Zahlentheorie II – Homework 10

Submission: individually or in pairs, on Whiteboard as Names_ZT2_H10.pdf by 12:00 on Thursday, the 20th. of June 2024.

Full written proofs are required in support of your answers.

Problem 1.

Let G be a finite group.

- 1. Show that there exists a Galois extension L/K such that $\operatorname{Gal}(L/K) \simeq G$.
- 2. Show that if K is fixed there may not exist an extension $K \subseteq L$ with $\operatorname{Gal}(L/K) \simeq G$.

Problem 2.

Consider a subfield $L \subset \mathbb{C}$ such that L/\mathbb{Q} is a cyclic Galois extension of degree 4. Show that L/\mathbb{Q} admits a unique nontrivial intermediate field E, and that E is contained in \mathbb{R} .

You may solve Extra Problem 5 instead of this one.

Problem 3.

Determine a splitting field and the Galois group of the polynomial $x^4 - 5$ over \mathbb{Q} , resp. $\mathbb{Q}(i)$, as well as all intermediate fields of the arising extensions.

Problem 4.

Write the symmetric polynomial $T_1^2T_2^2T_3 + T_1^2T_2T_3^2 + T_1T_2^2T_3^2 \in \mathbb{Q}[T_1, T_2, T_3]$ as a polynomial expression $g(s_1, s_2, s_3)$ in the elementary symmetric polynomials.

Total: 8 points

2 points (instead of Pb.2)

Extra Problem 5.

Let K be a field of characteristic $\neq 2$ and $f \in K[x]$ a separable irreducible polynomial with zeros $\alpha_1, \ldots, \alpha_n$ in a splitting field L of f over K. Assume that the Galois group of f is cyclic of even order and show:

1. The discriminant $\Delta = \prod_{i < j} (\alpha_i - \alpha_j)^2$ does not admit a square root in K.

2 points

2 points

2 points

2 points

2. There is a unique intermediate field E of L/K which satisfies [E : K] = 2, namely $E = K(\Delta)$.

Extra Problem 6.

Consider $L = \mathbb{Q}(\frac{i+1}{\sqrt{2}})$ as a subfield of \mathbb{C} . Show that L/Q is Galois and determine the corresponding Galois group, as well as all intermediate fields of L/\mathbb{Q} .

Extra Problem 7.

Determine the Galois Groups of the following polynomials.

- 1. $x^3 + 6x^2 + 11x + 7 \in \mathbb{Q}[x]$.
- 2. $x^4 + 2x^2 2 \in \mathbb{Q}[x]$.
- 3. $x^4 x^2 3 \in \mathbb{F}_5[x]$.
- 4. $x^4 + 7x^2 3 \in \mathbb{F}_{13}[x]$.