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Abstract— This work presents a novel rule-based interaction-
aware multi-modal prediction method for urban traffic scenar-
ios. The method takes into account the most common classes
of traffic participants and handles all relevant types of motion
behaviors. The potential trajectories of the traffic participants
are rolled out resulting in multi-modal probability distributions
for the states of all agents for each prediction time step.
The analysis of collision risks between these trajectories is
the basis for the interaction-awareness. The prediction is fully
interaction-aware by considering also the interactions between
the obstacles. The system is able to predict complex urban
scenarios with numerous different agents in real-time. The
approach is evaluated using real-world scenarios and in a
simulated environments.

I. INTRODUCTION

Predicting traffic scenarios is an indispensable prerequisite
for autonomous driving, since the car has to cooperate with
many other traffic participants. The main difficulties arise
from the unknown intentions and the high velocities of
the agents navigating in limited space, which requires long
prediction horizons. This work presents a novel method to
create a fully interaction-aware traffic scenario prediction,
which is innovative in the following ways:
• All typical motion behaviors of vehicles, as car follow-

ing, lane changing, lane merging, intersection crossing
etc. are handled by an unified model.

• The unified model takes into account all types of traffic
participants for interaction evaluation, as passenger cars,
trucks, bicycles and pedestrians.

• The potential conflicts between all agents are de-
tected and analyzed independently of predefined conflict
zones. The required measures to avoid these conflicts
are constraints for the subsequent predictions of motion
behavior.

• Conflict resolution is based on application of traffic rules
and any violation of them is made explicitly.

• The predicted behavior of the agents is fully explainable
by the underlying model and this model may iteratively
be refined.

• Complex scenarios with up to 50 agents are predicted
for 10 seconds at 10 Hz.

An overview over physics based, maneuver based and
interaction-aware prediction approaches is given in [1]. A
very recent survey over 200 papers about traffic prediction
is presented in [2].

This work is mainly inspired by the following approaches:
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The Intelligent Driver Model (IDM) [3], presented by
Treiber and Kesting, calculates the acceleration of a vehicle
in presence of a preceding car in single lane traffic and
was initially developed to simulate and analyze traffic flow.
The heuristic formula for car-following behavior turned out
to match reality so well that it was adopted by many
other authors. Subsequent publications enhanced the model
for delays, inaccuracies and anticipation [4], lane changes
[5], traffic light approaching [6] and stochasticity [7]. But
IDM doesn’t cover intersections and behaves poor when
approaching speed limits [14, p. 140] or lanes merges [14, p.
142]. This work extends the IDM to be applicable for urban
traffic scenarios.

Schreier presents in [8] and [9] a system to predict the
traffic scenario and to access the criticality of the current
situation. The system is part of an ADAS and its purpose is
to generate realistic warnings in potentially dangerous situ-
ations. The scenario is structured defining some reasonable
standard maneuvers for the dynamic obstacles and the ego
vehicle, like car following, lane changing or turning. All
other observed behaviors are abstracted into a so-called trash
maneuver. A Bayesian network calculates the probability
distribution of the maneuvers. Gaussian processes are used to
create a long-term prediction for each maneuver. Finally, the
evolution of the probability distribution for a collision of the
ego vehicle with a static or dynamic obstacle is evaluated
using a particle filter. Our work also considers the impact
of identified risks and how to mitigate them in subsequent
predictions.

Schulz et al. present in [10] an interaction-aware approach
to predict the driver-behavior at an urban intersection. They
propose a Bayesian network for the intention estimation
and an extended IDM version to generate the corresponding
trajectories. By evaluating the possible crossing sequences of
conflict zones as pass and yield maneuvers, they consider the
interaction among the vehicles. The probabilistic inference
is implemented using a particle filter. In [11], they propose
the usage of a Multiple Model Uncented Kalman Filter
(MM-UKF) to overcome the performance problems of the
particle filter. In [12], they replace the IDM based trajectory
generation by a learning based approach using a deep neural
network. But this approach is limited to predefined conflict
zones and doesn’t cover unexpected behavior. In our work,
the interaction is based on collision risks detected at arbitrary
locations in Cartesian space.. Moreover, unexpected and
unlawfull behavior is modeled by the introducing the trash
maneuver.



Fig. 1: Major elements of the traffic scenario prediction
system.

II. SYSTEM OVERVIEW

This and the following sections describe the scenario
prediction system, as it is implemented as part of the
MadeInGermany autonomous test vehicle of the Freie Uni-
versität Berlin [13]. A more detailed presentation can be
found in the dissertation [14]. An accompanying video
is attached to this paper or can be found at https://
userpage.fu-berlin.de/andreasp.

