Algebra I – Homework 16 – Bonus Sheet

Will be graded only for those who achieved between 26 and 31 points in the first 15 sheets.

Deadline: 20:00 on Friday 21.02.2025. (Uploads are still possible until Sunday 23.02 at 23:55) Submission: individually, on Whiteboard as LASTname_A1_H16.pdf

Full written proofs are required in support of your answers.

Problem 1.

Give an example of a ring R, R-modules M', M, N together with an injective R-linear map $M' \hookrightarrow M$, such that

 $N \otimes_R M' \neq 0$ and $N \otimes_R M = 0$.

Problem 2.

A line in the affine space $\mathbb{A}^3_{\mathbb{C}}$ is an affine algebraic set defined by two linearly independent degree one equations. Alternatively, any line can be represented in parametric form as $\{(a, b, c) + t(u, v, w) : t \in \mathbb{C}\}$ where $(a, b, c), (u, v, w) \in \mathbb{C}^3$ and $(u, v, w) \neq (0, 0, 0)$.

Prove that the surface $X = V(x^3 + y^3 + z^3 - 1) \subseteq A^3_{\mathbb{C}}$ contains at least three distinct lines.

Problem 3.

2 bonus points

- 1. Are the graded rings $\mathbb{C}[x,y]/(x^2+y^2)$ and $\mathbb{C}[x,y]/(xy)$ isomorphic?
- 2. What about the graded rings $\mathbb{C}[x, y]/(x^2 + y^2, x^2)$ and $\mathbb{C}[x, y]/(xy, x^2)$?

Total: 6 bonus points

2 bonus points

2 bonus points