## Zahlentheorie II - Homework 1

Submission: individually or in pairs, on Whiteboard as Names_ZT2_H1.pdf by 12:00 on Thursday, the 25th. April 2024.

Full written proofs are required in support of your answers.

## Problem 1.

Let $\left(a_{n}\right)$ be the recursively defined sequence of integers:

$$
a_{1}=2, \quad a_{n+1}=a_{n}^{2}-a_{n}+3
$$

Show that none of the $a_{n}$ is divisible by 19 .

## Problem 2.

Let $p$ be a prime. We say that two polynomials $f, g \in \mathbb{Z}[x]$ are congruent modulo $p$ if the coefficients of $f-g$ are divisible by $p$. Find a polynomial $f \in \mathbb{Z}[x]$ such that $f \not \equiv 0 \bmod p$, but $f(a) \equiv 0 \bmod p$ for all $a \in \mathbb{Z}$.

## Problem 3.

2 points
Prove that $\varphi(n)=\sum_{d \mid n} \mu(d) \cdot \frac{n}{d}$, where $\phi(n)$ is the Euler totient function and $\mu$ is the Möbius function.

## Problem 4.

Let $\Phi_{n}$ be the $n$-th cyclotomic polynomial and $\mu$ be the Möbius function. Show that

$$
\Phi_{n}=\prod_{d \mid n}\left(x^{d}-1\right)^{\mu\left(\frac{n}{d}\right)}
$$

Total: 8 points

## Extra Problem 5.

Show that the cyclotomic polynomial $\Phi_{12}$ is reducible modulo $p$ for every prime $p$.