The rule-based multi-modal interaction-aware system
models the various objects of a scenario and their hypo-
thetical motion behavior. Figure 1 gives an overview of the
most important elements of the system. The environment
perception provides the input for the estimate of the current
state of all obstacles. Based on the roadmap and the localiza-
tion of the obstacles in the roadmap, the intention estimate
for each obstacle is created and updated. It consists of the
lane sequences of all currently feasible maneuvers of each
obstacle. The center lines of the lanes are the bases of the
predicted paths. In the next step, the motion prediction for
each maneuver is created in form of a sequence of trajectory
steps. The predicted states of the trajectory steps depend
on map based constraints dictated by the infrastructure, as
curvature, speed limits, stop signs, etc. Further influence
results from the driving style [14, p. 147], which is initially
assumed to be neutral. Subsequent updates of the motion
prediction, which are performed in receding window fashion,
take the interaction based constraints as additional input.
These constraints result from the risk estimate, which cal-
culates the collision probabilities for all trajectory steps of a
maneuver related to the trajectory steps of all maneuvers of
the other agents. The subordinate agent, which is identified
by evaluation of the relevant traffic rules, is expected to adapt
its motion plan to avoid a collision.

Algorithm 1 gives a high-level overview over the cal-
culation of a scenario prediction. The algorithm Create
Scenario Prediction is triggered on arrival of a new set of
measurements Z. In the present system, this happens with a
frequency of 10 Hz. Further input to the prediction are the
sets of objects O, maneuvers M and trajectories T as well
as the collision matrix C from the previous prediction. The
procedure UPDATEOBJECTS adds newly detected objects,
removes old objects and updates the state of preexisting
objects. The procedure UPDATEINTENTIONS evaluates the
set of currently feasible maneuver intentions and calculates
their probabilities. Procedure MAPCONSTRAINTS examines
the infrastructure data and establishes constraints resulting
from speed limits and intersection properties to be obeyed
for a specific maneuver. Procedure INTERACTIONS examines
the collision matrix of the previous prediction and infers
the type of situation, the applicable traffic rules and the
resulting responsibilities. Based on this, the interaction based
motion constraints for the next prediction are calculated. The
procedures TOFRENET and TOCARTESIAN convert states
and trajectories between Cartesian and Frenet coordinates.
The procedures ACTION and TRAJECTORYSTEP calculate
the predicted trajectory for the next T steps (default 100
steps). Procedure COLLISIONMATRIX finally calculates the
collisions risks between any pair of trajectories.

Algorithm 1 Create Scenario Prediction

Require:
1: O𝑘−1,M𝑘−1,T𝑘−1 C𝑘−1,Z𝑘

Ensure:
2: O𝑘 ,M𝑘 T𝑘 ,C𝑘

3:
4: O𝑘 ← UPDATEOBJECTS(O𝑘−1,Z𝑘 )
5: for 𝑖 ← 1 to |O𝑘 | do
6: M𝑖

𝑘
← UPDATEINTENTIONS(𝑂𝑖

𝑘
,M𝑖

𝑘−1, z
𝑖
𝑘
)

7: for 𝑗 ← 1 to |M𝑖
𝑘
| do

8: R ← MAPCONSTRAINTS(𝑀 𝑖, 𝑗

𝑘
)

9: I ← INTERACTIONS(𝑀 𝑖, 𝑗

𝑘
,T𝑘−1,C𝑘−1)

10: x𝑖, 𝑗
𝑘
← TOFRENET(z𝑖

𝑘
)

11: for 𝑡 ← 1 to 𝑇 do
12: a← ACTION(x𝑖, 𝑗

𝑘+𝑡−1,R,I)
13: x𝑖, 𝑗

𝑘+𝑡 ← TRAJECTORYSTEP(x𝑖, 𝑗
𝑘+𝑡−1, a)

14: end for
15: T𝑘 ← T𝑘 ∪ TOCARTESIAN(x𝑖, 𝑗

𝑘:𝑘+𝑇 )
16: end for
17: end for
18: C𝑘 ← COLLISIONMATRIX(O𝑘 ,M𝑘 ,T𝑘 )

III. INTENTION ESTIMATE

The purpose of the intention estimate is to infer the spatial
decisions of traffic participants during the next prediction
period. The result of the intention estimate is a set of possible
intentions and its probability distribution.

https://userpage.fu-berlin.de/andreasp
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Lane Bound Intention Classes Trash
Turn Lane Change Keep Lane Lane Change Turn (Phys.
Left Left (Forward) Right Right Laws)

Maneuver Intention Classes

A. Lane Bound Intention Classes

In the case of vehicles, it makes sense to consider the lanes
that can be reached in the near future as a spatial alternatives.
The considered spatial decisions in this work are keep lane,
turn left or right and lane change left or right. Only the
next upcoming spatial decision of each class is taken into
account. This system could be extended including additional
behaviors, as parking or U turns, or by defining sequences
of decisions during the prediction horizon, like double lane
changes.

