should be close to E(X):

1
n

X
i=1

n

Xi�E(X):
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The Law of Large Numbers, to be stated in the next Chapter, provides a
rigorous mathematical proof for this fact.

We now give examples of computations of E(X).

Example 5.3. Assume that X is deterministic, i.e. there exists x2R such
that X =x a.s. Then E(X)=x.

Example 5.4. Let X be a discrete r.v. whose target space is a finite set
X �R. Then X is always integrable, and

E(X)=
X
x2X

x pX(x):

In particular, when X is uniformly distributed in X , we have

E(X)= 1
jX j

X
x2X

x;

so the expectation of X coincides with the algebraic average of the values
x2X .

Example 5.5. Let a<b and assume that X�U(a; b). Then

E(X)=
Z
x fX(x) d x=

Z
a

b

x
1

b¡ a d x=
b2¡a2
2 (b¡a) =

a+ b
2

:

Example 5.6. Let �2R and � > 0, and consider X�N (�; �2). Then

E(X)=
Z
¡1

+1
x

exp
�
¡ (x¡ �)2

2�2

�
2 ��2

p d x:

Performing the change of variable y = x ¡ �, the above integral can be
rewrittenZ
¡1

+1
(y + �)

exp
�
¡ y2

2 �2

�
2 � �2

p d y =
Z
¡1

+1
y

exp
�
¡ y2

2 �2

�
2 � �2

p|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
odd function of y

d y +

�

Z
¡1

+1exp
�
¡ y2

2 �2

�
2 ��2

p||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
N (y;0;�2)

d y

The first integral in the right-hand side vanishes (as the integrand is odd),
while the integral equals 1 (as the integrand is the PDF of a Gaussian, hence
normalised). So E(X)= 0+ �: 1= �. This justifies calling the parameter �
the mean of the Gaussian r.v. X .

The following result unveils a tight link between expectation and prob-
ability:
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Proposition 5.7. Let A be a an event from some probability space (
;A;
P), and consider the random variable

1A:! 7!
�
1 if ! 2A
0 if !2/ A:

It has expectation E(1A)=P(A).

Proof. The random variable X=1A takes values in f0;1g, its PMF satisfies

pX(0)=P(Ac)=1¡P(A); pX(1)=P(A):

Therefore

E(X)= 0 pX(0)+ 1 pX(1)=P(A): �

5.1.1 Properties of expectation
We first ask the following question: if X is a, potentially multivariate,
random variable, and r is a map, how to compute the expectation of r(X)?

Theorem 5.8. [Rule of the lazy statistician (RLS)] Let X be a r.v. with
outcome space E and r:E!R a map. Then

E(r(X))=

( P
x r(x) pX(x) if X is discreteR
r(x) fX(x) d x if X is continuous ;

Thus, the knowledge of the distribution of X is sufficient in order to
compute E(r(x)) for any function r:R!R, we do not need to re-compute
the distribution of r(X), hence the (informal) name of the above theorem.

Example 5.9. [Wasserman, Example 3.8] We break a stick of unit length
at a random point distributed uniformly along the stick: the stick is thereby
broken into two pieces, and we denote by Y the length of the larger piece.
Let us compute E(Y ). By assumption, the position of the breaking point is
given by X�U(0; 1), and Y is then given by Y =max (X; 1¡X). By the
rule of the lazy statistician, we thus get

E(Y )=
Z
¡1

+1
max (x;1¡x) fX(x) dx=

Z
0

1

max (x; 1 ¡ x) d x =
Z
0

1/2

(1 ¡

x) d x+
Z
1/2

1

x dx

=
�
¡(1¡ x)2

2

�
0

1/2

+
�
x2

2

�
1/2

1

=

1¡ 1/4
2

+ 1¡ 1/4
2

= 3
4
:
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Example 5.10. An important class of examples of maps r is given by

r(x)= jxjk; x2R;

for k � 1. The expectation

E(jX jk)

8<:
P

x jxj
k pX(x) if X is discreteR

¡1
+1jxjk fX(x) d x if X is continuous;

is called k-th moment of X. It is a well-defined, finite number provided the
sum, resp. the integral above is convergent. We then say that X admits k
moments. When k=2, we say X is square-integrable.

Example 5.11. Let a<b and assume that X�U(a; b). Then

E(X2)=
Z
x2 fX(x) d x=

Z
a

b

x2
1

b¡ a dx=
b3¡ a3
3 (b¡ a) =

a2+a b+ b2

3
:

In particular, when a=0 and b=1, we get E(X2)= 1/3.

We now state further fundamental properties of expectations:

Proposition 5.12. [Linear-affine transformation] Let X be a real-valued
random variable, and a; b2R. Then

E (aX + b)= aE(X)+ b:

Proof. We assume the X is discrete, the continuous case being similar. By
the RLS

E (aX + b)=
X
x

(a x+ b) pX(x)= a
X
x

x pX(x)||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
=E(X)

+ b
X
x

pX(x)||||||||||||||||||||||||||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
=1

: �

Theorem 5.13. 1. If X � 0 (resp. X �0) almost-surely, then
E(X)� 0 (resp. E(X)� 0).

2. (Linearity) If X1; : : : ; Xn are real-valued random variables, and
�1; : : : �n2R, then

E

 X
i=1

n

�iXi

!
=
X
i=1

n

�iE(Xi):

3. (Monotonicity) If X �Y almost-surely, then E(X)�E(Y ).

Proof. 1. This follows from (5.1).

2. Admitted.

3. Since Y ¡X �0 a.s., we deduce from the first point above thatE (Y ¡
X)� 0, which yileds the claim by linearity of E. �
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Finally we state a result pertaining to the product of independent
random variables.

Theorem 5.14. Let X1; : : :;Xn be independent real-valued random vari-
ables. Then

E[
Y
i=1

n

Xi] =
Y
i=1

n

E(Xi):

5.2 Variance: definition and examples

Definition 5.15. Let X be a real-valued r.v. with mean �. We define the
variance of X, denoted by �X2 or V(X), as

V(X) :=E((X ¡ �)2);

this quantity being well-defined provided the random variable X is square-
integrable. The standard deviation (or spread) of X, denoted by �X or
sd(X), is defined as

sd(X) := V(X)
p

:

Note that if X is discrete with PMF pX, resp. continuous with PDF fX,
then

V(X)=

8<:
P

x (x¡ �)
2 pX(x) if X is discreteR

¡1
+1(x¡ �)2 fX(x) d x if X is continuous;

Remark 5.16. Note that V(X) is always non-negative. While E(X)
represents the average value of X, V(X) quantifies how far realisations of
X can spread away from this average value.

Theorem 5.17. [Variance translation theorem] The variance admits the
following alternative expression:

V(X)=E(X2)¡ �2:

Proof. V(X) =E (X2¡ 2 �X + �2) =E(X2)¡ 2�E(X)|||||||||||||||||||||||||||||||| |{z}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}} }
=�2

+ �2=E(X2)¡

�2: �

Example 5.18. Let a < b and assume that X �U(a; b). We have shown
above that

E(X)= a+ b
2

; E(X2)= a2+a b+ b2

3
:

5.2 Variance: definition and examples 57



Therefore

V(X)= a2+ a b+ b2

3
¡ (a+ b)2

4
= (b¡ a)2

12
;

and sd(X)= b¡ a
2 3
p . Thus, the larger the interval [a; b] we are considering, the

larger the standard deviation. In the special case, when a=0 and b=1, we
get V(X)=1/12 and sd(X)= 1

2 3
p .

Example 5.19. Let � 2R and � > 0, and consider X �N (�; �2). Recall
that E(X)= �. We now compute V(X):

V(X)=
Z
¡1

+1
(x¡ �)2

exp
�
¡ (x¡ �)2

2�2

�
2� �2

p d x

Performing the change of variable y= x¡ �

�
, so that d x= � d y, the above

integral can be rewritten

�2
Z
¡1

+1
y2

exp
�
¡y2

2

�
2�

p d y:

Since the integrand is even the integral equals

2
Z
0

+1
y2

exp
�
¡y2

2

�
2�

p d y

In turn, after the change of variable z = y2

2
, so that d y = 1

2 z
p d z, we can

rewrite that quantity as

2
Z
0

+1
z1/2

exp (¡z)
�

p d z= 2¡ (3/2)
�

p ;

where, for all a> 0, ¡(a) :=
R
¡1
+1

ta¡1 e¡td t. But it is a fact that ¡ (3/2)=

(1/2) ¡ (1/2) = �
p

2
. We thus obtain V(X) = �2. This justifies calling the

parameter �2 the variance of the Gaussian random variable X .

Theorem 5.20. 1. If X is a real-valued r.v. and �; �2R, then

V (aX + b)=a2 V(X):

2. If X1; : : : ; Xn are n independent real-valued r.v.'s, and a1; : : : ;
an2R, then

V

 X
i=1

n

aiXi

!
=
X
i=1

n

ai
2 V(Xi):
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5.3 Covariance and correlation

Definition 5.21. [See Definition 3.18, Wasserman] Let X, Y be two real-
valued random variables admitting means �X and �Y and variances �X2 and
�Y
2. Then we define the covariance of X and Y as

Cov(X;Y ) :=E ((X ¡ �X) (Y ¡ �Y )):

We define the correlation of X and Y as

�X;Y :=
Cov(X;Y )
�X �Y

:

Remark 5.22. Using the Cauchy-Schwarz inequality (see p.286 in [3]), that
the correlation satisfies

¡1� �X;Y � 1; (5.2)

this we call the correlation inequality.

Theorem 5.23. We can rewrite the covariance of X and Y as

Cov(X;Y )=E (XY )¡ �X �Y :

When Cov(X;Y )=0, or equivalently �(X;Y )=0 we say that X and Y
are uncorrelated

Theorem 5.24. If X and Y are independent, then X and Y are uncorre-
lated.

Proof. Assume X ??Y . Then

Cov(X;Y )=E (XY )¡ �X �Y ;

bu the first term in the right-hand side equals �X �Y in virtue of (5.14),
and the claim follows. �

Remark 5.25. BEWARE!!! The converse implication is not true in general.

Theorem 5.26. V (X +Y )=V(X)+ 2Cov(X;Y )+V(Y )

V (X ¡Y )=V(X)¡ 2Cov(X;Y )+V(Y ):

More gnerally,

Definition 5.27. Let d�1. Let X be a d-dimensional random vector. We
define the mean �2Rd and the covariance matrix K 2Rd�d of X by

�i :=E(Xi); i=1; : : : ; d

and

Ki;j :=Cov(Xi; Xj); 1� i; j � d:
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Example 5.28. Assume X is a d-dimensional Gaussian vector: X�N (�;
K), where � 2Rd and K 2Rd�d is a strictly definite positive, symmetric
matrix. Then the mean vector of X is given by �, and its covariance matrix
by K.

Corollary 5.29. Let X = (X1; : : : ; Xd) as in the above example. Then
X1; : : : ; Xd are independent if and only if the matrix K is diagonal, i.e.
Ki;j=0 for all i=/ j.

Proof. We have already seen, in the previous chapter, that if K is diagonal,
then X1; : : : ;XD. The converse follows from the fact that, if X1; : : : ;Xn are
independent, then for all i=/ j, Xi??Xj, so

Ki;j=Cov(Xi; Xj)=0: �

5.4 Sample mean and sample variance

In practice we do not observe random variables: we observe realisations, or a
sample, thereof. It is therefore useful to define notions of sample mean and
sample variance, which are quantities that can be computed directly from
the realisations at hand.

Let X1; : : : ; Xn be n real-valued random variables: anticipating on the
chapter on frequentist inference, one may think of X1;:::;Xn as representing
a sample from some random variable.

Definition 5.30. The sample mean of X1; : : : ; Xn is defined as the
arithmetic average:

X�n :=
1
n

X
i=1

n

Xi:

The sample variance of X1; : : : ; Xn is defined as

Sn
2 := 1

n¡ 1
X
i=1

n

(Xi¡X�n)2; (5.3)

and the sample standard deviation by

Sn := Sn
2

p
:

Remark 5.31. Note that the sample mean X�n and the sample variance
Sn
2 are random variables. However, as we will see in the next Chapter, if

X1; : : : ; Xn are i.i.d, provided some integrability assumptions are satisfied,
we have for large n,

X�n�E(X1); Sn
2�V(X1):
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Likewise, if (X1; Y1); : : : ; (Xn; Yn) are n bidimensional random vectors,
we can define their sample covariance and sample correlation.

Exercise 5.1. Write down the definition of the sample covariance Cn and the sample
correlation Rn of (X1; Y1); : : : ; (Xn; Yn).

