Zahlentheorie II - Homework 2

Submission: individually or in pairs,
on Whiteboard as Names_ZT2_H2.pdf by 12:00 on Thursday, the 2nd. May 2024.
Full written proofs are required in support of your answers.

Prboblem 1.

2 points
Find all positive integers n such that $f_{n}=\sum_{i=0}^{n}(-1)^{i} x^{n-i}$ is irreducible in $\mathbb{Z}[x]$.

Problem 2.

2 points
Let K be a field of characteristic $p>0$.

1. Show that if K is finite, then the Frobenius endomorphism $\sigma: K \longrightarrow K$ is an automorphism.
2. Does the assertion extend to the case that K is not necessarily finite?

Problem 3.

2 Points
Show that a field extension L / K is algebraic if and only if every intermediate subring R, that is every R satisfying $K \subset R \subset L$, is a field.

Problem 4.

Let $\alpha \in \mathbb{C}$ satisfy $\alpha^{3}+2 \alpha-1=0$. So α is algebraic over \mathbb{Q}. Determine in each case the minimal polynomial of α as well as that of $\alpha^{2}+\alpha$ over \mathbb{Q}.

Total: 8 points

Extra Problem 5.

Let L / K be a field extension. Show that two elements $\alpha, \beta \in L$ are algebraic over K if and only if $\alpha+\beta$ and $\alpha \cdot \beta$ are algebraic over K.

Extra Problem 6.

Show that there are infinitely many primes such that $p \equiv \pm 3 \bmod 8$.