The intended path of a vehicle is defined by a lane
sequence. A lane sequence is a sequence of consecutive
lanes from the roadmap. At the start of the prediction,
the current lane of the vehicle becomes the first lane of
the lane sequence. Additional lanes are added to the lane
sequence, until the total length of the lane sequence covers
the maximal driving distance during the prediction time-span.
The maximal driving distance is calculated using the current
speed limit for the lane plus some surcharge for traffic rule
violators.

B. Trash Intention Class

Every agent in the system may execute a trash maneuver.
For vehicles, it serves as fallback, if the observed motion
cannot be explained by some of the standard intention
classes. Examples are taking a U turn or leaving the road for
a parking lot. For pedestrians and other non-vehicle objects
on the road, the trash maneuver is the only alternative. The
same holds for any object moving off-road. The purpose of
the trash maneuver is also to cover cases, where drivers do
not adhere to traffic laws during lane bound maneuvers, e.g.
running a red light or a stop sign.

The trash maneuver is used to allow some basic motion
prediction for all these cases. Typical implementations of the
trash maneuver are constant velocity model (CV), constant
acceleration model (CA) or constant turn rate and velocity
(CTRV). The prediction quality of the physical motion
models is good for short-term predictions (1-3 seconds) and
should leave the chance for an emergency reaction.

C. Maneuver Life Cycle

A maneuver is the combination of a path intention, its
predicted trajectory and the estimated probability of the
maneuver. A maneuver has a unique id during its life time,
which serves as reference to the maneuver. The predicted
trajectory and the probability of the maneuver are updated
on each subsequent prediction.

Whenever a new obstacle is detected, all feasible maneu-
vers for this obstacle are evaluated. For each obstacle, there
is always a Trash maneuver. A vehicle on a lane has also at
least a keep lane maneuver. Turn and lane change maneuvers

are only added, if the required lanes appear on the roadmap
in front of the vehicle within the maximal prediction horizon
(given in meters).

In subsequent predictions for an obstacle, the path inten-
tions of the existing maneuvers are checked for validity based
on the new position of the obstacle. If that position is no
longer on the lane sequence of the maneuver, e.g. the diverge
region has been passed and the turn is no longer feasible, the
maneuver is discarded. The lane sequences may be updated
by discarding lanes, which are now behind the current vehicle
position. Since the horizon of the maneuver moves forward,
new lanes may be added at the end of the lane sequence.
When extending the keep lane maneuver, new occasions for
lane changes or turns may become visible and new turn or LC
maneuvers are created, if not already existing. An detailed
example is shown in [14, pp. 113-114].

D. Maneuver Probability Calculation

A Hidden Markov Model is used to calculate the proba-
bility distribution of the maneuver intention at time step k
𝑀𝑘 :

𝑀𝑘 ∈ {𝑇𝑈𝑙, 𝐿𝐶𝑙, 𝐾𝐿, 𝐿𝐶𝑟, 𝑇𝑈𝑟, 𝑇𝑅} (1)

The maneuver intention probability is modeled as a hidden
state, which emits 3 observables:

• Dynamic state x𝑘 ∈ R6: lateral and longitudinal po-
sition, velocity and acceleration. The dynamic state is
taken as input data from the perception system. The state
is used in Cartesian coordinates for the trash maneuver
and in Frenet coordinates for all other maneuvers.

• Turn signal state 𝑆𝑘 ∈ {𝑙𝑒 𝑓 𝑡, 𝑟𝑖𝑔ℎ𝑡, 𝑛𝑜𝑛𝑒, 𝑏𝑜𝑡ℎ}. It is
the main indicator for an imminent turn or lane change.

• Lane change incentive 𝑙𝑘 ∈ R. The lane change incentive
measures the potential preference for a discretionary
lane change based on comparing the trajectory length
of the LC maneuver with that of the keep lane ma-
neuver. The lane change incentive for left and right is
asymmetric to support the German law, which requires
to drive in the right lane, whenever possible.

The three observables are assumed to be conditionally
independent of each other given the maneuver intention. The
probability distribution is initialized by some prior 𝑝(𝑀0)
and forwarded on subsequent predictions by the following
recursion:

𝑝(𝑀𝑘 |x𝑘 , 𝑠𝑘 , 𝑙𝑘 ) = [ 𝚷𝑖, 𝑗 × 𝑝(𝑀𝑘−1) 𝑝(x𝑘 |𝑀𝑘 )
𝑝(𝑆𝑘 |𝑀𝑘 ) 𝑝(𝑙𝑘 |𝑀𝑘 ) (2)

with [ as a normalization constant, transition matrix 𝚷𝑖, 𝑗 ,
dynamic state likelihood 𝑝(x𝑘 |𝑀𝑘 ), turn signal probability
𝑝(𝑆𝑘 |𝑀𝑘 ) and lane change incentive density 𝑝(𝑙𝑘 |𝑀𝑘 ) [14,
p. 114-117]



IV. MOTION CONSTRAINTS

For each maneuver and it’s associated lane sequence, a
predicted trajectory is rolled out. The rollout is created using
an extended, probabilistic Intelligent Driver Model (IDM)
[3], which is detailed in subsection V-B.