5.5 Exercises

Exercise 5.2. [Cauchy randomvariable]We consider the function f :R!R+ given by

f(x) =
1

� (1+x2)
; x2R:

1. Show that f is a PDF.

2. Let X be a r.v. with PDF f . We say that X is a Cauchy random variable.
Show that X is not integrable.
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Chapter 6

Inequalities and limits

In this Chapter we first state important inequalities: one of themain aims is
to provide bounds on the probabilities that a random variable X stays away
from its mean by a certain distance t > 0:

P (jX ¡E(X)j>t); t > 0

In the second part we address two results that are cornerstones of statistical
inference: the Law of Large Numbers (LLN) and Central Limit Theorem
(CLT). Both of these are limit theorems concerning the empirical sum of
a sequence of i.i.d. random variables (Xi)i�0. The first statement will tell
us that the empirical mean converges to the expectation of the random
variables

X�n ¡!
n!1

E(X1)

in a sense to be specified. The second statement will tell us tha this conver-
gence holds with speed 1/ n

p
, in a sense to be specified below. At the end

we will be able to obtain approximate bounds on the probability that the
empirical sum remains away from its mean

P (jX� ¡E(X�)j>t/ n
p

); t > 0

for n large.

6.1 Inequalities

6.1.1 Inequalities for expectations*
We start by stating an inequality

Theorem 6.1. *[Cauchy-Schwarz inequality] Let X and Y be two square-
inetgrable real-valued random variables (a condition which, as we recall,
ensures that the second moments E(X2) and E(Y 2) are well-defined, finite
numbers). Then

E (XY )� E(X2)
p

E(Y 2)
p
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6.1.2 Bounds on probabilities
Let X be a real-valued random variable. In statistics, it is often crucial to
be able to bound from above the probability P (X>t), for t> 0. Clearly, if
t is very large, P (X >t) should be small, but the problem is to make this
statement quantitative. Here is a very general statement

Theorem 6.2. [Markov's inequality] If X is an integrable, non-negative
real-valued random variable and t > 0, then

P (X >t)� E(X)
t

:

Proof. We assume that X is a continuous r.v., the discrete case is similar.
We have

P(X >t)=
Z
t

+1
fX(x) dx:

Now, for x� t, we have 16 x

t
, so the above integral is bounded from above byZ

t

+1x
t
fX(x) dx=

1
t

Z
t

+1
x fX(x) dx�

1
t

Z
0

+1
x fX(x) dx:

Note now that fX(x)= 0 for x< 0 since X � 0, whenceZ
0

+1
x fX(x) dx=

Z
¡1

+1
x fX(x) dx=E[X ];

whence the claim. �

Assume now that X is a square-integrable real-valued random variable.
The average value of X is given by E(X), and we can bound from above the
probability that X drifts away from its average by a certain distance t> 0:

Theorem 6.3. [Chebyshev's inequality] For all t > 0,

P (jX ¡E(X)j>t)� V(X)
t2

: (6.1)

Proof. By Markov's inequality, we have

P (jX ¡E(X)j>t)� E(jX ¡E(X)j2)
t2

= V(X)
t2

:

�

This confirms the interpretation of V(X) as a description of the amount
by which X may deviate from its mean.
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The Chebyshev inequality is very useful in situations where we have
no priori information on the distribution of X , except from its mean and
variance. On the other hand, it is quite a rough bound. When we do know
the distribution of X , the probability P (jX ¡E(X)j>t) can be computed,
allowing thus to obtain a - often much better - bound. Let us consider for
instance the case where X is a Gaussian random variable.

Example 6.4. Assume that X�N (0; 1). Then for all t > 0,

P (jX j > t) =
Z
¡1

¡t 1
2 �

p exp
�
¡s

2

2

�
d s +

Z
t

+1 1
2 �

p exp
�
¡s

2

2

�
d s =

2
Z
t

+1 1
2 �

p exp
�
¡s

2

2

�
d s: (6.2)

Although there is no closed expression for the above integral, one can bound
it from above, using the following theorem

Theorem 6.5. [Mill's inequality] If X�N (0; 1), then for all t> 0,

P (jX j>t)� 2
�

r exp
�
¡ t2

2

�
t

:

Proof. We bound from above the last integral in (6.2) above as followsZ
t

+1 1
2 �

p exp
�
¡s

2

2

�
d s �

Z
t

+1s
t

1
2 �

p exp
�
¡s

2

2

�
d s =

1
t 2 �
p

Z
t

+1
s exp

�
¡s

2

2

�
d s:

For the last integral we haveZ
t

+1
s exp

�
¡s

2

2

�
d s=

�
exp

�
¡s

2

2

��
t

+1
= exp

�
¡t

2

2

�
;

and the claim follows. �

The above result generalises to centered Gaussians with arbitrary covari-
ance

Corollary 6.6. Let �2R, �>0 and let X�N (0; �2). Then for all t>0,

P (jX ¡E(X)j>t)� 2 �2

�

r exp
�
¡ t2

2�2

�
t

:

Proof. By the Z-transform, the random variable Y := 1

�
(X ¡ �) is a stan-

dard normal variable, so

P (jX ¡ �j>t)=P (jY j>�¡1 t);
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and the result follows by Mill's inequality with t replaced by �¡1 t. �

6.2 Limit Theorems

We will now state two fundamental limit theorems for sums of i.i.d. random
variables. To do so, we first need to clarify what we mean by convergence
of a sequence of random variables.

6.2.1 Different notions of limits

Let X be a real-valued random variable, and (Xn)n�0 a sequence of real-
valued random variables.

Definition 6.7. We say that Xn converges to X in probability, and write
Xn ¡!

n!1

(P )
X, if, for any �> 0, there holds

lim
n!1

P (jXn¡X j>�)= 0:

In other words, Xn converges to X in probability if the probability that
Xn remains away from X by any (even very small) distance vanishes as n
grows.

We will also encounter another, weaker form of convergence. Its formu-
lation involves the CDFs FXn and FX of the r.v.'s Xn and X, respectively:

Definition 6.8. We say that Xn converges to X in law, or in distribution,
and write Xn ¡!

n!1

(d)
X, if, for any x2R where FX is continuous, there holds

lim
n!1

FXn(x)=FX(x):

Remark 6.9. If X is a continuous random variable, then FX is everywhere
continuous, and the above condition may be restated as point-wise con-
vergence of FXn to FX. On the other hand, when X is dicrete, FX will be
discontinuous at every point x such that P (X=x)>0. The above definition
says that, when checking whether Xn converges in distribution to X, we do
not need look at these points of discontinuities.

That Xn converges in distribution to X thus means that

P (Xn�x) ¡!
n!1

P (X �x);

for all point x where FX does not jump. It is only a statement about the
probability distributions of Xn and X. In particular, it does not say at all
that Xn is close to X when n is large.
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Proposition 6.10.

1. If Xn and X are square-integrable, and

E((Xn¡X)2) ¡!
n!1

0; (6.3)

then Xn ¡!
n!1

(P )
X. The converse is false in general.

2. If Xn converges to X in probability, then Xn also converges to X in
law. The converse is false in general.

3. If X is constant, i.e. there exists some constant a 2R such that
X =a a.s., then

Xn ¡!
n!1

(P )
X()Xn ¡!

n!1

(d)
X

The convergence (6.3) is called �convergence in quadratic mean�, and
writtenXn ¡!

n!1

q:m:
X . By the above Proposition, convergence in quadratic mean

is strictly stronger than convergence in probability, which itself is strictly
stronger than convergence in distribution.

Proof. We prove the first claim. Assume that Xn ¡!
n!1

q:m:
X. Then, for all �>0,

P (jXn¡X j>�)=P (jXn¡X j2>�2)�
E(jXn¡X j2)

�2
;

where the last inequality follows by Markov's inequality. By assumption,
E(jXn¡X j2) ¡!

n!1
0. Hence, by the above inequality , we get P (jXn¡X j>

�) ¡!
n!1

0. This proves that Xn ¡!
n!1

P
X. That the converse implication is false

in general is left as an exercise. �

6.2.2 The Law of Large Numbers (LLN)
Before stating the LLN, we need to state a technical, but intuitive, lemma.

Lemma 6.11. Let X;Y be real-valued random variables such that X=
(d)
Y.

Then, for any real-valued map such that f(X) is integrable, we have
E(f(X))=E(f(Y )).

Proof. Assume that X and Y are both discrete. Then pX= pY , so for all
function f as in the statement, by the RLS, we have

E(f(X))=
X
x

pX(x) f(x)=
X
y

pY (y) f(y)=E(f(Y )):

The case whereX;Y are continuous is proven in the same way, just replacing
PMF by PDF and sums by integrals. �

The above result implies in particular that, if X=
(d)
Y , we have

E(X)=E(Y ); E(X2)=E(Y 2); V(X)=V(Y );
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provided these quantities are well-defined.
Let now (Xn)n�1 be a sequence of i.i.d. copies of a real-valued random

variable X . By this we mean (Xn)n�1 is a sequence of i.i.d. real-valued
random variable having the same law as X. For all n�1, let X�n denote the
sample mean of X1; : : : ; Xn:

X�n :=
1
n

X
i=1

n

Xi:

If the Xn are integrable, then by linearity of the expectation we have

E(X�n) :=
1
n

X
i=1

n

E(Xi)=E(X):

Heuristically, we actually expect X�n to converge to E(X) when n!1. This
heuristics is made rigorous by the following theorem.

Theorem 6.12. [Weak Law of Large Numbers] If the Xn are integrable,
then

X�n :=
1
n

X
i=1

n

Xi ¡!
n!1

(P )
E(X):

Proof. For simplicity, we provide a proof in the special case where the Xn

are also square-integrable. We then have

E((X�n¡E(X))2)=E((X�n¡E(X�n))2)=V(X�n):
Now

V(X�n)=V

 
1
n

X
i=1

n

Xi

!
=
X
i=1

n
1
n2

V(Xi);

where the second equality holds because the Xi are independent. Now, by
Lemma 6.11, V(Xi)=V(X) for all i, so we get

V(X�n)=
V(X)
n

¡!
n!1

0:

Hence E((X�n¡E(X))2) ¡!
n!1

0, therefore X�n converges to E(X) in quadratic
mean, hence also in probability. �
Remark 6.13. * Above we stated the weak LLN. Actually a stronger
statement, known as the strong LLN, holds with the same assumptions. It

says that X�n ¡!
n!1

(P )
E(X) almost-surely, i.e. that

P
�
f! 2
:X�n(!) ¡!

n!1
E(X)g

�
=1:

However we will not need this stronger version of the LLN in the sequel.

Remark 6.14. * The LLN is a cornerstone of the theory of probability.
Its ramifications in statistics are considerable. In particular, it provides a
concrete way of obtaining the value of E(X) by sampling values of X a large
number of times and taking the sample mean.
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Example 6.15. Let X1; : : : ; Xn�X=
(d)

Ber(p) for some p2 (0; 1). Then

X�n :=
1
n

X
i=1

n

Xi ¡!
n!1

(P )
E(X)= p:

In other words, when we keep throwing a coin with parameter p a large
number of times, the rate of success will converge in probability to p. If the
coin is fair, i.e. p=1/2, the rate of success approaches 1/2 for n large.

Example 6.16. Let X1; : : : ; Xn�X=
(d)
N (�; �2) for some �2R and � > 0.

Then

X�n :=
1
n

X
i=1

n

Xi ¡!
n!1

(P )
E(X)= �:

Question: By the LLN, we thus have X�n=E(X)+ �n, where �n is some

remainder satisfying �n ¡!
n!1

(P )
0. Can we quantify how fast �n converges to 0?

6.2.3 The Central Limit Theorem
Let X1; X2; : : : be a sequence of i.i.d. real-valued random variables. We
assume that the Xi are square-integrable and denote respectively by � and
�2 their mean and variance. Thus, for all i,

E(Xi)= �; V(Xi)=�2:

As we saw in the previous section,

E(X�n)= �; V(X�n)=
�2

n
(6.4)

We can perform an affine transformation on X�n in order to set its expecta-
tion and variance to 0 and 1, respectively. To do so:

1. we center it, by subtracting its mean E(X�n)

2. we normalize it, by dividing it by it s standard deviation V(X�n)
p

.

In other words, we set

Yn :=
1

V(X�n)
p (X�n¡E(X�n))=

n
�2

r
(X�n¡ �):

With this procedure, we obtain a random variable Yn which is centered and
normalized, i.e. which satisfies

E(Yn)=0; V(Yn)=1:

Exercise 6.1. Verify that Yn defined above is indeed centered and normalized, using
the Z-transform (Prop 4.14).

