NUMBER THEORY 2

WRITTEN EXAM, 1st TRY

SKETCH OF SOLUTIONS

(These are not necessainly full solutions and they do not serve as a grading scheme for the exam. There may be better/nicer/coder solutions as well.)

Problem 1 a) Let
$$
L_{k}
$$
 be a finite field extension.
\nThis means, $[L:K] = dim_{L}L = n \in N_{>0}$.
\nWe need to show that $4 \times \in L$, $3 \times 6 \times 7 \times 6 \times 16 \times 16 \times \infty$.
\nLet $\times \in L$ be arbitrary, (row, zero). Consider the elements:
\n $1_{1} \times ... \times n \in L$.
\nIf they are distinct, then, as they are n+1 vectors
\nin the n-dimensional K-vector space L, they are
\nlinearly dependent. Thus there exist $C_{0} \times C_{0} \in K$.

$$
\text{vol} \quad \text{set} \quad \text{set
$$

. If they are not distinct, theer the order of x in L" is finite, $\cos \theta$, It follows $f(x) = 0$, for $f = x^d \sin \theta$.

An excurple of aux infinite algebraic extension is the algebraic field of algebraic numbers. Q = { x e C : x is algebreuic over Q }

over Q. Theis is algebrair, but évélente, es d contains $Q \subset Q(\mathcal{C}_{p}) \subset \overline{Q}$, with $[Q(\mathcal{C}_{p}) \oplus I_{p-1}]$ for every prime p.

16. First, write L:=
$$
\mathbb{Q}(G, \sqrt{5})
$$
 and not that:
\n
$$
[L: \mathbb{Q}] = [L: \mathbb{Q}(G, \sqrt{5})]
$$
 and not that:
\n
$$
\mathbb{Q}(G, \mathbb{Q}) = [L: \mathbb{Q}(G, \mathbb{Q})]
$$
\n
$$
[L: \mathbb{Q}] = [L: \mathbb{Q}(G, \mathbb{Q})]
$$
\n
$$
[L: \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q})
$$
\n
$$
[L: \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q})
$$
\n
$$
[L: \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q} \times \mathbb{Q})
$$
\n
$$
[L: \mathbb{Q} \times \math
$$

Problem 2	a.	Degree two extensions are always normal,
because if a polynomial f of degree 2 has one root $\alpha \in L$,		
Heu $f = (x - \alpha) \cdot (x - \beta)$ in $L[x]$.		
So, if L/k with $[L:k] = 2$ in not Galois, then L/k is not reparable. In part, α has $k > 0$ and $\pi k > \infty$ (finite fields are perfect)		
Take: If $F = F_2(t)$ the field of rational functions over F_2		
in the variable t . Take, the integral $f(x) = \frac{1}{\sqrt{2}} \cdot \frac{1}{\$		

2b. No, three are not a left k' be a field with char K=3
\nAssume
$$
\text{ord}(z) = 12
$$
.
\nThen $3^{12} = 1$ and $3^{12} = 1$.
\n2c. We may use $\text{deg}(4_{12}) = \text{dim}(86+1) = (x^3-1)(x^3+1)(x^6+1) =$
\nWe have: $x^{12}-1 = (x^6-1)(x^6+1) = (x^3-1)(x^3+1)(x^2+1)(x^4-1)$
\nFrom $x^{12}-1 = \frac{11}{1100}$ we get $\Phi_{12} = x^4 - x^2 + 1$
\nAlthough $x^{12}-1 = \frac{11}{1100}$ we get $\Phi_{12} = x^4 - x^2 + 1$
\nAlthough $x = \Phi_{12} = \frac{11}{(x+2)^2}$. So $k \in \{1, 5, 7, 4\}$.
\nUsing $2, z = 2, z$, $2, z = 2, z$, $2, z = 2, z$, $3, z = -2, z$ and $4, z = 2, z + 1$