The extended IDM takes a number of motion constraints
into account.

A. Map Based Motion Constraints

Map based motion constraints are any restriction on an
agent’s motion, which arise from the infrastructure and that
are assumed to be annotated in the roadmap. The constraints
only apply to lane-bound maneuvers. These constraints may
force the agent to decelerate and they are independent of the
presence of other traffic participants.

There are two classes of constraints: Speed limits and
intersection properties.

1) Speed Limits: There are three types of map based
speed limits: Legal speed limits, curvature speed limits and
visibility speed limits:
• Legal speed limits are indicated by traffic signs or are

valid for certain road types (highway, urban, ...).
• The curvature speed limit is calculated from the curva-

tures of the drive splines of the maneuver lanes. The
speed limit for the curve is calculated as 𝑣 =

√
𝑎𝑐 𝑟𝑚𝑖𝑛

with 𝑎𝑐 the maximal desired centripetal acceleration of
the driver and 𝑟𝑚𝑖𝑛 the minimum radius of the curve.
The curvature speed limit should be reached before the
start of the curve to avoid braking in the curve and is
valid until the end of the curve.

• Visibility speed limits apply due to scarce visibility
when approaching a pedestrian crossing or an unsignal-
ized intersection. The visibility speed limit starts at an
imaginary line of sight and the maximal speed at the line
of sight is calculated as 𝑣 =

√
2 𝑏 𝑑𝑙𝑠 , with the desired

constant deceleration of the driver 𝑏 and the distance
𝑑𝑙𝑠 between the line of sight and the stop line.

2) Intersection Properties: During a lane bound maneu-
ver, an object may have to approach one or more intersections
which may force the target to decelerate, independent of the
presence of any other object. The relevant properties of these
intersections are:
• Conflict type: Crossing one or more other lanes or only

merging with one other lane (on turn left or right).
• Priority: Yes or no. If two lanes intersect having the

same priority, the right-before-left rule is applied.
• Stop Type: GiveWay, Stop or FourWayStop.
• Traffic light: Yes or no. If a traffic light applies to the

lane and it is operational, it supersedes all other rules.

B. Interaction Based Motion Constraints

The interaction based motion constraints have to be deter-
mined, if the maneuver is involved in one or more collision
risks. The collision risk between two trajectories is estimated
using the approach in[15]. The estimate is always calculated
for the trajectories of the previous prediction. Therefore,

no risks are available, when the first trajectory of a new
maneuver is rolled out. The following steps are required to
determine the interaction based motion constraints:
• Select risks to be considered
• Establish type of the risk
• Evaluate responsibility for risk mitigation
• Provide parameters for risk mitigation
The potential risks are all risks from the collision risk anal-

ysis, which belong to a maneuver with a certain probability
and which exceed a certain accumulated collision risk until
the end of the prediction horizon. Risks below this threshold
are ignored for the time being.

The type of the risk depends on the current traffic situ-
ation, especially on the relationship between the two traffic
participants. The following risk types are considered [14, pp.
120-136]:
• Single Lane Car Following
• Multi Lane Traffic with Lane Changes
• Lane Merge / Round About
• Intersection Crossing
• Pedestrian Crossing
• Other Risks
The type of risk determines the traffic rules to apply. The

traffic rules normally decide, who of the two agents has to
mitigate the risk during the prediction horizon.

In this system, only two methods for risk mitigation are
considered: braking or postponing a planned lane change.
Accelerating is not considered for risk mitigation, since it is
assumed, that the agents already drive as fast as possible and
therefore further acceleration would violate traffic rules or be
uncomfortable. Moreover, this system does not yet consider
swerving to evade an obstacle. Instead, in cases of blocked
lanes, it will always predict a full stop or a lane change.

If a conflict situation has been handled correctly, the colli-
sion risk disappears during the next evaluation. Nevertheless,
the corresponding motion constraint must be forwarded to the
next predictions to avoid oscillations in the system.

V. MOTION PREDICTION

The motion prediction generates one probabilistic trajec-
tory for each maneuver of an agent. The trajectory of the
trash maneuver is created by predicting the future states in
Cartesian frame using the constant velocity model without
any regard of the roadmap, traffic rules or obstacles. Other
physics based models, like constant acceleration, may be
used. For the lane bound maneuvers the longitudinal com-
ponents of the predicted states in Frenet frame [14, p. 137]
are calculated using an extended Intelligent Driver Model
(IDM). The center line of the lane is used as reference path
for all maneuvers except lane change.