The following theorem shows that, for n large, the distribution of Yn is
actually close to N (0; 1).
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Theorem 6.17. [Central Limit Theorem] Let X1;X2; : : : be a sequence of
i.i.d. real-valued, square-integrable r.v. with mean � and variance �2. Then

n
�2

r
(X�n¡ �) ¡!

n!1

(d)
N (0; 1):

Remark 6.18. Thus, for all a2R,

P

 
n
�2

r
(X�n¡ �)�a

!
¡!
n!1

Z
¡1

a exp
�
¡x2

2

�
2 �

p d x

Remark 6.19. One may loosely formulate the CLT as saying that

n
�2

r
(X�n¡ �)�

(d)
N (0; 1)

for n large. This equivalently means that

X�n�
(d)
�+ �2

n

r
Z

where Z�N (0; 1) i.e., in virtue of the Z-transform (Proposition 4.14,

X�n�
(d)
N
�
�;
�2

n

�
:

Example 6.20. Let X1; : : : ; Xn�X=
(d)

Ber(p) for some p2 (0; 1). We know
from the LLN that

X�n :=
1
n

X
i=1

n

Xi ¡!
n!1

(P )
E(X)= p:

Since V(X)= p (1¡ p), by the CLT, we further get

n
p (1¡ p)

r
(X�n¡ p) ¡!

n!1

(d) N (0; 1):

Exercise 6.2. We throw a coin of parameter p= 0.3 (i.e. we get Heads with prob.
0.3 at each toss). LetH denote the number of Heads we got after n=103 tosses. Find
an interval I such that

P (H 2 I)� 0.95:
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Part II

Frequentist Inference









Chapter 7
Foundations and maximum likeli-
hood

Assume we observe the realisations of n i.i.d random variables X1; : : : Xn.
Can we infer from our observations the common law of the Xi?

Very often we formulate some additional assumption on the observations
X1; : : : ; Xn, namely that their common law belongs to a certain family of
probability distributions, that we call a model .

7.1 Statistical model and estimator

7.1.1 Statistical model

Definition 7.1. A statistical model F is a set of probability distributions.

Example 7.2. F := fBer(p): p2 (0; 1)g

and

F 0= fU(a; b): a; b2R; a< bg

are both examples of statistical models. The first one consists of all Bernoulli
distributions. The second one consists of all (continuous) uniform distribu-
tions on a finite interval.

Since the probability distribution of a discrete (resp. continuous) r.v. is
uniquely determined by its PMF (resp. PDF), a model F will often be given
as a set of PMFs (resp. PDFs).

Example 7.3. The model F in the above example may alternatively be
denoted as

F := fBer(k; p): p2 (0; 1)g

where we recall that Ber(k; p) = (1¡ p)1¡k pk, for k= 0; 1, is the PMF of
the Bernoulli distribution with parameter p.

The model F 0 in the above example may alternatively be denoted as

F 0 := fU(x; a; b): a; b2R; a < bg
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where we recall that U(x; a; b) = 1

b¡ a 1[a;b](x) for x 2R is the PDF of the
uniform distribution on the interval [a; b].

A statistical model is said to be parametric if it can be parametrised by
a finite number of parameters. Otherwise it is said to be non-parametric.

Example 7.4. G := fN(x; �; �2): �2R; � > 0g

and

G 0= fall continuous probability distributions onRg

are both examples of statistical models. The first one, consisting of all one-
dimensional Gaussian distributions, is parametric: it is parametrized by �2
R and � > 0. The second example is not parametric.

An important example of parametric model is the general linear model:

Definition 7.5. The general linear model is defined as

Y =X�+ �;

where:

� X 2Rn�p is a fixed, deterministic matrix, called design matrix,

� � is a n¡ d imens i o n a l random vector with law N(0; �2 In)

� � 2Rp and �2> 0 are unknown paramters.

In view of the multivariate Z-transform, see the 1st statement of Propo-
sition 4.18, the model above can be alternatively written as

F= fN (y;X�; �2 In); � 2Rp; �2> 0g: (7.1)

7.1.2 General setting of statistical inference
We assume given a set �, called parameter space, and a parametric model

F= ff(x; �); � 2�g;

consisting of continuous (resp. discrete) probability distributions represented
by their PDF (resp. PMF). Let � 2 � be a fixed, unknown parameter.
We observe the realisations of n i.i.d random variables X1; : : : Xn with
common distribution p�. From these observations, can one retrieve the value
of the unknown parameter �? There are three main ways one could use
to answer this question:

1. Point estimation: we use our observed data X1; : : : ; Xn to build a
point estimator �̂n , with the hope that, for n large, �̂n is close (in a
certain sense) to the true, but unknown, value of the parameter �.
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2. Confidence interval: we use our observed data X1; : : : ; Xn to build
a confidence interval [an; bn] containing the true, but unkown para-
meter value � with high probability.

3. Hypothesis testing: in that setting we partition the parameter space
� into two subsets �0 and �1, and we just want to infer from our
data whether �2�0 or �2�1, with a control on the error probability.

In this Chapter and the next two chapters we shall focus on point estimation.
Confidence intervals and hypothesis testing will be addressed later/

7.2 Point estimator, maximum likelihood

7.2.1 Point estimator: definition

Definition 7.6. Let X1; : : : ; Xn be i.i.d random variables distributed
according to p�. A point estimator �̂n for � is a random variable taking
values in �, and of the form

�̂n=  n(X1; : : : ; Xn);

for some map  n:Rn!�.

Loosely speaking, �̂n: 
!� is an estimator if it is a deterministic func-
tion of X1;:::;Xn. Often one encounters the abusive notation �̂n= �̂n(X1;:::;
Xn) to express this dependence. Note that, in the strict definition above,
we do claim that �̂n indeed does a good job at estimating � in some sense,
rather it is just an attempt at doing so. Whether or not it does indeed allow
to estimate � will be discussed later, see definition of consistency below.

7.2.2 Maximum likelihood estimator
We now present a very important example of estimator, known as the the
Maximum Likelihood Estimator (or MLE).

We consider a parametric model with parameter space � given as

F= ff(x; �); � 2�g;

where for each �, f(x; �) is the PMF (resp. PDF) of a probability distribu-
tion. Let X1; : : : ; Xn be i.i.d random variables with PMF (resp. PDF) f(x;
�), for some fixed, unknown, � 2�.

Example 7.7. For example, you may think of �=(0; 1), and

F= fBer(x; p); p2 (0; 1)g;

where for each p, Ber(x; p) is the PMF of a Bernoulli r.v. with parameter p:

Ber(x; p)=
�
1¡ p if x=0
p if x=1;
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or, written more concisely,

Ber(x; p)= (1¡ p)1¡x px; x=0; 1:

In this case we are considering X1;:::;Xn to be i.i.d Bernoulli variables with
some unknown parameter p2 (0; 1) that we'll try to estimate.

Example 7.8. As another example, you may think of �=R, and

F= fN (x; �; 1); �2Rg;

where for each �, N (x: �;1) is the PDF of a Gaussian r.v. with mean � and
spread 1. This means that we consider X1; : : : ;Xn be i.i.d random Gaussian
variables with spread 1 and some unknown mean �2R that we will try to
estimate.

So we have X1;X2; : : : � f(x; �), where � 2� is an unknown parameter.
In particular, for all n> 1, the random variables X1; : : : ; Xn have a joint
PMF (resp PDF) given by

(x1; : : : ; xn) 7!
Y
i=1

n

f(xi; �):

Definition 7.9. The likelihood function Ln: �!R+ is defined by

Ln(�) :=
Y
i=1

n

f(Xi; �); � 2�:

In other words, the likelihood function is obtained by plugging into the
joint density of X1; : : : ; Xn, the observed realizations X1; : : : ; Xn. We also
define the log-likelihood.

Definition 7.10. The log-likelihood function `n: �!R is defined by

`n(�)= log (Ln(�))=
X
i=1

n

log (f(Xi; �)); � 2�:

It is important to note that Ln(�) and `n(�) are regarded here as func-
tions of �. Actually they also do depend on our observations X1;:::;Xn, but
it is the former dependence which will require most of our attention. With
the above definition at hand, we are now able to introduce an important
example of estimator:

Definition 7.11. The Maximum Likelihood Estimator (MLE) is defined
by

�̂n := argmax
�2�

`n(�):
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In other words, �̂n is the value of the parameter � 2� which maximises
`n(�).

Remark 7.12. Note that, since `n(�) = log (Ln(�)) and log: (0;1)!R
is strictly increasing, �̂n can equivalently be defined as the maximiser of
Ln(�). However in applications it is often more convenient work with the
log-likelihood rather than the likelihood itself.

Remark 7.13. It is not clear a priori that `n(�) should admit a unique
maximiser. It will however often be the case in common examples we will
encounter.

It is not obvious why the estimator �̂n defined above does a �good job�
at approximating �. It will be verified in the next Chapters that the MLE
is indeed an etsimator with several good properties which, in many cases,
provides a practical way to find the true but unknown value of the parameter
�. In this Chapter we focus on explaining procedures to derive the MLE,
and provide examples.

To compute the MLE, the usual way consists in three steps:

1. we compute the log-likelihood function `n(�)

2. we differentiate it and search a � 2� such that `n0 (�)= 0

3. we check that this � is indeed the maximum.

The above procedure will be illustrated by explicit analytical computations
in a few classical examples. In practice, we rely on numerical methods, see
e.g. the Newton-Raphson algorithm below.

7.2.3 Computation of the MLE: Analytical examples
Here we give specific examples where the MLE admits an explicit analytical
expression.

7.2.3.1 Case of Bernoulli random variables

Assume that X1; X2; : : : are i.i.d Bernoulli variables with some unknown
parameter p02 (0; 1). The likelihood function is given, for p2 (0; 1), by

Ln(p)=
Y
i=1

n

Ber(Xi; p)= (1¡ p)n(1¡X
�
n) pnX

�
n;

so the log-likelihood is given by

`n(p)=n (1¡X�n) log (1¡ p)+nX�n log (p):

Differentiating in p yields

`n
0 (p)=n

�
¡1¡X

�
n

1¡ p + X�n
p

�
=n X�n¡ p

p (1¡ p) :
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Equating the above to 0 yields the following value for the MLE

p̂n=X�n;

so that, in this case, the MLE coincides with the empirical mean of the Xi.

7.2.3.2 Case of Gaussian random variables (with known spread)

Assume that X1;X2; : : : are i.i.d Gaussian variables with spread 1 and some
unknown mean parameter �02R. The likelihood function is given, for �2R,
by

Ln(�)=
Y
i=1

n

N (Xi; �; 1)=
1

(2 �)n/2
exp

 
¡1
2

X
i=1

n

(Xi¡ �)2
!
;

so the log-likelihood is given by

`n(�)=¡
n
2
log (2 �)¡ 1

2

X
i=1

n

(Xi¡ �)2:

Differentiating in � yields

`n
0 (�)=¡

X
i=1

n

(�¡Xi)=n (X�n¡ �):

Equating the above to 0 yields the following value for the MLE

p̂n=X�n;

so that, in this case again, the MLE coincides with the empirical mean of
the Xi.

Exercise 7.1. In both examples discussed above, check that the MLE p̂n (resp.
muc n) is consistent, i.e. that, when n!1, it converges in probability to the true,
but unknown value of the parameter p0 (respectively �0). Hint: recall the LLN.

7.2.3.3 Generalised linear model

Consider the Generalised Linear Model Y =X� + �, where X 2Rn�p is a
given, known, design matrix, and ��N (0; �2In). Recall that here � 2Rp

and �>0 are unknown parameters, so this model can be written as in (7.1).
Assume we observe the vector

Y =

0BB@ y1
���
yn

1CCA2Rn

The likelihood function is then given by

L(�; �)= 1
(2��2)n/2

exp

 
¡ 1
2�2

X
i=1

n

(yi¡ (X�)i)2
!
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so the log-likelihood takes the form

`n(�; �)/¡n log(�)¡
1
2�2

X
i=1

n

(yi¡ (X�)i)2 :

The MLE (�̂ ; �̂) is given by

�̂= argmin
�

X
i=1

n

(yi¡ (X�)i)2

and

�̂2= 1
n

X
i=1

n

(yi¡ (X�̂)i)2:

Example 7.14. Assume that p=2 and the design matrix X is of the form

X =

0BB@ 1 x1
��� ���
1 xn

1CCA2Rn�2;

with x1; : : : ; xn2R. Then, writing �=(�0; �1), the previous model takes
the form

yi= �0+ �1xi+ �i; i=1; : : : n:

This is called a simple linear regression model . Denoting by x� and y� the
sample means of x and y, one can check that for this special case, �̂ is given
by

�̂1=
P

i=1
n (xi¡x�)(yi¡ y�)P

i=1
n (xi¡x�)2

;

and

�0̂= y�¡ �1̂x�:

In the terminology of linear regression, the above expressions are called the
least square estimates for �0 and �1.

