Zahlentheorie II – Homework 7

Submission: individually or in pairs,

on Whiteboard as Names_ZT2_H7.pdf by 12:00 on Thursday, the 6th. of June 2024.

Full written proofs are required in support of your answers.

Problem 1.

Construct a field L together with a subgroup $G \leq \operatorname{Aut}(L)$ such that L/L^G is not a Galois extension.

Problem 2.

Let K be a field, $f \in K[x]$ an irreducible separable polynomial, and L a splitting field of f over K, so that L/K is a finite Galois extension. If L/K is abelian, show that $L = K(\alpha)$ for every zero $\alpha \in L$ of f.

Problem 3.

Determine $\operatorname{Gal}(L/K)$ as well as the normal intermediate extensions of L/K in the following cases.

- 1. $K = \mathbb{Q}, L =$ the splitting field of $x^3 2$ over \mathbb{Q} .
- 2. $K = \mathbb{Q}, L = \mathbb{Q}(i, \sqrt[4]{2}).$

Problem 4.

Let $p \in \mathbb{N}$ be a prime, $r \in \mathbb{N}_{>0}$, and $\xi \in \mathbb{C}$ some primitive root of unity of order p^r . Show that $\mathbb{Q} \subset \mathbb{Q}(\xi)$ is a cyclic Galois extension, except for the case in which p = 2 and $r \ge 3$. Show that in this latter case the Galois group is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2^{r-2}\mathbb{Z}$.

Total: 8 points

Extra Problem 5.

Let $K \subseteq \mathbb{R}$ be a field and $f \in K[x]$ be an irreducible polynomial in K[x] with deg f = p, where p is a prime, and with f having precisely p-2 real roots. Let L be the splitting field of f. Show that $\operatorname{Gal}(L/K) \simeq S_p$, the symmetric group on p elements.

2 points

2 points

2 points

2 points

Extra Problem 6.

Let K be a filed and L = K(x), the field of rational functions in one variable x over K. Let σ be the K-homomorphism of L given by $x \mapsto x + 1$. Determine the subfield

$$L^{\sigma} = \{ a \in L : \sigma(a) = a \}.$$

Elementary Proble 7.

Find all $x, y, z, t \in \mathbb{N}$ such that $3^x - 3^y + 3^z - 3^t = 2025$.