Algebra 1 - First examination 12.2.2020 PROBLEM SHEET

Problem 1

- **a.** (4 P) Give the definition of a maximal ideal, and formulate an equivalent characterization of maximal ideals in terms of the quotient ring.
- **b.** (6 P) Let R be a ring and $\mathfrak{m} \subseteq R$ a maximal ideal. Prove that if $1 + \mathfrak{m}$ consists of units, then the ring R is local.
- **c.** (5 P) Is $\mathbb{Q}[x, y]/(x^{20}, y^{20})$ a local ring?
- **d.** (5 P) Is the ideal $(x^3 y^5) \subseteq \mathbb{C}[x, y]$ prime? Is it maximal?

Problem 2

- **a.** (4 P) Formulate the universal property of the tensor product.
- **b.** (3 P) Let R be a ring, U a multiplicatively closed set and M an R-module. Prove that every element of $U^{-1}R \otimes_R M$ is of the form $\frac{1}{u} \otimes m$ with $u \in U$ and $m \in M$.
- **c.** (4 P) Prove that $\mathbb{Q} \otimes_{\mathbb{Z}} (\mathbb{Z} \oplus \mathbb{Z}/42\mathbb{Z}) \simeq \mathbb{Q}$.
- **d.** (4 P) Show that a ring R is a field if and only if every R-module is free.
- e. (5 P) Show that an integral domain R is a field if and only if every R-module is flat.

Problem 3

- **a.** (3 P) Give the definition of Artinian ring.
- **b.** (4 P) Prove that in an Artinian ring every prime ideal is maximal.
- **c.** (4 P) Compute a primary decomposition of the ideal $(xy, xz, yz) \subseteq \mathbb{K}[x, y, z]$.
- **d.** (3 P) Is the ring $S = \mathbb{K}[x, y, z]/(xy, xz, yz)$ Artinian?
- e. (6 P) Compute the Hilbert function and the Hilbert polynomial of the ring S above.

WiSe19/20 Prüfer: A. Constantinescu

20 points

20 points

20 points