7.2.4 A numerical approach: the Newton-Raphson algo-
rithm

Most of the time, it is not a problem to find an expression for the log-
likelihood `n(�). However in many cases, finding an explicit expression for
argmax�2�`n(�) is out of reach. In such cases we usually have to resort to
a numerical approach, based on maximisation algorithms. There are plenty
such algorithms, here we will focus on a specific one called Newton-Raphson
algorithm.
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The Newton-Raphson provides a general method to approach the max-
imiser argmax�2�f(�) of a a function f(�) defined over real numbers. This
is done by looking for a critical point �~ of f . The heuristics behind the
Newton-Raphson algorithm is based on the following observation. For ���~,
it should hold that

f(�~)� f(�)+ (�~¡ �) f 0(�):

But by assumption f 0(�~)= 0, so we get

�~� �¡ f 0(�)
f 00(�)

:

This suggests an update rule for the following iterative algorithm:
The Newton-Raphson algorithm:
Initialisation: Define a starting point �(0)2R and set k := 0.
If f 0(�(0))= 0: STOP and return �(0). Else, proceed to Iterations
Iterations:

1. Set �(k+1)= �(k)¡ f 0(�(k))

f 00(�(k))
.

2. If f 0(�(k+1))= 0: STOP and return �(k+1). Else, go to 3.

3. Set k := k+1 and go to 1.

We admit that, under appropriate assumptions on f , the above algorithm
works in the sense that, for k sufficiently large, �(k) will be very close to the
maximiser �~ of f . Applying this algorithm to f(�)=`n(�), the log-likelihood
function, thus allows to obtain a numerical approximation of the MLE �̂n.
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Chapter 8

Finite-sample estimator properties

In this chapter we introduce and study properties of finite-sample estima-
tors. Throuhgout this chapter we assume given a parametric model F=ff(x;
�): � 2�g and a sample X1; : : : ; Xn of i.i.d. random variables distributed
according to the PMF (or PDF) f(x; �), for some (unknown) parameter
value � 2�:

The contents from this chapter are taken from Chapter 9 in [5] and from
Chapter 9 in [3].

8.1 Error, bias and unbiasedness

Definition 8.1. Let �̂n= �̂n(X1; : : : ; Xn) be an estimator for �constructed
from our observed sample X1; : : : ; Xn.

� The error is defined as

�̂n¡ �

� The bias is defined as

bias(�̂n)=E�(�̂n)¡ �

� We call the estimator �̂n unbiased if bias(�̂n)=0, or in other words
if

E�(�̂n)= �

Otherwise we say that it is biased.

Remark 8.2. Above we write a superscript � for E� to stress the fact that
we are working under the assumption that theXi follow the distribution with
PMF (or PDF) f(x; �): Keep in mind that � is supposed to be unknown.

Remark 8.3. The biasedness property is likeable, but not crucial. As we
shall see some very important estimators such as the MLE are biased in
general.
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So far we have defined an estimator �̂n of a parameter � 2�: In many
cases however we are not interested in estimating � itself, but rather some
quantity associated with the PMF (or PDF) f(x; �), called satistical func-
tional.

Definition 8.4. If f = f(x; �) is the PMF (or PDF) associated with a
parameter value �, a statistical functional is any function T (f) of f.

Example 8.5. The mean �=
R
R
x f(x) dx and the variance �2=

R
R
(x¡

�)2f(x) dx are both example of statistical functionals.

Comng back to our setting above, we assume X1; : : : ; Xn� f(x; �) for
some true but unkown parameter value �: Let �=

R
R
x f(x; �) dx be the

mean of the true (but unkown) distribution of our observations, and let
�2=

R
R
(x¡ �)2 f(x;�)dx be its variance. These are both relevent statistical

functionals, whcih we may try to estimate.

Theorem 8.6.

1. The sample mean X�n =
1

n

Pn
k=1

Xk is an unbiased estimator for �

2. The sample variance Sn2=
1

n¡ 1
Pn
k=1

(Xk¡Xn)2 is an unbiased esti-

mator for �2:

Proof.
1. We readily saw in 6.4 that E(Xn)= �, so that Xn is indeed unbiased.
2. Rewriting, for all k,

Xk ¡X�n=(Xk¡ �)¡ (Xn¡ �);

we can then rewrite
Pn
k=1

(Xk¡Xn)2 as the sum of three terms:

Xn
k=1

(Xk¡ �)2¡ 2
Xn
k=1

(Xk¡ �)(Xn¡ �)+n (X�n¡ �)
2:

Taking expectation of the first term gives

E

0@Xn
k=1

(Xk¡ �)2
1A=n�2:

In the second term we recognise - 2n (Xn¡ � )2; taking its expectation
yields

¡2nE (Xn¡ �)2=¡2nV(X�n)=¡2�
2:
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Finally, expectation of the third term gives

E(n (X�n¡ �)
2)=nV(X�n)=�

2:

Summing up the three, we obtain

E

0@Xn
k=1

(Xk¡Xn)2

1A=n�2¡ 2�2+�2=(n¡ 1)�2;

so that

E(Sn2)=E

0@ 1
n¡ 1

Xn
k=1

(Xk¡Xn)2

1A=�2;
as requested. �

Question: What estimator can we consider for the standard deviation
�= �2

p
? A natural choice would be to consider the sample standard devi-

ation

Sn = Sn
2

p
= 1

n¡ 1
X
k=1

n

(Xi¡X�n)2
s

Proposition 8.7. Assume that X1; : : : ; Xn are not deterministic. Then
Sn is a biased estimator of �.

Proof. Since the function x 7! x
p

is strictly concave from R+ to itself, by
Jensen's inequality (see A.3.7 in [2]), we have

E�(Sn)=E�

�
Sn
2

p �
< E�(Sn2)
q

= �2
p

=�: �

The fact that the estimator Sn for � is a biased is not a pathological case.
It is a general fact that non-linear transformations of unbiased estimators
may typically be biased.

8.2 Variance, standard error and mean-squared
error.

Let �̂n = �̂n(X1; : : : ; Xn) be an estimator. In the previous section we
introuced the error �̂n¡�. Heuristically the estimator �̂n is good if the error
is small. In this section we shall introduce ways to quantify more precisely
the error.

8.2 Variance, standard error and mean-squared error. 85



Definition 8.8.

1. The variance of �̂n is defined as

V�(�̂n) :=E�((�̂n¡E�(�̂n))
2)

2. The standard error of �̂n is defined as

se(�̂n) := V�(�̂n)
q

:

Remark 8.9. The above are nothing other than the variance and standard
deviation of the random variable �̂n:

Example 8.10. Let p2 (0;1) and X1;:::;Xn�Ber(p) . We consider the MLE
p̂
n
for p. Recall that in this case p̂

n
=X�n: The variance of p̂n is then given by

Vp(p̂n)=Vp(X�n)=
1
n2

X
i=1

n

Vp(Xi)=
p(1¡ p)

n
:

The standard error is then given by

se(p̂n)= Vp(p̂n)
p

= p(1¡ p)
n

r
: (8.1)

Note that p is in a priori unknonwn to us: it is precisely the parameter we
are trying to estimate. So a priori we do not have access to the quantity

p(1¡ p)

n
:

q
However, we can approximate the true standard error by the

estimated standard error

sê(p̂n) :=
p̂n(1¡ p̂n)

n

r
:

That quantity in turn is written completely in terms of our observed data,
and we can thus evaluate it.

Definition 8.11. Let �̂n= �̂n(X1;:::;Xn) be an estimator for �. The mean-
squared error of �̂n is defined as

MSE(�̂n) :=E�((�̂n¡ �)2)

Remark 8.12. The mean-squared error quantifies how far our estimator
lies away from the true but unknown parameter value �. As we will see in
the next Chapter, if we know that MSE(�̂n)! 0 as n!1 , we can deduce
that �̂n! � in probability (a property we will call consistency).

Remark 8.13. Be careful not to mix up the standard error se(�̂n) and the
mean-squared error MSE(�̂n)! See the recap chart below.
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error �̂n¡ �
bias(�̂n) E�(�̂n)¡ �
V�(�̂n) E�((�̂n¡E�(�̂n))2)

se(�̂n) V�(�̂n)
q

MSE(�̂n) E�((�̂n¡ �)2)

The different quantities above are related by the below:

Theorem 8.14. (Mean squared error decomposition)
Let �̂n be an estimator for �. We have

MSE(�̂n)=V�(�̂n)+bias(�̂n)
2 (8.2)

Proof. We have

MSE(�̂n)=E�((�̂n¡ �)
2)=V�(�̂n¡ �)+E�(�̂n¡ �)

2;

where the second equality follows by the translation variance Theorem 5.17
applied to the random variable X= �̂n¡�. Now, the first term equals V(�̂n)
while in the second term we recognise bias(�̂n)

2:This yields the claim. �

Remark 8.15. Recalling that V�(�̂n)= se(�̂n)2, we can alternatively write
the above decomposition as

MSE(�̂n)= se(�̂n)2+bias(�̂n)
2

Remark 8.16. In the case where �̂n is unbiased, the above decomposition
reduces to MSE(�̂n)=V�(�̂n):

Motivation for (8.2) : Assume that you want to prove that �̂n is a
consistent estimator for �, see chapter below for the definition. It suffices to
check that �̂n! � in quadratic mean, because this will entail convergence in

probability of �̂n to �: To prove the former convergence, it suffices by the
above Theorem to check that bias(�̂n) and V�(�̂n) both converge to 0 when
n!1:

8.3 The Cramér-Rao bound
We saw above that if �̂n is an unbiased estimator for �, then MSE(�̂n) =
V�(�̂n). It is therefore tempting to choose �̂n so that V�(�̂n) is small. How
small could it possibly be? In order to answer the question we need to
introduce a couple of definitions.
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Let us again assume X1; : : : ;Xn� f(x; �), where x 7! f(x; �) is a PMF or
PDF, and � 2� is an unkown parameter value. Let ` n: �!R be the log-
likelihood function.

Definition 8.17.

� The score function of the random sample X1; : : : ; Xn is defined as

sn(�) :=
d
d�
` n(�)

� The (expected) Fisher information of the random sample X1; : : : ;Xn

is defined as

In(�) :=E�

�
¡ d2

d�2
` n(�)

�
Remark 8.18. In Chapter 9 of [3], the quantity

E�

�
¡ d2

d�2
` n(�)

�
is referred to as the expected Fisher information and denoted by Jn. Here
we are following the notations of [5].

For n=1 we shall write

s(�) := s1(�)=
d
d�

log f(X1; �); I(�) := I1(�)=E�

�
¡ d2

d�2
log f(X1; �)

�

Remark 8.19. We have In(�)=n I(�).

Proof. We have

In(�) = E�

 
¡ d2

d�2
X
i=1

n

log f(Xi; �)

!

=
X
i=1

n

E�

�
¡ d2

d�2
log f(Xi; �)

�
= nE�

�
¡ d2

d�2
log f(X1; �)

�
where the last equality follows from the fact that the Xi all have the same
distribution. The claim follows. �

Lemma 8.20. We have

E(s(�))=0; V�(s(�))= I(�)

We refer to pages 390-392 of [3] for the proof.
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We are now able to state the main result of this section:

Theorem 8.21. [Cramér-Rao lower bound]
Under appropriate assumptions (known as �Fisher regularity condi-

tions�), the following holds. Let g be a differentiable function, and let �̂n
be an unbiased estimator for g(�):Then

V�(�̂n)>
(g 0(�))2

In(�)

In particular, for g(�)= �, we have

V�(�̂n)>
1

In(�)
:

The Fisher regularity conditions are a standard set of assumptions that will
be satisfied in the examples we shall be considering. We refer to Definition
4.1 in [2] for their precise statement, see also p. 395 in [3].

Remark 8.22. Recalling Remark 8.16, in the case where we are estimating
g(�)= �, the above theorem shows that

MSE(�̂n)>
1

In(�)
:

Thus, a highly Fisher informative unbiased estimator will have a small vari-
nace, and hence a small mean-squared error.

