Zahlentheorie II - Homework 6

Submission: individually or in pairs,

 on Whiteboard as Names_ZT2_H6.pdf by 12:00 on Thursday, the 30th. of May 2024.Full written proofs are required in support of your answers.

Problem 1.

Let K be a field of characteristic $p>0$. Show that:

1. For every $n \in \mathbb{N}$ there exists a field $K^{p^{-n}}$ extending K with the following two properties:

- If $a \in K^{p^{-n}}$, then $a^{p^{n}} \in K$.
- For every $b \in K$, there exists an $a \in K^{p^{-n}}$ such that $b=a^{p^{n}}$

2. $K^{p^{-n}}$ is unique up to canonical isomorphism and there are canonical embeddings

$$
K \subset K^{p^{-1}} \subset K^{p^{-2}} \subset \ldots
$$

3. The field ${ }^{\ddagger} K^{p^{-\infty}}=\bigcup_{i=1}^{\infty} K^{p^{-i}}$ is a perfect field.

Problem 2.

Let L / K be an algebraic field extension with the property that every irreducible polynomial in $K[x]$ admits at least one zero in L. Show that L is an algebraic closure of K .
(This means that in the Proof of $\S 3.4$ Theorem 4, we could have stopped at L_{1}.)

Problem 3.

2 points
Show that $\mathbb{F}_{p^{\infty}}:=\bigcup_{n=0}^{\infty} \mathbb{F}_{p^{n}}$ is an algebraic closure of \mathbb{F}_{p}.

Problem 4.

2 points
Let $n \in \mathbb{Z}_{>0}$ and $q=p^{n}$. Let $f \in \mathbb{F}_{q}[x]$ be an irreducible polynomial of degree $n>0$ and $\alpha \in \overline{\mathbb{F}}_{p}$ be a root of f. Show that the roots of f in $\mathbb{F}_{q}(\alpha)$ are

$$
\alpha, \alpha^{q}, \ldots, \alpha^{q^{n-1}}
$$

[^0]
Extra Problem 5.

Let $\overline{\mathbb{F}}_{p}$ be an algebraic closure of \mathbb{F}_{p}. Show that besides the powers of the Frobenius homomorphism, there exist other automorphisms of $\overline{\mathbb{F}}_{p}$.

Extra Problem 6.

Let \mathbb{F} be a finite field of characteristic p and let $f \in \mathbb{F}[x]$ be an irreducible polynomial. Show that there exists an $n \in \mathbb{N}_{>0}$ such that f divides $x^{p^{n}}-x$.

* 7.

Prove that there is an positive integer n such that the decimal expansion of 2^{n} begins with your phone number.
(I found this on Facebook ${ }^{\dagger}$. I am not sure how elementary this is.)

[^1]
[^0]: ${ }^{\ddagger}$ This field is called the purely inseparable closure of K.

[^1]: † https://en.wikipedia.org/wiki/Facebook

