Zahlentheorie II – Homework 2

Submission: individually or in pairs, on Whiteboard as Names_ZT2_H2.pdf by 12:00 on Thursday, the 2nd. May 2024.

Full written proofs are required in support of your answers.

Problem 1.

Find all positive integers n such that $f_n = \sum_{i=0}^n (-1)^i x^{n-i}$ is irreducible in $\mathbb{Z}[x]$.

Problem 2.

Let K be a field of characteristic p > 0.

- 1. Show that if K is finite, then the Frobenius endomorphism $\sigma: K \longrightarrow K$ is an automorphism.
- 2. Does the assertion extend to the case that K is not necessarily finite?

Problem 3.

Show that a field extension L/K is algebraic if and only if every intermediate subring R, that is every R satisfying $K \subset R \subset L$, is a field.

Problem 4.

Let $\alpha \in \mathbb{C}$ satisfy $\alpha^3 + 2\alpha - 1 = 0$. So α is algebraic over \mathbb{Q} . Determine in each case the minimal polynomial of α as well as that of $\alpha^2 + \alpha$ over \mathbb{Q} .

Total: 8 points

Extra Problem 5.

Let L/K be a field extension. Show that two elements $\alpha, \beta \in L$ are algebraic over K if and only if $\alpha + \beta$ and $\alpha \cdot \beta$ are algebraic over K.

Extra Problem 6.

Show that there are infinitely many primes such that $p \equiv \pm 3 \mod 8$.

2 points

2 Points

2 points

2 points