Proof. We apply the correlation inequality (5.2) to the random variables
X = sn(�) and Y = �̂n. We get

¡16 Cov�(sn(�); �̂n )

V�(sn(�))
p

V�(�̂n)
q 6 1

Taking the square yields

Cov�(sn(�); �̂n )2

V�(sn(�))V�(�̂n)
6 1;

i.e.
Cov�(sn(�); �̂n )2

V�(sn(�))
6V�(�̂n):

But, by Lemma 8.20, V�(sn(�))= In(�), hence

V�(�̂n)>
Cov�(sn(�); �̂n )2

In(�)
:

So to obtain the requested lower bound it only remains to prove that

Cov�(sn(�); �̂n )=
d
d�
g(�):
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In view of Lemma 8.20 sn(�) is centered, hence the covariance above equals

E�(sn(�) �̂n) = E�

�
d
d�

log(Ln(�)) �̂n
�

= E�(
1

Ln(�)
d
d�
Ln(�)�̂n);

where Ln(�)=
Q

i=1
n

f(Xi;�) is the likelihood function. Recalling thatX1;:::;
Xn have joint density given by

(x1; : : : ; xn) 7!
Y
i=1

n

f(xi; �);

we see that the above takes the form of the n-fold integralZ
���
Z

1Q
i=1
n f(xi; �)

d
d�

 Y
i=1

n

f(xi; �)

!
�̂n(x1; : : : ; xn)

Y
i=1

n

f(xi; �) dx1: : :dxn

(here we assume for simplicity that we are in the case where f(x; �) is a
PDF, the case where it is a PMF is similar). So

Cov�(sn(�); �̂n ) =
Z
���
Z

d
d�

 Y
i=1

n

f(xi; �)

!
�̂n(x1; : : : ; xn) dx1: : :dxn

= d
d�

 Z
���
Z  Y

i=1

n

f(xi; �)

!
�̂n(x1; : : : ; xn) dx1: : :dxn

!

= d
d�

E�(�̂n):

Since �̂n is an unbiased estimator for g(�), the last quantity equals g 0(�),
and the claim follows. �

Example 8.23. Assume that X1; : : : ;Xn�Ber(p) for p2 (0,1). We consider
the maximum-likelihood estimator p̂n for p. Recall that in this case the MLE
coincides with the sample mean:

p̂n=X�n=
1
n

X
i=1

n

Xi:

By Theorem 8.6, p̂n is an unbiased estimator for p. Moreover, as seen
above,

Vp(p̂n)=
p(1¡ p)

n
: (8.3)

Denoting by ` n: (0; 1)!R the log-likelihood function, we have

`n(p)=n(1¡X�n) log(1¡ p)+nX�n log(p):
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Differentiating twice we get

`n
00(p)=

n(X�n¡ 1)
(1¡ p)2 ¡ nX�n

p2
:

Taking expectation we get

In(p)=Ep(¡`n00(p))=
n(1¡ p)
(1¡ p)2 +

n p
p2

= n
p(1¡ p) : (8.4)

By (8.3) and (8.4) we see that Vp(p̂n)=
1

In(p)
, i.e. in the Bernoulli case the

MLE achieves the equality in the Cramér-Rao lower bound.

Example 8.24. Let X1; : : : ; Xn�N (�; 1);with � 2R. We consider the
MLE �̂n, here also given by the sample mean. We know from Theorem 8.6
that �̂n is unbiased, and we have

V�(�̂n)=V�

 
1
n

X
i=1

n

Xi

!
= 1
n2

X
i=1

n

V�(Xi)=
1
n
:

We shall compute the Fisher information using a slightly simpler route
than used in the previous example. We compute the log-likelihood just for
n=1. We have

`1(�) = log
�

1
2�

p exp
�
¡(X1¡ �)2

2

��
= ¡1

2
log(2�)¡ (�¡X1)2

2
:

Differentiating twice we get `100(�)=¡1, so that I(�)=1. In view of Remark
8.19 we deduce that In(�)=n. Thus, we have

V�(�̂n)=
1
n
= 1
In(�)

;

so, also in that case, the equality in the Cramér-Rao lower bound is achieved.

Example 8.25. Consider X1; : : : ; Xn�N (�; �); where both � and � are
unknown. To estimate � we consider the estimator given by the sample
variance

Sn
2= 1

n¡ 1
X
i=1

n

(Xi¡Xn)2:

By Theorem 8.6 this is an unbiased estimator for the variance of the Xi,
here given by �. One can prove that

V(Sn2)=
2�2

n¡ 1 ;

while the Cramér-Rao lower bound is given by 2�4

n
, see Example 7.3.14 in [1].
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Chapter 9
Asymptotic estimator properties

In this Chapter we study properties of estimators �̂n for a large sample size
n. Such properties are referred to as asymptotic properties. We will mainly
focus on 4 properties known as:

1. Asymptotic unbiasedness

2. Consistency

3. Asymptotic normality

4. Asymptotic efficiency

As an example, we shall see that the MLE satsifies all of the above.
Here and below, we assume given a parametric model F=ff(x;�):�2�g

and a sample X1;:::;Xn� �, where �2� is the true, but unkwon, parameter
value.

9.1 Asymptotic unbiasedness

Definition 9.1. An estimator �̂n for � is asymptotically unbiased if

lim
n1

E�(�̂n)= � :

Comparing this with Definition 8.1 we see that �̂n being asymptotically
unbiased means that it is unbiased after sending n!1. In practice, it
means that, if we have a large sample size, we expect �̂n to be approximately
unbiased, i.e. E�(�̂n)��. In particular, by definition, an unbiased estimator
is always asymptotically unbiased.

Example 9.2. Consider X1; : : : ; Xn � N (�; �2); with � 2R; � > 0. We
consider the MLE (�̂n; �̂n) for (�; �). This is obtained by maximising the
log-likelihood function `n:R� (0;1)!R, which is here given by

`n(�; �) = ¡
X
i=1

n

log
�

1
2��2

p exp
�
¡(Xi¡ �)2

2�2

��
= ¡n

2
log (2�)¡n log(�)¡

X
i=1

n
(Xi¡ �)2

2�2

93



Note that here ` n is a function of two variables. Its maximiser has to solve
the equations:

@
@�
`n(�; �)=

@
@�
`n(�; �)= 0:

Differentiating the expression above for `n in � and �, we obtain the expres-
sions

@
@�
`n(�; �)=¡

1
�2

X
i=1

n

(�¡Xi)=¡
n
�2
(�¡X�n);

where X�n denotes the sample mean, and

@

@�
`n(�; �)=¡

n

�
+ 1
�3

X
i=1

n

(�¡Xi)2=¡
n

�

 
1¡ 1

n�2

X
i=1

n

(�¡Xi)2
!
:

Equating these to 0 yields the following expression for the MLE:

�̂n=X�n; �̂n=
1
n

X
i=1

n

(Xi¡ �)2:

In particular, note that �̂n is given by the sample mean of the random
variables Xi

2. In view of Theorem 8.6, we know that �̂n is an unbiased
estimator for �. Regarding the estimator �̂n2 for �2, note that �̂n2 is NOT
the sample variance of the Xi, compare with Definition 5.3. Actually, �̂n2 is
a biased estimator for �2. Indeed, note that �̂n2 =

n¡ 1
n
Sn
2, where Sn2 is the

sample variance of the Xi. In virtue of Theorem 8.6, E(Sn2) = �2, hence it
follows that

E(�̂n2)=E

�
n¡ 1
n

Sn
2

�
= n¡ 1

n
E(Sn2)=

n¡ 1
n

�2=/ �2;

so that �̂n2 is indeed a biased estimator for s2. We claim however that �̂n2 is
an asymptotically unbiased estimator for �2. Indeed

E(�̂n2)=
n¡ 1
n

�2 ¡!
n!1

�2:

In fact, below we will see that in general the MLE is an asymptotically
unbiased estimator, although it is often biased for fixed sample size n.

9.2 Consistency

Definition 9.3. An estimator �̂n for � is said to be consistent if �̂n ¡!
n!1

�
in probability.

In other words, an estimator �̂n for � is consistent if, for all ">0, we have

lim
n!1

P�(j�̂n¡ �j>")= 0:
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Theorem 9.4. [Mean-squared error criterion for consistency]
Let �̂n be an estimator for �. Assume that

lim
n!1

MSE(�̂n)= 0:

Then �̂n is consistent.

Proof. By assumption we have

lim
n!1

E�(j�̂n¡ �j2)= lim
n!1

MSE(�̂n)=0:

Thus �̂n ¡!
n!1

� in quadratic mean, and hence (in view of the 1st point in

Theorem 6.10), in probability.
�

Corollary 9.5. [Bias and variance criterion for consistency]
Let �̂n be an estimator for �. Assume that

lim
n!1

V�(�̂n)=0 and lim
n!1

bias(�̂n)= 0

Then �̂n is consistent.

Proof. The above follows from Theorem 9.4 and the mean-squared error
decomposition (8.2). �
Remark 9.6. Recalling that V�(�̂n)= se(�̂n)2, an alternative way of writing
the above criterion is

lim
n!1

se(�̂n)= 0 and lim
n!1

bias(�̂n)= 0:

Example 9.7. Let X1; : : : ;Xn be i.i.d., square-integrable, random variables
with mean � and variance �2. Then the sample mean X�n is a consistent
estimator for �. Indeed, by Theorem 8.6, bias(X�n)=0, while

V(X�n)=V

 
1
n

X
i=1

n

Xi

!
= 1
n2

X
i=1

n

V(Xi);

where the last equality follows from the independence of the Xi. So we get

V(X�n)=
n�2

n2
= �2

n
¡!
n!1

0:

The claim follows by the bias and variance criterion for consistency.

9.3 Asymptotic normality

Definition 9.8. An estimator �̂n for � is said to be asymptotically normal
if

�̂n¡ �
se(�̂n)

¡!
n!1

(d)
N (0; 1):
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Thus, the estimator �̂n for � is asymptotically normal if, for n large, the
distribution of �̂n is approximately equal to N (�; se(�̂n)2).

Example 9.9. Let X1; : : : ; Xn� Ber(p), for some unkown p 2 (0; 1). We
consider the MLE p̂n for p, which is here given by the sample mean X�n:
Then p̂n is asymptotically normal. Indeed, in this case the Xi have mean p
and variance p(1¡ p), so, in virtue of the CLT, we have

n
p(1¡ p)

r
(X�n¡ p) ¡!

n!1

(d)
N (0; 1)

Recalling from (8.1) that se(�̂n)=
p(1¡ p)

n

q
, we deduce that

(p̂n¡ p)
se(p̂n)

¡!
n!1

(d)
N (0; 1)

as requested.

9.4 Asymptotic efficiency

Recall the Cramér-Rao lower bound for an unbiased estimator �̂n for �:

se(�̂n)>
1
In(�)

p ;

which we here rewrote in terms of the standard error of �̂n. It is likeable for
�̂n to achieve this lower bound, but this will in general not be the case for
fixed n. However, we can still hope that

se(�̂n)�
1
In(�)

p
for n large. Combining this property with the notion of asymptotic nor-
mality seen above motivates the following definition:

Definition 9.10. An estimator �̂n for � is said to be asymptotically effi-
cient if

In(�)
p

(�̂n¡ �) ¡!
n!1

(d)
N (0; 1):

In other words, �̂n is a symtotically efficient if it is asymptotically normal
and it satisfies se(�̂n)� 1

In(�)
p for n large, or equivalently if

�̂n �
(d)
N
�
�;

1
In(�)

�
when n is large.
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Remark 9.11. The term efficient is used in different ways in the literature.
Definition above is the one followed by [3], see p.441 therein, see also section
9.8 in [5].

Remark 9.12. If �̂n is asymptotically efficient, it is in particular asymp-
totically unbiased and asymptotically normal.

Example 9.13. Let again X1; : : : ;Xn�Ber(p), for some unkown p2 (0; 1).
We consider the MLE p̂n for p, given by the sample mean X�n:We have seen
previously that p̂n is asymptotically normal:

(p̂n¡ p)
se(p̂n)

¡!
n!1

(d)
N (0; 1):

In addition, we have seen in the previous Chapter, see (8.4) and (8.3), that

se(p̂n)=
p(1¡ p)

n

r
= 1
In(p)

:

It follows at once that p̂n is asymptotically efficient.

9.5 Properties of the Maximum Likelihood Esti-
mator

In this section, we show that the Maximum Likelihood Estimator satisfies
many of the asymptotic properties defined above.

Here and below, we fix a parametric model F=ff(x;�):�2�g which we
assume to fulfill a standard set of assumptions known as the Fisher regularity
conditions, see Definition 4.1 in [2] for their precise statement, as well as p.
395 in [3]. We denote by `n: �!R the associated log-likelihood function.

