Zahlentheorie II – Homework 9

Submission: individually or in pairs,

on Whiteboard as Names_ZT2_H9.pdf by 12:00 on Thursday, the 20th. of June 2024.

Full written proofs are required in support of your answers.

Problem 1.

Let $K = \mathbb{Q}$ and $L = \mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}, \dots)$ be obtained by adjoining the square root of every prime. Prove that

$$\operatorname{Gal}(L/K) \simeq \prod_{p \text{ prime}} \mathbb{Z}/2\mathbb{Z}.$$

Problem 2.

Show that the only automorphism of the field of *p*-adic numbers \mathbb{Q}_p is the identity.

(Hint: Show that it must be continuous with respect to p-adic topology.

Problem 3.

Consider the standard representation of p-adic numbers:

 $x = \sum_{i=-m}^{\infty} a_i p^i \in \mathbb{Q}_p \qquad a_i \in \{0, \dots, p-1\} \quad \forall i.$

Show that $x \in \mathbb{Q}$ precisely when this representation is periodic.

Problem 4.

Let \mathbb{F} be a finite field and $\overline{\mathbb{F}}$ an algebraic closure of it.

- 1. Determine the subfield of $\overline{\mathbb{F}}$ which is fixed by \mathbb{Z}_{ℓ} , the group of ℓ -adic integers viewed as a subgroup of $\operatorname{Gal}(\overline{\mathbb{F}}/\mathbb{F})$.
- 2. Determine all intermediate subfields of $\overline{\mathbb{F}}/\mathbb{F}$.

Total: 8 points

2 points

2 points

2 points

2 points

Extra Problem 5.

Figure out how to add and multiply *p*-adic numbers in their standard presentation.

Extra Problem 6.

- 1. Is 2 a square in \mathbb{Q}_5 ? What about -1 in \mathbb{Q}_5 ? Or 2 in \mathbb{Q}_7 ?
- 2. When they are squares, can you compute some *p*-adic digits of one of their square roots?
- 3. Show that \mathbb{Z}_p contains all the (p-1)st roots of unity.

Hint: Hensel's Lemma. You probably saw it in Algebra 1 or at a previous point in your life.

Extra Problem* 7.

Show that when $p \neq 2$ there are 4 elements in $\alpha_1, \alpha_2, \alpha_3, \alpha_4 \in \mathbb{Q}_p$ such that for every nonzero $x \in \mathbb{Q}_p$ precisely one of the elements $\alpha_1 x, \alpha_2 x, \alpha_3 x, \alpha_4 x$ is a square.

(In \mathbb{R} there are two such elements: ± 1 . But any choice of a positive and a negative also works.)

When p = 2, prove that there are 8 such numbers in \mathbb{Q}_2 .