The predicted actions at each time step are the continuous
longitudinal and lateral acceleration values. The trajectory
data includes the acceleration, velocity and position of the
object, as well as their covariance matrix. It is assumed that
any driver wants to reach its goal as quickly as possible under
the constraints of safeness, comfort, economy and traffic
rules.



A. Basic Intelligent Driver Model (IDM)

The Intelligent Driver Model (IDM) [3] calculates the
longitudinal acceleration 𝑎𝑖𝑑𝑚 of a vehicle as a function
of the current speed 𝑣, the desired speed 𝑣0, the preferred
acceleration 𝑎 and deceleration 𝑏 of the target vehicle as well
as an eventually required interactive deceleration 𝑏𝑘𝑖𝑛:

𝑎𝑖𝑑𝑚 = ¤𝑣 = 𝑎
[
1 −

(
𝑣

𝑣0

) 𝛿]
−
𝑏2
𝑘𝑖𝑛

𝑏
(3)

The left part is the free driving part, which accelerates
or decelerates the vehicle to the desired velocity 𝑣0. The
right part is the interaction part, which implements the
Intelligent Braking Strategy [3] based on the required braking
𝑏𝑘𝑖𝑛 and the preferred braking 𝑏. The standard IDM model
defines only one brake reason, a preceding car, for which the
required deceleration is calculated using a heuristic with Δ𝑠

as actual and 𝑠0 as minimal distance to the preceding car,
Δ𝑣 as velocity difference and 𝑇 as time gap:

𝑏𝑘𝑖𝑛 =

√
𝑎𝑏

Δ𝑠

(
𝑠0 +max

(
0, 𝑣𝑇 + 𝑣Δ𝑣

2
√
𝑎𝑏

))
(4)

B. Extensions to the IDM

To be usable for the prediction of urban traffic scenarios,
the IDM must be extended in several ways. Some extensions
to overcome the deficiencies of the model have already been
proposed in [16], but these are not sufficient.

1) Multiple Brake Reasons: In real traffic scenarios, mul-
tiple brake reasons have to be kept in mind. A simple
example is a lane changing vehicle, which has eventually
to brake for the preceding car in the old lane and for another
one in the destination lane.

Equation 3 is modified to use the maximum brake value
calculated for the set of potential brake reasons 𝑅.

𝑏𝑘𝑖𝑛 = max
𝑟 ∈𝑅
({𝑏𝑘𝑖𝑛,𝑟 }) (5)

2) Braking for Reduced Speed Limit: When generating
a trajectory, various kinds of speed limits may have to be
observed (see Subsection IV-A.1). Speed limits are handled
in standard IDM by manipulating the desired speed 𝑣0. But
this results in unrealistic decelerations. In [16], the Improved
Intelligent Driver Model (IIDM) has been proposed, which
mitigates the problem. But even with IIDM, the deceleration
starts only at the point, where the speed limit comes into
effect, and not when approaching it.

When driving with speed 𝑣 and approaching a speed limit
𝑣𝑙𝑖𝑚𝑖𝑡 with 𝑣𝑙𝑖𝑚𝑖𝑡 < 𝑣 in distance 𝑠𝑙𝑖𝑚𝑖𝑡 > 0, the required
kinematic deceleration is calculated as:

𝑏𝑘𝑖𝑛 =
𝑣2 − 𝑣2

𝑙𝑖𝑚𝑖𝑡

2 𝑠𝑙𝑖𝑚𝑖𝑡

(6)

3) Braking for Crossing Obstacles: Another brake reason
not properly covered by the IDM are obstacles crossing
the lane of the target vehicle. This may be a vehicle on a
priority lane at an unsignalized intersection or a pedestrian
crossing the road at an arbitrary position. Most planning
and prediction algorithms solve this kind of conflict by
scheduling a full stop in front of the conflict zone. But human
drivers are able to anticipate the point in time, when the
obstacle will have left the conflict zone and will try to avoid
a full stop.