We are given X1; : : : ;Xn� f(x; �) for some unkown �2� and denote by
�̂n the associated MLE. We will prove the following:

Theorem 9.14. The MLE is a consistent, asymptotically efficient esti-
mator for �.

Proof. We refer to p. 135 of [5] for the proof of consistency. Here we detail
the proof of asymptotic efficiency, along the lines of pp. 136 and 137 in [5].
To do so, we introduce the log-likelihood function `n: �!R as well as the
score function

sn(�)=
d
d�
`n(�); � 2�

and the Fisher information

In(�) :=E�

�
¡ d2

d�2
`n(�)

�
=E�

�
¡ d
d�
sn(�)

�
:
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Since �̂n is a consistent estimator for � (as we admitted), it is legitimate to
think of �̂n as being close to � when n is large, so we may write the following
approximation

sn(�̂n)� sn(�)+ (�̂n¡ �)
dsn
d�

(�):

Now, the left-hand side above vanishes, as by definition �̂n maximises the
likelihood function, and hence sn(�̂n)=

d

d�
`n(�̂n)= 0. So we get

sn(�)+ (�̂n¡ �)
d
d�
sn(�)� 0;

i.e.

�̂n¡ ��
sn(�)�

¡ d

d�
sn(�)

�:
With this approximation, and recalling that In(�)=nI(�), we get

In(�)
p

(�̂n¡ �) = n I(�)
p

(�̂n¡ �)

=

1

n I(�)
p sn(�)

1

n I(�)

�
¡ d

d�
sn(�)

�:
We will study convergence of the numerator and of the denominator of the
last expression separately.

Numerator:
Note that sn(�)=

P
i=1
n Yi=nY�n, where

Yi :=
d
d�

log(f(Xi; �)); i=1; : : : ; n:

Note that the Yi are i.i.d. We now compute their mean and variance. We have

E�(Yi) = E�

�
d
d�

log(f(Xi; �))
�

= E�

�
d
d�

log(f(X1; �))
�

= E�[s1(�)]
= 0;

where the last equality follows from Lemma 8.20. So the Yi are centered.
Their variance is given by

V�(Yi) = V�

�
d
d�

log(f(Xi; �))
�

= V�

�
d
d�

log(f(X1; �))
�

= V�[s1(�)]
= I(�)
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where the last equality follows from Lemma 8.20. So the Yiare i.i.d., centered
r.v.'s with variance I(�). By the CLT, we have

n
I(�)

r
Y�n ¡!

(d)

n!1
N (0; 1):

Rewriting this in terms of sn(�) yields

1
nI(�)

r
sn(�) ¡!

(d)

n!1
N (0; 1):

Denominator:
We have

1
n I(�)

�
¡ d
d�
sn(�)

�
=Z�n;

where Z1; : : : ; Zn are the i.i.d. random variables given by

Zi :=
1
I(�)

�
¡ d2

d�2
log(f(Xi; �))

�
:

The Zi have mean given by

E�(Zi) = 1
I(�)

E�

�
¡ d2

d�2
log(f(Xi; �))

�
=

I(�)
I(�)

= 1;

where the second equality follows by te very definition of I(�). Hence, by

the LLN, we have Z�n ¡!
(P )

n!1
1 , i.e.

1
n I(�)

�
¡ d
d�
sn(�)

�
¡!(P )
n!1

1:

Conclusion:
We have

In(�)
p

(�̂n¡ �) =

1

n I(�)
p sn(�)

1

n I(�)

�
¡ d

d�
sn(�)

�
with

1
n I(�)

p sn(�) ¡!
(d)

n!1
N (0; 1)

and
1

n I(�)

�
¡ d
d�
sn(�)

�
¡!(P )
n!1

1:

The claimed result now follows by the Lemma below. �
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Lemma 9.15. Let (Xn)n>1 and (Yn)n>1 be sequences of real-valued r.v.'s
such that

Xn ¡!
(d)

n!1
X

for some random variable X and

Yn ¡!
(P )

n!1
c;

for some strictly positive constant c. Then

Xn

Yn
¡!(d)
n!1

X
c
:

Proof. This is an easy consequence of the continuous mapping Theorem
and Slutsky's Theorem, see p. 451 in [3]. �
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Chapter 10
Confidence intervals
In this Chapter again, we assume given a parametric model F=ff(x;�):�2
�g and a sample X1; : ::;Xn� f(x; �), where �2� is the true, but unknown,
parameter value. In the previous Chapters we have introduced the notion
of an estimator �̂n for �. Hopefully, if we constructed this estimator in a
reasonable way, it should provide a �good guess� for the true parameter value
of �. Now we would like to make this a bit more quantitative: how �good� is
this guess, i.e. how large is the error? A common way to answer this is by
the notion of confidence interval.

The content of this chapter is based mainly on on Section 6.3.2 and parts
of Chapter 9 of [5], see also Chapter 11 in [3].

10.1 Definition and interpretation

Definition 10.1. Let � 2 (0; 1) be a fixed number. A 1¡ � confidence
interval for � is an interval Cn= (a; b), where a= a(X1; : : : ; Xn) and b=
b(X1; : : : ; Xn) are random numbers depending only on our observed data
X1; : : : ; Xn, such that

P�(Cn3 �)> 1¡�: (10.1)

Remark 10.2. Note that the interval Cn=(a; b) is random, as a and b are
random variables, but depends only on our observations X1; : : : ; Xn, while
� is deterministic but unkown.

Remark 10.3. We commonly use 95% confidence intervals, which corre-
spond to choosing �= 0.05.

The information provided by a confidence interval is crucial. There are
two possible ways to use it:

1. If one repeats the experiment over and over again, then Property
(10.1) guarantees that, a fraction 1¡� of the times, our confidence
interval will contain our true, but unkown, parameter value.

2. If we run a sequence of experiments with unrelated parameters �1;
�2; : : : and construct a 1¡ � confidence interval for each, then a
fraction 1¡� of the times, our confidence interval will contain our
true, but unkown, parameter value.
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Example 10.4. [see Wasserman, example 6.13]
Everyday, newspapers report opinion polls. For instance, one day they

might say that 83% of people prefer French wine to Californian wine, adding
a statement of the form �this poll is accurate to within 4 points 95% of the
time�, which means they provide (79;87) as a 95% confidence interval of the
true percentage of people with this opinion. Another day, they will say that
76% of people prefer Italian cheese to French cheese, adding a statement of
the form �this poll is accurate to within 2 points 95% of the time�, which
means they provide (74; 78) as a 95% confidence interval. Etc. That means
that, if you read the polls every single day, for about 95% of the polls, the
true poll result will be contained in the given confidence interval.

10.2 Exact confidence intervals
Constructing exact confidence intervals can be a complicated task. In this
section we show how such confidnece intervals can be constructed in the case
of Bernoulli random variables. Our construction will rely on the inequality
below, which is not given in classe.

Theorem 10.5. * Hoeffding's inequality
Let Y1;:::; Ynbe independent random variables such that, for all i=1;:::;

n;

1. E(Yi)= 0

2. ai6Yi6 bi; for some deterministic ai; bi2R

Let "> 0. Then, for any t > 0, we have

P

 X
i=1

n

Yi> "
!
6 e¡t"

Y
i=1

n

et
2(bi¡ai)2/8:

A very useful consequence of the above is the following result, wee The-
orem 4.5 in [5].

Theorem 10.6. Let p 2 (0; 1) and X1; : : : ; Xn�Ber(p). Then, denoting
by X�n :=

1

n

P
i=1
n Xi the sample mean, we have, for all "> 0,

P(jX�n¡ pj>")6 2e¡2n"
2
: (10.2)

Proof. We set Y
i
:=Xi¡ p and apply Hoeffding's inequality to the Yi, see

p. 67 of [ 5] for a detailed proof. �

The inequality (10.2) is often stronger than Chebyshev's inequality (6.1).
For instance, taking n= 100 and "= 0.2, inequality (10.2) gives

P(jX�n¡ pj>")6 2 e¡2�100�(0.2)
2
=2 e¡8� 6.7� 10¡4;
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while Chebyshev's inequality would only give the much coraser bound

P(jX�n¡ pj>")6
V(X�n)
"2

= p(1¡ p)
n "2

6 1
4n"2

= 1
4� 100� (0.2)2=6.25�10¡2;

were we used that p(1¡ p)6 1/4 for all p in the middle inequality.

Application: Confidence intervals for Bernoulli model.
We throw n times a coin with an unkown probability p of hitting Heads

and record our results. These are modelled by X1; : : : ; Xn� Ber(p). We
estimate p by the sample mean p̂n :=X�n, which are also corresponds to the

MLE. Then, for any � 2 (0; 1) setting "n: =
log(2/�)

2n

q
, we claim that the

interval Cn := (p̂n¡ "n; p̂n+ "n) is a 1¡� confidence interval for p. Indeed,
in view of Hoeffding's inequality,

Pp(p2/ Cn) = Pp(jp̂n¡ pj>"n)
6 2 e¡2n"n

2

= 2 e¡log(2/�)

= �;

so that Pp(p2Cn)>� as required. We record below the approximated value
of "n (up to 2 decimals) for different values of n, for 95 and 97.5% intervals,
respectively.

n "n (95% confidence interval) "n (97.5% confidence interval)
10 0.43 0.47
20 0.30 0.33
50 0.19 0.21
100 0.14 0.15
500 0.06 0.07
103 0.04 0.05

Note the likeable feature that these confidence intervals are valid what-
ever the value of p.

Example 10.7. A poll is carried out in Berlin, asking people if they approve
transforming the Tempelhofer Feld into a huge shopping mall. A sample
of n= 1000 people is chosen at random, and asked their opinion. Among
them, 570 people approve of the project. Denoting by p the true proportion
of the Berlin population approving the project, and modelling the sampled
people's opinions by i.i.d. Bernoulli random variables with parameter p, we
see from the above chart that Cn := (0.53; 0.61) provides a 95 % confidence
interval for p.

Open Question: do you think it reasonable to model sampled people's
opinions by i.i.d. random variables, and why?
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10.3 Asymptotic confidence intervals
In most situations, constructing an exact confidence interval for � is too
difficult. In such cases we resort to asymptotic confidence intervals. Often
we will use normal-based confidence intervals.

10.3.1 Large probability interval for a normal random
variable

Let us first state a result for standard normal random variables. Let us
denote by �¡1 the quantile function of the standard normal distribution.
For p2 [0;1], let us denote zp :=�¡1(1¡ p); so that, if Z�N (0; 1), we have
P(Z 6 zp)= 1¡ p.

Lemma 10.8. Let Z�N (0; 1). Then, for all �2 (0; 1), we have

P(¡z�/26Z 6 z�/2)= 1¡�:

Proof. We have

P(¡z�/26Z6 z�/2) = �(z�/2)¡�(¡z�/2): (10.3)

Note now that, for all x2R, we have

�(¡x)=1¡�(x);

indeed using the fact that PDF fZ of Z�N (0; 1) is even, we have

�(¡x) =
Z
¡1

¡x
fZ(x) dx

=
Z
x

+1
fZ(x) dx

= 1¡
Z
¡1

x

fZ(x) dx

= 1¡�(x):

Applying this to (10.3), we get

P(¡z�/26Z6 z�/2) = �(z�/2)¡ (1¡�(z�/2))
= 2�(z�/2)¡ 1
= 2

�
1¡ �

2

�
¡ 1

= 1¡�:

�

Recall that
�¡1(0.95)� 1.645;

�¡1(0.975)� 1.960:
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Hence, for �= 0.1; z�/2=�¡1
¡
1¡ �

2

�
=�¡1(0.95)� 1.645; so that

P(¡1.6456Z6 1.645)� 0.9;

while for �= 0.05; z�/2=�¡1
¡
1¡ �

2

�
=�¡1(0.975)� 1.960; so that

P(¡1.9606Z 6 1.960)� 0.95:

In particular we certainly have the following, easy and very useful to
remember, fact:

P(¡26Z 6 2)> 0.95:

We now show how to use the above Lemma to compute approximate confi-
dence intervals.

