Zahlentheorie II – Homework 11

Submission: individually or in pairs,

on Whiteboard as Names_ZT2_H11.pdf by 12:00 on Thursday, the 4th. of July 2024.

Full written proofs are required in support of your answers.

Problem 1.

2 points

Let $\widehat{G} = \{\chi : G \longrightarrow \mathbb{C}^{\times}\}$ denote the set of complex characters on the group G. Together with the multiplication defined for all $\chi, \eta \in \widehat{G}$ by

$$(\chi \cdot \eta)(g) := \chi(g) \cdot \eta(g) \qquad \forall g \in G,$$

 \widehat{G} forms an Abelian group.

- 1. Show that if $\#G < \infty$ and G is Abelian, then $G \simeq \widehat{G}$.
- 2. Show that if $\#G < \infty$ and G is Abelian, then for every nontrivial^{*} character $\chi \in \widehat{G}$ we have

$$\sum_{g \in G} \chi(g) = 0.$$

Problem 2.

Show for monic polynomials $f, g \in R[X]$ over a ring R that

$$\Delta_{f \cdot g} = \Delta_f \cdot \Delta_g \cdot (\operatorname{res}(f,g))^2.$$

Problem 3.

2 points

2 points

Let K be a field and L = K(a) be a simple algebraic field extension with $f_a \in K[X]$ the minimal polynomial of a over K. Show that

$$f(x) = N_{L/K}(x-a)$$
 for any element $x \in K$.

^{*} i.e. it does not map everything to 1.

Problem 4.

2 points

Let L/K be a finite Galois extension and x_1, \ldots, x_n a K-basis of L. Show for a subgroup $H \leq \operatorname{Gal}(L/K)$ that its corresponding fixed field satisfies

$$L^H = K(\operatorname{tr}_{L/K}(x_1), \dots, \operatorname{tr}_{L/K}(x_1)).$$

Total: 8 points

Extra Porblem 5.

Let R be a ring and $f \in R[X]$ a monic polynomial. Show that for any $c \in R$ the substitution $X \mapsto X + c$ does not change the discriminant. That is, that $\Delta_f = \Delta_g$ with g(X) = f(X + c). What does the substitution $X \mapsto aX + c$, for $a, c \in R$ with $a \neq 0$, do to the discriminant?

Extra Problem 6.

Let L/K be a finite extension of degree m. Show that if $n \in \mathbb{N}_{>0}$ is coprime with m, then every element $a \in K$ which admits an nth root in L already admits an nth root in K.

Extra Problem 7.

Check out Proposition 12 from Bosch's §4.5.

- 1. Try to prove it on your own.
- 2. In some explicit instances in which a cyclotomic polynomial is not irreducible in $\mathbb{F}_q[X]$, find its irreducible factors.