When driving with speed 𝑣 and approaching a lane cross-
ing conflict zone in distance 𝑠𝑐𝑟𝑠𝑠𝑛𝑔, which is expected
to be cleared at time 𝑡𝑐𝑟𝑠𝑠𝑛𝑔 > 𝑡, the required kinematic
deceleration is

𝑏𝑘𝑖𝑛 =


2 (𝑣 (𝑡𝑐𝑟𝑠𝑠𝑛𝑔 − 𝑡) − 𝑠𝑐𝑟𝑠𝑠𝑛𝑔)

(𝑡𝑐𝑟𝑠𝑠𝑛𝑔 − 𝑡)2
𝑠𝑐𝑟𝑠𝑠𝑛𝑔 >

𝑣 (𝑡𝑐𝑟𝑠𝑠𝑛𝑔−𝑡)
2

𝑣2

2 𝑠𝑐𝑟𝑠𝑠𝑛𝑔
otherwise full stop

(7)
4) Braking while Approaching Intersections: Even if no

collision risk is present, approaching an intersection may
require braking. In case of a stop sign or a red traffic light,
Equation 4 is used, while line of sights are handled using
Equation 6.

5) Lane Change Decision: Braking for leading vehicles
in the source and destination lane is done using Equation 3.

The required front gap Δ𝑠 to the new leader before starting
the LC is checked by (see [16] P. 249):

Δ𝑠 >

𝑠0 +max
(
0, 𝑣𝑇 + 𝑣Δ𝑣

2
√
𝑎𝑏

)
√︃

1 + 𝑏
𝑎

(8)

The required rear gap to the new follower is calculated by
Equation 8 using the velocity of the new follower as 𝑣.

6) Braking for Lane merges: In [16], the authors claim
that merge situations can be handled like lane changes by
Equation 8 when taking the difference of the distances to the
merge point as Δ𝑠. But this holds only if the merging car
has not the priority. The present system solves the problem
by using Equation 7 to handle the access to the conflict
zone in combination with Equation 4 for the subsequent car
following situation.

7) Lateral Trajectory Prediction: Lateral motion occurs
in case of lane changes or when a car has to return to the
center of the lane. The lateral position 𝑑 (𝑡) in Frenet frame
during a lane change left with 𝑡 = 𝑘Δ𝑡 and a lane width of
𝑤𝑙 for both lanes is given by:

𝑑 (𝑡) = 𝑤𝑙

2
(tanh(𝛽 𝑡) + 1) (9)

The steepness factor 𝛽 decides about the lateral accelera-
tion of the lane change and therefore about the abruptness of
the maneuver. For calculation of factor 𝛽 and the influence
of limited steering angles see [14, pp. 142-145]. The lateral
velocity 𝑣𝑙𝑎𝑡 and acceleration 𝑎𝑙𝑎𝑡 are given by the first and
second derivative of Equation 9.



8) Probabilistic Trajectories: To be able to calculate the
collision risk between the trajectories of two obstacles [14,
p. 149], the uncertainty of the predicted states must be
estimated. The above algorithms calculate the future states
[𝑠, 𝑑, 𝑣𝑙𝑜𝑛, 𝑣𝑙𝑎𝑡 ]𝑇 as a result of applying the predicted actions
[𝑎𝑖𝑑𝑚, 𝑎𝑙𝑎𝑡 ]𝑇 .

The initial covariance matrix 𝑃0 of the trajectory is initial-
ized from the observed state of the perception system. Since
the longitudinal and lateral motion are predicted independent
of each other, the corresponding parts of the covariance
matrix are forwarded separately. In this work, the covariances
for the longitudinal motion are propagated using an Extended
Kalman Filter. This requires calculating the Jacobian matrix
for the system function:

J(𝑠𝑘 , 𝑣𝑙𝑜𝑛,𝑘 ) =
[

𝜕 𝑓𝑠 (𝑠,𝑣𝑙𝑜𝑛)
𝜕𝑠

𝜕 𝑓𝑠 (𝑠,𝑣𝑙𝑜𝑛)
𝜕𝑣𝑙𝑜𝑛

𝜕 𝑓𝑣 (𝑠,𝑣𝑙𝑜𝑛)
𝜕𝑠

𝜕 𝑓𝑣 (𝑠,𝑣𝑙𝑜𝑛)
𝜕𝑣𝑙𝑜𝑛

]
(10)

with the system function given by::

𝑓𝑠 = 𝑠 + 𝑣Δ𝑡 +
1
2
Δ𝑡2 𝑎𝑖𝑑𝑚 (𝑠, 𝑣) (position forwarding) (11)

𝑓𝑣 = 𝑣 + Δ𝑡 𝑎𝑖𝑑𝑚 (𝑠, 𝑣) (velocity forwarding) (12)

The function 𝑎𝑖𝑑𝑚 is independent of the current longitu-
dinal position 𝑠, therefore the Jacobian becomes:

J(𝑣) =
[

1 Δ𝑡 + 1
2Δ𝑡

2 𝜕𝑎𝑖𝑑𝑚 (𝑣)
𝜕𝑣

0 1 + Δ𝑡 𝜕𝑎𝑖𝑑𝑚 (𝑣)
𝜕𝑣

]
(13)

with 𝑎𝑖𝑑𝑚 (𝑣) given by Equation 3.