10.3.2 Approximate, normal-based, confidence intervals:
the general principle

Assume that wehavean asymptoticall normal estimator �̂n for �: that means
that

�̂n¡ �
se(�̂n)

¡!(d)
n!1

N (0; 1): (10.4)

That is, for n large, the distribution of �̂n¡ �

se(�̂n)
is approximately the standard

normal distribution. We are then on good tracks to derive a confidence
interval for � using Lemma 10.8, but there is a caveat, which is that se(�̂n)
often depends on the unkown parameter value � and is thus impossible for us
to evaluate. Luckily, we can often define an estimated standard error sê(�̂n),
which depends only on our observations X1; : : : ; Xn (so we can evaluate it),
and which still satisfies the property that

�̂n¡ �
sê(�̂n)

¡!
(d)

n!1
N (0; 1): (10.5)

In other words, in many cases, (10.4) is still true if we replace the true
standard error se(�̂n) (usually unkown to us) with the estimated standard
error sê(�̂n) (which can be evluated using our observed data X1; : : : ; Xn).
We then have the following result:

Lemma 10.9. If ( 10.5) holds, then for all �2 (0; 1), the interval

Cn=(�̂n¡ z�/2 sê(�̂n); �̂n+ z�/2 sê(�̂n))

is an approximate 1¡� confidence interval for �, in the sense that

P(� 2Cn)� 1¡�;
for n large:
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Proof. We have, for n large, in view of (10.5),

P(� 2Cn) = P(j�¡ �̂nj6z�/2 sê(�̂n))

= P

 
¡z�/26

(�̂n¡ �)
sê(�̂n)

6 z�/2

!
� �(z�/2)¡�(¡z�/2)
= 1¡�:

where the last equality follows by Lemma 10.8. �

Example 10.10. For �= 0.05, z�/2� 1.960� 2, so �̂n� 2 sê(�̂n) is a 95%
confidence interval.

We give below a few examples where the above machinery for con-
structing approximate confidence intervals can be applied.

10.3.3 Case of the sample mean
Let X1; : : : ; Xn be i.i.d. random variables with mean � and variance �2.
Let us first assume for simplicity that � is known. Assume that we want to
estimate the mean � of X1; : : : ; Xn: We do so by considering the estimator
�̂ndefined as the sample mean

�̂n=
1
n

X
i=1

n

Xi:

By the CLT, we know that

n

�
2

r
(�̂n¡ �) ¡!

(d)

n!1
N (0; 1): (10.6)

So (10.5) is satisfies, with � = �, �̂n= �̂n and sê(�̂n) =
�2

n

q
: In virtue of

Lemma 10.9, Cn := [�¡ "n; �+ "n], with "n := z�/2
�2

n

q
, is an approximate

1¡� confidence interval for �, i.e.

P(�̂n2Cn)� 1¡�;

for n large. Below we give a few values of "n, up to 2 decimals, for different
values of n and for �=1.

n "n (90% confidence interval) "n (95% confidence interval)
10 0.52 0.62
20 0.37 0.44
50 0.23 0.28
100 0.16 0.20
500 0.07 0.09
103 0.05 0.06
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Now, what if � is unknown to us? It then seems natural to try and
replace, in (10.6), the true but unkown variance �2, by the sample variance
Sn
2 = 1

n¡ 1
P

i=1
n (Xi¡X�n)

2: As it turns out, we can do so without losing
the convergence to the standard normal distribution, as the following result
show (see Theorem 5.10 in [5])

Theorem 10.11. There holds the convergence in distribution

n

Sn
2

r
(�̂n¡ �) ¡!

(d)

n!1
N (0; 1):

Hence, setting sê(�̂n):=
Sn
2

n

q
, we have

(�̂n¡ �)
sê(�̂n)

¡!(d)
n!1

N (0; 1);

and in virtue of Lemma 10.9, we deduce that Cn := [�¡ "n; �+ "n] is an

approximate 1¡� confidence interval for �, with "n := z�/2
Sn
2

n

q
.

10.3.4 Construction via the MLE
We now give a more general class of examples of normal-based confidence
intervals, which relies on the MLE.

We assume that our model F=ff(x;�): �2�g fulfills Fisher's regularity
condition. We consider X1; : : : ; Xn� f(x; �) with � unknown, and consider
the MLE �̂n for �. We aim at obtaining a confidence interval for �. Recall
from Theorem 9.14 that �̂n is an asymptotically efficient estimator for �, i.e.
we have

In(�)
p

(�̂n¡ �) ¡!
(d)

n!1
N (0; 1);

which can equivalently be written as the following approximate equality in
law, for n large:

�̂n�
(d)
N
�
�;

1
In(�)

�
:

In particular, we see that, for n large, se(�̂n)�
1

In(�)
p :Here we face the caveat

that � is unkown to us and we thus cannot evaluate In(�):Nevertheless, it
turns out that, setting

sê(�̂n) :=
1

In(�̂n)
q ;

we have that

(�̂n¡ �)
sê(�̂n)

= In(�̂n)
q

(�̂n¡ �) ¡!
(d)

n!1
N (0; 1); (10.7)
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see (9.13) in [5]. We now deduce the following:

Theorem 10.12. Let �2 (0; 1). Then the interval

Cn := (�̂n¡ z�/2 sê(�̂n); �̂n+ z�/2 sê(�̂n))

is a 1¡� confidence interval for �.

Proof. This follows from (10.7) and Lemma 10.9.
�
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Chapter 11

Hypothesis testing

In the previous chapters we saw how to estimate the parameter � from our
observations X1; : : : ; Xn. There are situations where, rather than asking
�what� the value of � is, we are testing an hypothesis on the value of �.

11.1 Definitions

11.1.1 Notations

We assume given a parametric model F = ff(x; �): � 2�g and a sample
X1; :: :;Xn� f(x; �), where �2� is the true, but unknown, parameter value.
Assume further that we have a partition of � into two (disjoint) subsets �0
and �1, so that �=�0[�1. We would like to test two hypotheses

H0: � 2�0; versus H1: � 2�1:

We call H0 the null hypothesis, and H1 the alternative hypothesis.

Example 11.1. Let X1; : : : ; Xn�Ber(p), with p 2 (0; 1) unknown. This
corresponds to throwing a coin n times and recording the outcomes. We
would like to test the hypothesis that the coin is fair, i.e.

H0: p=1/2; versus H1: p=/ 1/2:

This corresponds to partitioning�=(0;1) into�0=f12g and�1=(0;1)nf
1

2
g:

Example 11.2. Let again X1; : : : ; Xn�Ber(p), but we would like now to
test the hypotheses

H0: p< 1/2; versus H1: p> 1/2:

This corresponds to partitioning �=(0; 1) into �0=
¡
0; 1

2

�
and �1=

� 1
2
;1
�
:
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Definition 11.3. * Let �02�. A hypothesis of the form �= �0 is called a
simple hypothesis, while a hypothesis of the form � < �0 or � > �0 is called
a composite hypothesis. Further, a test of the form

H0: �= �0; versus H1: �=/ �0

is called a two-sided test. A test of the form

H0: � <�0; versus H1: �> �0
or

H0: � >�0; versus H1: �6 �0
is called a one-sided test.

For instance, the test of Example 11.1 above is a two-sided test, while
the test of Example 11.2 is a one-sided test.

11.1.2 General setup

In practice, to perform a test from our data X := (X1; : : : ;Xn), we define
a function T , called test statistic, and a number c, called critical value, from
which we define the rejection region

R= fx: T (x)>cg:

We will then proceed as follows: if our observed data X are such that X 2R,
i.e. T (X)> x, then we shall reject the null hypothesis H0. On the other
hand, as long as X 2/ R, i.e. T (X)6x, we shall retain (not reject) the null
hypothesis H0.

Remark 11.4. A hypthesis test is like a legal trial. We assume someone is
innocent unless there is strong evidence that they are guilty. Likewise, when
performing hypothesis testing, we retain the null hypothesis H0 unless there
is strong evidence against it.

There are two types of errors one could make. Rejecting H0 when H0

is true is called a type I error. Retaining H0 when H0 is false is called a
type II error.

Retain H0 Reject H0

H0 True Correct answer type I error
H0False type II error Correct answer
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A major point consists in controlling the error we can make.

Definition 11.5. We consider a test with rejection region R.

� The power function of the test is defined as

�(�) :=P�(X 2R); � 2�

� The size of the test is defined to be

� := sup
�2�0

�(�) (11.1)

Thus the power function is the probability that the null hypothesis H0

is rejected: this probability depends a priori on �, hence the name power
function. Recall that H0 is the hypothesis that � 2�0, hence the size of
the test defined in (11.1) measures the largest probability of error of type I
that may occur (i.e. the largest probability of rejecting H0 while H0 is true).
Hopefully we would like to construct tests with a size that is under control.
This is quantified by the following notion.

Definition 11.6. Let �2 (0; 1). A test is said to be of level � if its size
is less than or equal to �.

Example 11.7. Let X1; : : : ; Xn�N (�; �2) where � > 0 is known and � is
unknown. We want to test H0: �< 0 against H1: �>0. To do so, we denote
by X�n the sample mean, and consider the statistic T (X)=X�n: The rejection
rejection will be given by

R := f(x1; : : : ; xn):T (x1; : : : ; xn)>cg;

where c 2R is a critical value, and T (x1; : : : ; xn) =
1

n

P
i=1
n xi. The size of

this test is sup�<0 �(�), where, for �2R,

�(�) = P�(X 2R)
= P�(X�n>c)

= P�

�
Z >

n
p

(c¡ �)
�

�

where Z := n
p

(X�n¡ �)

�
. Note that Z�N (0; 1), hence, for all �2R, we

have the expression �(�)=1¡�
�

n
p

(c¡ �)

�

�
, where � is the CDF of N (0;1).

Note in particular that � is a non-decreasing function from R to (0,1). Thus
the test constructed above has size

� := sup
�<0

�(�)= �(0)= 1¡�
�

n
p

c

�

�
: (11.2)
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Suppose now that the value of �2 (0; 1) is imposed, e.g. �= 0.05, and we
are being asked to devise a hypothesis test with size equal to the prescribed
value �. To do so we can choose a critical value c such that (11.2) is fulfilled:
this is achieved by choosing c= �

n
p �¡1(1¡�)= �

n
p z�. So a test of size � is

given by rejecting H0: �< 0 when X�n>
�

n
p z�, i.e. we reject H0: �< 0 when

n
p

X�n
�

>z�. For �= 0.05, z�=�¡1(0.95)� 1.645:
Numerics:Assume for instance �=1, n=100 and we observe the sample

mean X�n=0.1. Then

n
p

X�n
�

=
100

p
� 0.1
1

=1< 1.645;

so we retain H0. On the other hand, with the same numbers as above but
4 times as many samples, i.e. �=1, n= 400 and we still observe a sample
mean X�n=0.1, then

n
p

X�n
�

=
400

p
� 0.1
1

=2> 1.645;

so we reject H0. Note that in both cases above, the observed value of the
statistic (the sample mean) was the same, but the decision of rejecting or
not was affected by the sample size. Intuitively, with a large sample size,
the fact that X�n> 0 is �more significant� than with a small sample size.

11.2 Examples of tests
We now present a few important examples of tests.

11.2.1 The Z test
Let X1; : : : ; Xn�N (�; �2) where � > 0 is known and � is unknown. Let
�02R. We want to test

H0: �= �0 versus H1: �=/ �0:

To do so, we consider the sample mean X�n as well as Z := n

�2

q
(X�n¡ �0).

Given �2 (0;1), the size-� Z test rejects H0 when jZ j>z�/2. Note that this
test has indeed size � as, under H0, Z is a standard normal random variable,
so the probability that it falsely rejects H0 is given by

P�0(jZ j>z�/2)=�:

Remark 11.8. The size � Z test rejects H0: � = �0 when |X�n¡ �0j >
�2

n

q
z�/2, that is when �0 2/ Cn where Cn = X�n �

�2

n

q
z�/2 is a (1 ¡ �)

confidence interval for �.
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The Z test is applicable when � is known, but is is no longer available
when � is unknown. For n large �2 may be estimated by the sample variance
Sn
2, however for n small this estimation produces an error which needs to be

controlled carefully. In such cases we resort to the T test.

11.2.2 The T Test
Let X1; : : : ; Xn�N (�; �2) where � > 0 and � 2R are both unknown. We
still want to testH0:�=�0 againstH1:�=/ �0. A key lemma is the following:

Lemma 11.9. If X1; : : : ;Xn�N (�; �2), then n

Sn
2

q
(X�n¡ �) follows the t

distribution with n¡ 1 degrees of freedom, which is the continuous distri-
bution on R with PDF given by

f(t)=
¡
¡ n
2

�
(n¡ 1)�

p
¡
¡ n¡ 1

2

��1+ t2

n¡ 1

�¡n/2
; t2R:

Let us consider the test statistic T := n

Sn
2

q
(X�n¡ �0), where X�n and Sn2

denote the sample mean and sample variance, respectively. Given � 2 (0;
1), let further t�/2 be the 1¡ �/2 percentile of the t distributions with
n¡ 1 degrees of freedom. Note that, by symmetry of the PDF f of that
distribution, we have

R
¡t�/2
t�/2 f(t)dt= 1¡ �. The size � T test consists in

rejecting H0 when jT j>t�/2. It is easily checked that this test indeed has
size � (exercise).

