Zahlentheorie II - Homework 11

Submission: individually or in pairs,

on Whiteboard as Names_ZT2_H11.pdf by 12:00 on Thursday, the 4th. of July 2024.
Full written proofs are required in support of your answers.

Problem 1.

2 points
Let $\widehat{G}=\left\{\chi: G \longrightarrow \mathbb{C}^{\times}\right\}$denote the set of complex characters on the group G. Together with the multiplication defined for all $\chi, \eta \in \widehat{G}$ by

$$
(\chi \cdot \eta)(g):=\chi(g) \cdot \eta(g) \quad \forall g \in G
$$

\widehat{G} forms an Abelian group.

1. Show that if $\# G<\infty$ and G is Abelian, then $G \simeq \widehat{G}$.
2. Show that if $\# G<\infty$ and G is Abelian, then for every nontrivial* character $\chi \in \widehat{G}$ we have

$$
\sum_{g \in G} \chi(g)=0
$$

Problem 2.

2 points
Show for monic polynomials $f, g \in R[X]$ over a ring R that

$$
\Delta_{f \cdot g}=\Delta_{f} \cdot \Delta_{g} \cdot(\operatorname{res}(f, g))^{2}
$$

Problem 3.

2 points

Let K be a field and $L=K(a)$ be a simple algebraic field extension with $f_{a} \in K[X]$ the minimal polynomial of a over K. Show that

$$
f(x)=N_{L / K}(x-a) \quad \text { for any element } x \in K
$$

[^0]Let L / K be a finite Galois extension and x_{1}, \ldots, x_{n} a K-basis of L. Show for a subgroup $H \leq \operatorname{Gal}(L / K)$ that its corresponding fixed field satisfies

$$
L^{H}=K\left(\operatorname{tr}_{L / K}\left(x_{1}\right), \ldots, \operatorname{tr}_{L / K}\left(x_{1}\right)\right)
$$

Total: 8 points

Extra Porblem 5.

Let R be a ring and $f \in R[X]$ a monic polynomial. Show that for any $c \in R$ the subsitution $X \mapsto X+c$ does not change the discriminant. That is, that $\Delta_{f}=\Delta_{g}$ with $g(X)=f(X+c)$. What does the substitution $X \mapsto a X+c$, for $a, c \in R$ with $a \neq 0$, do to the discriminant?

Extra Problem 6.

Let L / K be a finite extension of degree m. Show that if $n \in \mathbb{N}_{>0}$ is coprime with m, then every element $a \in K$ which admits an nth root in L already admits an nth root in K.

Extra Problem 7.

Check out Proposition 12 from Bosch's $\S 4.5$.

1. Try to prove it on your own.
2. In some explicit instances in which a cyclotomic polynomial is not irreducible in $\mathbb{F}_{q}[X]$, find its irreducible factors.

[^0]: * i.e. it does not map everything to 1 .