𝜕𝑎𝑖𝑑𝑚 (𝑣)
𝜕𝑣

= −𝑎 𝛿 𝑣
𝛿−1

𝑣 𝛿0
− 2 𝑏𝑘𝑖𝑛 (𝑣)

𝑏

𝜕𝑏𝑘𝑖𝑛 (𝑣)
𝜕𝑣

(14)

Since there are different equations for 𝑏𝑘𝑖𝑛 (𝑣) (Equations
4, 6 and 7), the partial derivative gets:

𝜕𝑏𝑘𝑖𝑛 (𝑣)
𝜕𝑣

=



Δ𝑣

2Δ𝑠
+ 𝑇

Δ𝑠
car following

𝑣

𝑠𝑙𝑖𝑚𝑖𝑡

speed limit

2
𝑡𝑐𝑟𝑠𝑠𝑛𝑔 − 𝑡

crossing slow

𝑣

𝑠𝑐𝑟𝑠𝑠𝑛𝑔
stop before crossing

(15)

The covariance matrix for the longitudinal state 𝑃𝑙𝑜𝑛 is
forwarded by:

P𝑘+1
𝑙𝑜𝑛 = J(𝑣)×P𝑘

𝑙𝑜𝑛×J(𝑣)𝑇 +
[

0.5 Δ𝑡2

Δ𝑡

]
×𝜎2

𝑎×
[

0.5 Δ𝑡2

Δ𝑡

]𝑇
(16)

The acceleration noise 𝜎𝑎 is assumed to be 0.1 𝑚/𝑠2 (see
[16] P. 216). It covers the uncertainty about the driving style
and other parameters, like Δ𝑣,Δ𝑠 and 𝑡𝑐𝑟𝑠𝑠𝑛𝑔.

Concerning the lateral motion, [8] P. 158 proposes to
model the deviation from the reference trajectory by a
continuous-time Ornstein-Uhlenbeck process. This results in
forwarding the lateral variance by:

𝑃𝑘+1
𝑑𝑙𝑎𝑡 = 𝑒

−2 Δ𝑡
𝑇𝑐 𝑃𝑘

𝑑𝑙𝑎𝑡 + 𝜎
2
𝑑𝑙𝑎𝑡 (1 − 𝑒

−2 Δ𝑡
𝑇𝑐 ) (17)

with time constant 𝑇𝑐 = 1.5. The variance 𝜎𝑑𝑙𝑎𝑡 results
from the assumption that a driver of a vehicle with width
𝑤𝑣 will stay inside the lane width 𝑤𝑙 with a probability of
3𝜎:

𝜎𝑑𝑙𝑎𝑡 =
1
3
(𝑤𝑙 − 𝑤𝑣 )

2
(18)

The standard deviation for the lateral velocity is estimated
to be constant with 𝜎𝑣𝑙𝑎𝑡 = 0.1𝑚

𝑠
and the lateral covariance

between position and velocity with 0.5 𝜎𝑣𝑙𝑎𝑡

√︃
𝑃𝑡
𝑑𝑙𝑎𝑡

. Thus,
the lateral covariance matrix becomes:

P𝑘+1
𝑙𝑎𝑡 =


𝑃𝑘+1
𝑑𝑙𝑎𝑡

0.5 𝜎𝑣𝑙𝑎𝑡

√︃
𝑃𝑘+1
𝑑𝑙𝑎𝑡

0.5 𝜎𝑣𝑙𝑎𝑡

√︃
𝑃𝑘+1
𝑑𝑙𝑎𝑡

𝜎2
𝑣𝑙𝑎𝑡

 (19)

VI. EVALUATION

Evaluation is done by comparing the prediction results of
four different methods:
• Physical prediction model, using constant velocity,
• Uni-modal prediction based on the roadmap without

considering maneuvers (Road follower),
• Multi-modal maneuver-based prediction (Non

interaction-aware),
• Multi-modal maneuver-based prediction (Interaction-

aware).
The first evaluation uses real world ROS bag files recorded

during test drives of the MadeInGermany [13]. The pre-
diction results of the ego-vehicle trajectories are compared
to the ground truth measured by the D-GPS with Float
RTK correction data of the test vehicle. For each prediction
method, the position error and the position likelihood [14, p.
151] over the whole prediction horizon starting at different
points in time is evaluated.

In this scenario, the target drives on the Thielallee in Berlin
Dahlem and makes a U-turn to the reverse direction. During
that turn, it has to merge the lane with an oncoming vehicle.

The first Picture 2a, taken at 𝑡 = 1.4𝑠, shows the target
approaching the turn, but the most probable trajectory is still
that of the keep lane maneuver. The Diagram 3 shows the
probabilities of the keep lane and turn maneuver, the only
feasible lane bound maneuvers at the start of the scenario.

