Zahlentheorie II - Homework 7

Submission: individually or in pairs,
on Whiteboard as Names_ZT2_H7.pdf by 12:00 on Thursday, the 6th. of June 2024.
Full written proofs are required in support of your answers.

Problem 1.

2 points
Construct a field L together with a subgroup $G \leq \operatorname{Aut}(L)$ such that L / L^{G} is not a Galois extension.

Problem 2.

2 points
Let K be a field, $f \in K[x]$ an irreducible separable polynomial, and L a splitting field of f over K, so that L / K is a finite Galois extension. If L / K is abelian, show that $L=K(\alpha)$ for every zero $\alpha \in L$ of f.

Problem 3.

2 points
Determine $\operatorname{Gal}(L / K)$ as well as the normal intermediate extensions of L / K in the following cases.

1. $K=\mathbb{Q}, L=$ the splitting field of $x^{3}-2$ over \mathbb{Q}.
2. $K=\mathbb{Q}, L=\mathbb{Q}\left(i,{ }^{4} \sqrt{2}\right)$.

Problem 4.

Let $p \in \mathbb{N}$ be a prime, $r \in \mathbb{N}_{>0}$, and $\xi \in \mathbb{C}$ some primitive root of unity of order p^{r}. Show that $\mathbb{Q} \subset \mathbb{Q}(\xi)$ is a cyclic Galois extension, except for the case in which $p=2$ and $r \geqslant 3$. Show that in this latter case the Galois group is isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2^{r-2} \mathbb{Z}$.

Total: 8 points

Extra Problem 5.

Let $K \subseteq \mathbb{R}$ be a field and $f \in K[x]$ be an irreducible polynomial in $K[x]$ with $\operatorname{deg} f=p$, where p is a prime, and with f having precisely $p-2$ real roots. Let L be the splitting field of f. Show that $\operatorname{Gal}(L / K) \simeq S_{p}$, the symmetric group on p elements.

Extra Problem 6.

Let K be a filed and $L=K(x)$, the field of rational functions in one variable x over K. Let σ be the K-homomorphism of L given by $x \mapsto x+1$. Determine the subfield

$$
L^{\sigma}=\{a \in L \quad: \quad \sigma(a)=a\}
$$

Elementary Proble 7.

Find all $x, y, z, t \in \mathbb{N}$ such that $3^{x}-3^{y}+3^{z}-3^{t}=2025$.