2 d . Write $Z = Z_{12}$ Write $\zeta := \zeta_{12}$
Gal(Q(Z)/q) \simeq $(\frac{z}{z})^x \simeq (\frac{z}{3z})^x \times (\frac{z}{4z})^x \simeq \frac{z}{2z} \times \frac{z}{2z}$. $mPol(7_{12}) = \phi_{12} = x^{4} - x^{2} + 1$ Its roots are Z, Z^s, Z^s, Z^u , and each τ e Gal(Q(3)/ θ) Its roots are $4, 4, 14, 15$, and each τ a fall $4(4)$
is determined by the image of 7 . Set τ : $\mathbb{Q}(7)$ $\rightarrow \mathbb{Q}(7)$.
 $5 \longmapsto 7'$ $G := G_{\alpha}(\mathbb{Q}(\zeta_{12})_{\mathbb{Q}}) = f^{\alpha} \text{ id } = \mathbb{F}_q, \ \mathbb{F}_q, \mathbb{F}_q, \mathbb{F}_q, \mathbb{F}_q \text{ and } \mathbb{F}_q^{\zeta} = \text{id } \mathbb{G}^{\zeta}.$ This means there are, busides G and fiels, 3 subgroups. $\langle \tau_{5}\rangle, \langle \tau_{7}\rangle, \langle \tau_{1}\rangle$ For each σ_i we have $\sigma_i(z) = z^i$ and $\sigma_i(z^i) = z$. in particular τ_i (ζ + ζ^i)= ζ^i + ζ , this, 3 $7\overline{)}$
 $7\overline{)}$
 $7\overline{)}$
 $7\overline{)}$ neaus there are, burides G and $\{id\}$, 3 shops
 $(r_s >, \langle r_s >, \langle r_1 \rangle$

each T_i we have $T_i(\overline{z}) = \overline{z}^i$ and $T_i(\overline{z}^i)$

porticular $T_i(\overline{z} + \overline{z}^i) = \overline{z}^i + \overline{z}$, this
 $\sum_{i=1}^{n} a_i$

We see $\Delta a_i = \sqrt[n]{r_i$ $-I$ \longrightarrow I_1 \Box ሔ_{ልተ}
<<mark>⊽</mark>ና> $=$ $\mathbb{D}(i)$ $z_1^2 = -2$ $\mathbf x$ is the set of $\mathbf x$ $\int_{z^{n} - z^{n}}$ Similarly: $3 + 3^{n} = \sqrt{3}$ & Q, so I $Q < \pi$, = $Q(\sqrt{3})$
 $Q < \pi$, = $Q(\sqrt{3})$ For τ , we can look systematically, by using the fact, that $1, 3, 3^2, 3^3$ is a basis of $D(3)/D$. S_{0} $\int_{7}^{6} (a+b\zeta+c\zeta^{2}+d\zeta^{3}) = \alpha+b\zeta^{7}+c.$ $3^{4} + d \cdot 3^{21} =$ = $a + b(-3) + c \cdot 3^2 + d(-3^3)$ = $a + b(-5) + c \cdot 5 + a(-7)$
= $a - b$ 3 + $c - 3^2 - d$ 3³.

 $50 \text{ T}_7(\alpha) = 100 \text{ N} \cdot \alpha + 100 \text{ N}^2$ lu particular, for a=0, c=1, we get Q(3)= $\left\langle \nu_{\rightarrow }\right\rangle$ So the fields ^E with QCECQ(3) are $\mathbb{Q}^{(1)}\left(\mathbb{Q}^{(2)}\right),\mathbb{Q}^{(3)}\left(\mathbb{Q}^{(3)}\right),\mathbb{Q}^{(3)}\left(\mathbb{Q}^{(3)}\right),\mathbb{Q}^{(4)}$ Because & is a prime field , there are no further

subfields.