The position error of the 10s prediction starting at 𝑡 = 1.4𝑠
(see Figure 4a) is in the beginning quite low, but grows for
the multi-modal predictions with time, even more than for
the simpler road follower and constant velocity predictions.
The reason for this is that the target drives at 12𝑚/𝑠, while
14𝑚/𝑠 are allowed and therefore, the multi-modal methods
predict an acceleration. In contrast, the likelihood is much
better for the multi-modal methods due to the characteristics



(a) t = 1.4s

(b) t = 11.0s (c) t = 20.7s

Fig. 2: Turn maneuver with subsequent lane merge, showing
the predicted 10s trajectory of the ego-vehicle.

of the covariance matrix. The longitudinal variances are
much higher than the lateral ones and the prediction error
occurs almost entirely in longitudinal direction. The constant
velocity model assumes symmetric uncertainties, while the
road follower predictions do not provide any probabilistic
information.

Fig. 3: Evolution of maneuver probability over time for the
turn and merge scenario. Current speed is shown in black.
Turn left becomes the most probable maneuver at 𝑡 = 11𝑠
and is completed at 𝑡 = 14𝑠.

At 𝑡 = 11𝑠 (see Picture 2b), the turn maneuver becomes
the most probable. The vehicle is still about 25𝑚 away from
the start of the turn lane and has so far no lateral deviation
from the forward lane. But due to the deceleration of the
target, the evidence fits much better to the turn maneuver.
There is no obstacle ahead of the vehicle on the forward
lane, which could explain the deceleration.

The position error of the prediction at 𝑡 = 11𝑠 (see

Figure 4b) for the multi-modal interactive prediction remains
very low during the whole prediction horizon, while it
increases up to almost 100𝑚 for non-modal methods, which
predict going straight at that time. The multi-modal non-
interactive prediction is worse than the interactive one since
it is a mixture in which the constant velocity model has a
significant weight. The likelihood is at least until 𝑡 = 17𝑠
significantly better for the multi-modal predictions.

At about 𝑡 = 14𝑠, the turn maneuver has been executed,
i.e., the target is not anymore on the forward lane. The
turning lane becomes now the new lane for the keep lane
maneuver, turning left becomes unfeasible (see Figure 3).
The probability of a turn right maneuver at the next inter-
section (not shown) starts to increase.

At 𝑡 = 20.7𝑠 (see Picture 2c), the turn is almost completed
and the target could re-accelerate. But is has to slow down to
let pass the oncoming vehicle #284, which has the right of
way. The interactive prediction (see Figure 4c) recognizes
this and has therefore at least until 𝑡 = 28𝑠 a very low
position error. All other models predict at least constant
velocity, which would yield to a crash with the obstacle.
The likelihood evolves correspondingly.

For further evaluations of real-live scenarios see [14, pp.
150-174].

The second type of evaluation is done using a simu-
lator, which allows to consider complex and potentially
dangerous scenarios [14, pp. 182-191]. The simulator takes
the predicted 10𝑠 trajectories and converts them to motion
plans. In the example scenario. the vehicles have to cross
an unsignalized multi-lane intersection (see Figure 5) with
priority in east-west direction.

The result of the evaluation in Figure 6 shows the
efficiency, indicated by the average speed, and the
safety/comfort, indicated by the number of emergency
brakes, of the generated motion plans. The interactive method
is the most efficient one by allowing about twice the average
speed as the non-interactive methods. While there were
no collisions during the evaluations, the constant velocity
method shows an unacceptable number of emergency brak-
ings (deceleration < −5𝑚/𝑠).

VII. SUMMARY

This work has presented a new method to predict traffic
scenarios involving up to 50 moving objects with a horizon
of 10 or more seconds at a frequency of 10 Hz in real-
time. It does so by analyzing the feasible maneuvers of all
perceived traffic participants and rolling the trajectories out
into the future. By evaluating the collision risks between all
trajectories, the interaction constraints for the next prediction
are established. The system not only detects and avoids
conflicts between the ego-vehicle and the obstacles, but
also the conflicts among the obstacles. Only in this way, a
realistic forward projection of a dense urban traffic situation
is achievable.

The evaluation using real-world traffic scenarios proves
that the multi-modal interaction-aware prediction system is



(a) Position error and likelihood t = 1.4s

(b) Position error and likelihood t = 11.0s

(c) Position error and likelihood t = 20.7s

Fig. 4: Position error and position likelihood over time for
the predictions at t=1.4s, t=11.0s and t=20.7s during the turn
and merge scenario.

able to predict complex urban traffic scenarios. The simula-
tion results also show that the predictions can be used as a
basis for an interaction-aware motion planning.

All details about the method and the evaluations are given
in [14, pp. 79-191].
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