Zahlentheorie II - Homework 9

Submission: individually or in pairs,
on Whiteboard as Names_ZT2_H9.pdf by 12:00 on Thursday, the 20th. of June 2024.
Full written proofs are required in support of your answers.

Problem 1.

2 points
Let $K=\mathbb{Q}$ and $L=\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}, \ldots)$ be obtained by adjoining the square root of every prime. Prove that

$$
\operatorname{Gal}(L / K) \simeq \prod_{p \text { prime }} \mathbb{Z} / 2 \mathbb{Z} .
$$

Problem 2.

2 points
Show that the only automorphism of the field of p-adic numbers \mathbb{Q}_{p} is the identity.

(Hint:

Problem 3.

2 points
Consider the standard representation of p-adic numbers:

$$
x=\sum_{i=-m}^{\infty} a_{i} p^{i} \in \mathbb{Q}_{p} \quad a_{i} \in\{0, \ldots, p-1\} \quad \forall i .
$$

Show that $x \in \mathbb{Q}$ precisely when this representation is periodic.

Problem 4.

Let \mathbb{F} be a finite field and $\overline{\mathbb{F}}$ an algebraic closure of it.

1. Determine the subfield of $\overline{\mathbb{F}}$ which is fixed by \mathbb{Z}_{ℓ}, the group of ℓ-adic integers viewed as a subgroup of $\operatorname{Gal}(\overline{\mathbb{F}} / \mathbb{F})$.
2. Determine all intermediate subfields of $\overline{\mathbb{F}} / \mathbb{F}$.

Extra Problem 5.

Figure out how to add and multiply p-adic numbers in their standard presentation.

Extra Problem 6.

1. Is 2 a square in \mathbb{Q}_{5} ? What about -1 in \mathbb{Q}_{5} ? Or 2 in \mathbb{Q}_{7} ?
2. When they are squares, can you compute some p-adic digits of one of their square roots?
3. Show that \mathbb{Z}_{p} contains all the $(p-1)$ st roots of unity.

Hint: Hensel's Lemma. You probably saw it in Algebra 1 or at a previous point in your life.

Extra Problem* 7.

Show that when $p \neq 2$ there are 4 elements in $\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4} \in \mathbb{Q}_{p}$ such that for every nonzero $x \in \mathbb{Q}_{p}$ precisely one of the elements $\alpha_{1} x, \alpha_{2} x, \alpha_{3} x, \alpha_{4} x$ is a square.
(In \mathbb{R} there are two such elements: ± 1. But any choice of a positive and a negative also works.)
When $p=2$, prove that there are 8 such numbers in \mathbb{Q}_{2}.