Remark 11.10. The size � T test rejects H0: �= �0 when |X�n¡ �0j>
Sn
2

n

q
t�/2, that is when �0 2/ Cn where Cn =X�n �

Sn
2

n

q
z�/2 is a (1 ¡ �)

confidence interval for �.

Remark 11.11. For n large, Sn2��2 and t�/2� z�/2, so the Z test and the
T test are equivalent.

n t� (for �= 0.05)
5 2.57
10 2.23
50 2.01
100 1.98

11.2.3 The Wald Test
Assume that we have an asymptotically normal estimator �̂n for �, and that
we can estimate its standard error by an estimated standard error sê(�̂n) in
such a way that

�̂n¡ �
sê(�̂n)

¡!
(d)

n!1
N (0; 1): (11.3)
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This is the case, e.g., for the MLE, see Theorem 9.14. Let �02� be a fixed
(known) parameter value. Given a prescribed �2 (0;1) we would like to test

H0: �= �0 versus H1: �=/ �0;

with size �2 (0; 1). For sufficiently large n, this can be achieved using the
Wald test:

Definition 11.12. For any � 2 (0; 1), the size � Wald test consists in
rejecting H0: �= �0whenever jW j>z�/2, where

W := �̂n¡ �0
sê(�̂n)

:

Proposition 11.13. The test defined above has indeed, asymptotically,
size �, in the sense that

P�0(jW j>z�/2) ¡!
n!1

�:

Remark 11.14. Note that in this case �0= f�0g, so the probability above
does indeed represent the test size as defined in Definition 11.1.

Proof. In virtue of (11.3), denoting by Z a standard normal variable, we
have

lim
n!1

P�0(jW j>z�/2) = P(jZ j>z�/2)

= 1¡P(jZ j6 z�/2)
= �

where the last equality follows from Lemma 10.8. �

Remark 11.15. Recall that the interval Cn given by �̂n� sê(�̂n) z�/2 is an
approximate 1¡ � confidence interval for �. Thus, the size � Wald test
consists in rejecting H0 when �0 lands outside the 1¡� confidence interval
for �.

Example 11.16. We poll the opinions of two different groups of population.
We sample n = 1000 answers from the two groups that we represent by
independent Bernoulli random variables X1; : : : ; Xn and Y1; : : : ; Yn with
respective parameters p1 and p2. We set � := p1¡ p2 and wish to test

H0: �=0 versus H1: �=/ 0:

To do so we consider the estimator

�̂n :=X�n¡Y�n;
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which is also the sample mean of the r.v's Xi¡ Yi. The standard error is
given by

se(�̂n)=
p1(1¡ p1)+ p2(1¡ p2)

n

r
;

which can be estimated by

sê(�̂n)=
X�n (1¡X�n)+Y�n (1¡Y�n)

n

r
:

The size � Wald test consist in rejecting H0: �=0 when jW j>z�/2 where

W = �̂n¡ 0
sê(�̂n)

= �̂n

sê(�̂n)
:

Note that the size of the test controls the probability of making a type
I error. But it is also important to control the probability of making a type
II error, or conversely to say how likely we are to correctly reject H0 when
H1: �=/ �0 is true. This is done by the following result.

Theorem 11.17. Suppose the true parameter value is equal to ��=/ �0.
Then the power �(��) of the size �Wald test, i.e. the probability of correctly
rejecting the hypothesis H0: �= �0, is approximately equal, for n large, to

P(jZ ¡�j>z�/2) = 1¡�(�+ z�/2)+�(�¡ z�/2)

where Z�N (0; 1) and �= �0¡ ��
sê(�̂n)

.

Remark 11.18. If � is close to 0, P(jZ¡�j>z�/2) will not be too far from
P(jZ j>z�/2) = �, resulting in a relatively low power for the test. On the
other hand, if � is very far from 0, the probability P(jZ ¡ �j>z�/2) that
Z deviates from � by more than z�/2 will be quite close to 1, resulting in a
high power. So, in order for the test to be powerful, it is desirable to have �
large, which will be the case if (i) �0 is far from �� and (ii) the sample size
is large enough so that sê(�̂n) is small.

Proof. We have

�(��) = P��(jW j>z�/2)

= P��

 ���������� �̂n¡ ��sê(�̂n)
¡ �0¡ ��

sê(�̂n)

����������>z�/2
!

�
n!1

P��

 ����������Z ¡ �0¡ ��
sê(�̂n)

����������>z�/2
!

where the last approximate equality follows from the convergence (11.3).
The claim follows. �
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Example 11.19. Considering again 11.16 and assuming that the true para-
meter value ��= p1¡ p2 is not 0, so the hypothesis H0: �= 0, is false, the
power function is approximately equal, for n large, to P(jZ¡�j>z�/2) with

�= ¡��
sê(�̂n)

=¡(p1¡ p2)
n

p1(1¡ p1)+ p2(1¡ p2)

r
:

The power will be large if j�j is large, which is achieved when p1 is far from
p2 and when the sample size n is large.

11.2.4 * The likelihood ratio test (not given in lecture)
The likelihood ratio test is suited when considering a parametric model
F=ff(x;�):�2�g with parametrised by more than 1 parameter, i.e. where
� consist of vectors rather than scalars. Let X1; : : : ;Xn� f(x; �) and let Ln:
�!R denote the likelihood function. Assume that we want to test

H0: �= �0 versus H1: �=/ �0:

Definition 11.20. The lieklihood ratio statistic is

�=2 log
�
sup�2�Ln(�)

Ln(�0)

�
=2 log

 
Ln(�̂n)
Ln(�0)

!

where �̂n denotes the MLE. Thelikelihood ratio test consists in rejecting
H0 if �> c, where c is a fixed critical value.

Question. Given a prescribed �2 (0; 1), how to choose c so that the above
test has size �?

Assume that ��Rr for some r> 2, so that � consists in a set of r-
dimensional vectors. In particular �02Rr. We claim that the following holds.

Theorem 11.21. When n!1, � converges in distribution the �(r) dis-
tribution
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Part III

Bayesian inference









Chapter 12

Introduction to Bayesian inference

12.1 The Bayesian approach

So far we have been addressing frequentist inferencewhich relies on three
postulates:

F1. Probabilities refers to limiting relative frequencies: it is an objetcive
property of the world,

F2. The paramaters to estimate are fixed, deterministic, unknown con-
stants,

F3. Statistical procedures should be designed to have well-defined long-
run frequency properties.

For instance, in frequentist hypothesis testing, a 95% confidence interval
should trap the true parameter value with limiting frequency larger or equal
to 95%.

Another approach exists: Bayesian12.1 inference. It relies on the following
three postulates:

B1. Probability describes a degree of belief , not a limiting frequency

B2. We can make probability statements about parameters

B3. We make inferences about a parameter � by producing a probability
distribution for �.

Thus, in Bayesian inference, we can for instance say that �the probability
that it will rain tomorrow in Dahlem is 0,4�. This describes our degree
of belief of the event �it will rain tomorrow in Dahlem�, not a limiting
frequency. Taking a more familiar example, let's trhow a coin with unknown
parameter p2 (0;1). In Bayesian inference, we may represent p as a random
variable (which was not the case in the framework of frequentist inference!).
The Bayesian method gives a toolbox to obtain a posterior distribution for p,
that we can use to make inferences, i.e. produce point estimators, posterior
intervals, etc.

12.1. named after Thomas Bayes, c. 1701-1761
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12.2 The Bayesian method

Let F = ff(x; �): � 2 �g be a parametric model, where, for each � 2 �,
f(x;�) is a PDF (for simplicity). How to estimate �? The Bayesian approach
consists in 3 main steps:

1. We choose a probability density f(�) for �, called prior distribution .

2. Given observations x= (x1; : : : ; xn)� f(x; �), we compute the likeli-
hood function L(�), � 2�.

3. We update the distribution of � in accordance with our observations,
and obtain the posterior distribution f(�;x).

In Step 3, the update is performed using Bayes' Theorem:

Theorem 12.1. (Bayes' Theorem for continuous r.v.'s) Let X;Y be
two r.v.'s admitting a joint PDF fX;Y. Then, for all x0 fixed,

fX jY (x0jy)=
fX(x0)fY jX(y jx0)R
fX(x)fY jX(y jx)dx

provided that fY (y)> 0.

Bayesian method:

1. We postulate a probability density f(�) for �, called prior distribu-
tion . This is a subjective choice.

2. Given observations xn=(x1; : : : ; xn)� f(x; �), we compute f(xnj�);
which coincides with the likelihood function Ln(�).

3. We compute the posterior distribution from the prior ditsribution
and the likelihood using Bayes' Theorem,:

f(�jxn)= f(xnj�) f(�)R
f(xnj�~) f(�~) d�~

: (12.1)

Equation (12.1) can be rewritten as

f(�jxn)= Ln(�)f(�)R
Ln(�)f(�~) d�~

:

Warning 12.2. Do not mix up the prior distribution f(�), the likelihood
f(xnj�)=Ln(�), and the posterior distribution f(�jxn).

Note 12.3. the quantity

c=
Z
Ln(�)f(�~) d�~ (12.2)

is a constant (depending on the data xn) called evidence.
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So the rule of thumb is

posterior =
likelihood � prior

evidence
:

Remark 12.4. The evidence can be retrieved from the likelihood Ln(�)
and the prior f(�) using (12.2). Thus in practice it is sufficient to compute
Ln(�) f(�): The update rule is then

f(� jxn)/Ln(�) f(�);
i.e.

posterior / likelihood � prior:

12.3 Bayesian point estimators, confidence
intervals, and hypothesis tests

Once the posterior distribution f(� jxn) has been otained, it can be used
to produce Bayesian point estimators, confidence intervals, and hyopthesis
tests, etc.

12.3.1 Bayesian point estimator
Using the posterior distribution f(� jxn), we define the associated Bayesian
point estimator ��n as the posterior mean , that is the mean of the posterior
distribution:

��n :=
Z
� f(� jxn) d�

=
R
�Ln(�)f(�) d�R
Ln(�)f(�) d�

12.3.2 Bayesian confidence interval
We can also define a Bayesian interval estimate. Given a prescribed �2(0;1),
let a; b such that Z

¡1

a

f(� jxn) d�=
Z
b

+1
f(� jxn) d�= �

2
;

and let C denote the interval (a; b). Then C has the property that

P(� 2C jxn)=
Z
a

b

f(�jxn) d�=1¡�:

We call C a 1¡� posterior interval.
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12.4 Examples

Example 12.5. Let xn=(x1; : : : ; xn) be an iid sample of Bernoulli random
variables with unknown parameter p2 (0;1). Without any information on p
it is tempting to choose a uniform prior distribution for p, that is f(p)= 1
for all p2 (0; 1) (also called a flat prior). Then the posterior is

f(pjxn) / Ln(p) f(p)
= (1¡ p)n¡s ps

where s=
P

i=1
n xi denotes the number of sucesses. So

f(pjxn)= (1¡ p)n¡s psR
(1¡ p~)n¡s p~s dp~

: (12.3)

Question 1. What distribution is this?

Recall that we denote, for all �> 0:

¡(�) :=
Z
0

+1
t�¡1 e¡tdt:

Definition 12.6. Let �; � > 0. The Beta distribution with parameters �
and � is the distribution with PDF

Beta(x;�; �)=1[0;1](x)
¡(�) ¡(�)
¡(�+ �)

x�¡1 (1¡x)�¡1

for all x2R.

Thus, the posterior distribution appearing in (?) is a Beta distribution,
namely:

f(pjxn) = Beta(p; s+1; n¡ s+1)

= ¡(n+2)
¡(s+1)¡(n¡ s+1)

ps (1¡ p)n¡s:
We write

pjxn�Beta(s+1; n¡ s+1):

With this information we can now compute a Bayes estimator for p. It is
given by

p�n : =
Z
p f(pjxn) dp

=
Z
pBeta(p; s+1; n¡ s+1) dp:

Exercise 12.1. If �; � > 0, thenZ
xBeta(x;�; �) = �

�+ �
:
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So here we get

p�n=
s+1

(s+1)+ (n¡ s+1)
= s+1
n+2

:

Remark 12.7. Recall that the MLE for p is given by

p̂n=
1
n

X
i=1

n

xi=
s
n
:

In particular p�n=/ p̂n but
p�n
p̂n
� 1

for n large.
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Numerical Methods I
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