Zahlentheorie II – Homework 1

Submission: individually or in pairs, on Whiteboard as Names_ZT2_H1.pdf by 12:00 on Thursday, the 25th. April 2024.

Full written proofs are required in support of your answers.

Problem 1.

Let (a_n) be the recursively defined sequence of integers:

 $a_1 = 2, \qquad a_{n+1} = a_n^2 - a_n + 3$

Show that none of the a_n is divisible by 19.

Problem 2.

Let p be a prime. We say that two polynomials $f, g \in \mathbb{Z}[x]$ are congruent modulo p if the coefficients of f - g are divisible by p. Find a polynomial $f \in \mathbb{Z}[x]$ such that $f \not\equiv 0 \mod p$, but $f(a) \equiv 0 \mod p$ for all $a \in \mathbb{Z}$.

Problem 3.

Prove that $\varphi(n) = \sum_{d|n} \mu(d) \cdot \frac{n}{d}$, where $\phi(n)$ is the Euler totient function and μ is the Möbius function.

Problem 4.

Let Φ_n be the *n*-th cyclotomic polynomial and μ be the Möbius function. Show that

$$\Phi_n = \prod_{d|n} (x^d - 1)^{\mu(\frac{n}{d})}$$

Extra Problem 5.

Show that the cyclotomic polynomial Φ_{12} is reducible modulo p for every prime p.

A. Constantinescu

SoSe24

2 points

2 points

2 points

2 points

Total: 8 points