Problem3	α .	We have that	$k = \Omega(i)$ calculus i , α
primitive 4th root of unity. Show $k = 0$, so no worms.			
Now have $l = kC\sqrt{2}$, ω with $\sqrt{3}$ a root of $x^4 - 2 \in k[\pi]$.			
Thus L/k is cyclic of degree d, with d 14. (Top 4.8/3)			
11 remains to see if $d = 1, 2$ or 4.			
Set $x^4 - 2$ is irreducible over Ω , so $[R(\overline{x}) : \mathbb{Q}] = 4$.			
Also $\Omega(\sqrt[3]{z}) \subset R$ and $\Omega(i) \not\subset R$, so $\frac{1}{2} \times \frac{1}{2} \times \frac$			

$$
\frac{768 \text{ in} 50 \text
$$

$$
3c - We leave that each $Q(i) - \text{autow} \text{ points } \nabla \text{ of } L$ is determined by $\tau(\tau) \in \{\tau, i\tau, -\tau, -i\tau\}$
We have: $id(r) = r, \nabla_{\tau}(r) = (r, \nabla_{\tau}(r) = -r, \nabla_{\tau}(r) = -ir)$
To compute the tree we use, because L/L is separately,
$$

\n To compute the true we use, because
$$
Lf
$$
 is separable, $tr_{V_k}(i+r) = \sum_{\tau \in G} \mathbb{T}(i+r)$, $G = Gal(V_k)$.\n

\n\n So, $tr_{V_k}(i+r) = (i+r) + (i+r) + (i-r) + (i-i) = 4i$.\n

\n\n After multiply, we compute the matrix of $-(i+r) + L \rightarrow L$ with respect to the various $1, r_1 r^2, r^3$ which is\n

$$
M = \begin{pmatrix} i & 0 & 0 & 2 \\ 1 & i & 0 & 0 \\ 0 & 1 & i & 0 \\ 0 & 0 & 1 & i \end{pmatrix}
$$
, where there is 4i.
(Note that the norm is 1 - 2 = -1)

3d. We use Hilbert 90, because ne have a ayolic Gabis extension:

$$
N_{1/2}(b) = 1 \Leftrightarrow \exists a \in l^* : b = \frac{a}{\tau(a)}
$$

where τ is a generator for Gally). In our case, clease $\sigma_i = \sigma_i$ with $\sigma_i(r) = ir$. We then choose $\alpha = 1 + r^2$ and obtain, $\nabla(\alpha) = \sigma(\alpha + r^2) = \sigma(\alpha) + \sigma(r^2) = \alpha + (\sigma(r))^2 = \alpha - r^2$ $50 = 1 + r^2$

$$
A_{S} = \sqrt{2}, \quad w = 90f
$$
\n
$$
b = \frac{1+\sqrt{2}}{1-\sqrt{2}} = \frac{(1+\sqrt{2})^{2}}{1-2} = -(1+2\sqrt{2}+2) = -3-2\sqrt{2}
$$

(To double check: we may also take -b = 3+2VE, use (r²)²=2: $\Gamma(-6) = \begin{pmatrix} 3 & 0 & 4 & 0 \\ 0 & 3 & 0 & 4 \\ 2 & 0 & 3 & 0 \\ 0 & 2 & 0 & 3 \end{pmatrix}$ 50 det $H(-6) = 3 \cdot det \begin{pmatrix} 3 & 0 & 4 \\ 0 & 3 & 0 \\ 2 & 0 & 3 \end{pmatrix} + 2 \cdot det \begin{pmatrix} 0 & 4 & 0 \\ 3 & 0 & 4 \\ 2 & 0 & 3 \end{pmatrix} =$ = $3 \cdot 3 \cdot (3 \cdot 3 - 2 \cdot 4) + 2(-4) \cdot (3 \cdot 3 - 2 \cdot 4) = 9 \cdot 1 - 8 \cdot 1 = 1$ Alternatively, if one just remembers the definition, compute the norm of a garence element a+bir+cli+dreitz as the determinant of : $\begin{pmatrix} a & 2d & 2c & 2b \\ b & a & 2d & 2c \\ c & b & a & 2d \\ d & c & b & a \end{pmatrix}$. Put in some zeros and