ALGEBRA 1 EXAM

1ST TRY, 19.2.2025 SKETCH OF SOLUTIONS (THIS IS NOT A GRADING SCHEME)

Problem 1. a. Let I, J ⊆ R.
I.J = (a.b | a ∈ I, b ∈ J), the ideal generated by all products.
VI = {rER : J n ∈ N such that rⁿ ∈ I} **b.** For all ideals we have IJ ⊂ J ∪ Thus also

b. For all ideals we have $IJ \subseteq INJ$. Thus also $VIJ \subseteq VINJ$. It remains to show $VINJ \subseteq VIJ$. Let $f \in VINJ$. It remains to show $VINJ \subseteq VIJ$. Let $f \in VINJ$. So there exists now with $f \in INJ$. Then $f^{2n} = f \cdot f \in I \cdot J$, so $f \in VIJ$. **c.** In $A = CCNJ_{(X^{202r})}$ we have that x^{2} is nilpotent. This implies that $x^{4J} - 1$ is a unit, be cause it is the sum of a unit and a nilpotent. So J = A, which implies $I \cdot J = I \cdot A = I$. We have $VI = V(X^{2}) = (X) \cdot AS(X) = Maximal$

in A(A/2C) this implies $I \Leftrightarrow (\pi) - primary$. **d**. We have for any $r \in \mathbb{Z}_{2\mathbb{Z}} \times \mathbb{Z}_{2\mathbb{Z}} \times \mathbb{Z}_{2\mathbb{Z}}$ that $r^2 = r$ and r+r=0. So, if I = (r, s), then I = (r+s+rs), because

• Clearly T+S+TS EI.
• For the other inclusion:

$$r \cdot (r+s+rs) = r^2 + rs+rs = r^2 = r$$
, two re(ristra).
Similarly $s \in (r+s+rs)$, thus $I \subseteq (r+s+rs)$.
So, whenever we have two generators of an ideal,
we may replace them by a single element.
This implies that any finitely generated ideal is
Principal.
The ring is finite, so we are done.
Atternative proof: In general, for any two wings,
the ideals of RXS are all of the form $I \times J_s$
with $I \subseteq P$ and $J \subseteq S$ ideals. (Quick check.)
In our case we have $F_2 \times F_2 \times F_2$, so there
are eight ideals cu total: All constructions
of $I_1 \times I_2 \times I_s$ with $I_j \in I(0), (n)$.
Each is generated by (Q_n, Q_2, Q_3) with
 $a_j = \begin{cases} 0, & if & I_j = 0 \\ 1, & if & I_j = (1) \\ 1, & if & I_j = (1) \\ 1, & if & I_j = (1) \\ 1, & if & K = (1) \end{bmatrix}$.

Troblem 2.a. An R-module Mis Artician, if it satisfies the descending chain condition, that is if for every infinite sequence of R-submodules of M; $M_1 \supseteq M_2 \supseteq M_3 \supseteq \cdots \cdots \cdots$ there exists no EN, such that Mus = Musi, tiEN. b. Let R be an Artinian domain, and let a ER- 205. We have the descending drain of ideals, $(a) \supseteq (a^2) \supseteq (a^3) \supseteq \ldots$ Because R is Artévicer, there exist no en such that (a^{no}) = (a^{not1}). In particular, a^{no} ∈ (a^{not'}), thus there exists re R with a^{no} = r. a^{not1}. This implies: $\alpha^{1}(1-r,\alpha)=0$. As R is a domain and $a \neq 0$ (thus $a'' \neq 0$), we get 1-r.a=0, meaning a is invertible in R. So Ris a field. c. We have in $\mathbb{Z}_{12\mathbb{Z}}$: (0) \subseteq (6) \subseteq (3) \subseteq (1) which we derive is a composition series of tength 3: $(6) / = \frac{6 \cdot 2}{12 \cdot 2} \simeq \frac{2}{2 \cdot 2} \simeq F_2, \text{ which is simple}.$ $(3)_{(6)} = \frac{37}{67} \sim \frac{37}{67} \sim \frac{37}{67} \sim \frac{37}{27} \approx \frac{7}{27} \approx \frac{127}{67} \sim \frac{37}{67} \sim \frac{7}{27} \approx \frac{127}{27} \sim \frac{37}{67} \sim \frac{37}{27} \sim \frac{7}{27} \approx \frac{127}{7} \sim \frac{37}{127} \sim \frac{37}{67} \sim \frac{37}{67} \sim \frac{7}{27} \sim \frac{7}{27} \approx \frac{127}{7} \sim \frac{37}{127} \sim \frac{37}{67} \sim \frac{37}{67} \sim \frac{7}{27} \sim \frac{7}{27} \sim \frac{127}{7} \sim \frac{37}{67} \sim \frac{37}{67} \sim \frac{7}{27} \sim \frac{7}{27} \sim \frac{127}{7} \sim \frac{127}{7} \sim \frac{37}{67} \sim \frac{37}{67} \sim \frac{37}{7} \sim \frac{7}{27} \sim \frac{7}{27} \sim \frac{127}{7} \sim \frac{37}{67} \sim \frac{37}{7} \sim \frac{7}{27} \sim \frac{7}{7} \sim \frac{127}{7} \sim \frac{127}{7} \sim \frac{37}{7} \sim \frac{37}{7} \sim \frac{7}{7} \sim \frac{7}{7} \sim \frac{7}{7} \sim \frac{127}{7} \sim \frac{127}{7} \sim \frac{37}{7} \sim \frac{37}{7} \sim \frac{7}{7} \sim \frac{7}{7} \sim \frac{7}{7} \sim \frac{127}{7} \sim \frac{127}{$ $(1)_{(3)} = \frac{\mathbb{Z}_{1272}}{\frac{372}{1272}} \simeq \frac{\mathbb{Z}_{372}}{372} \simeq \mathbb{F}_{3}$, which is simple. $S_{2} \left(\frac{Z}{12\pi} \right) = 3.$

d. Quick solution: Use R/I OR M & M/IM.

Because 12 is invertible mod 3J, the quotient is zero. Elementary solution: show $[a]_{12} \otimes [b]_{3r} = 0$, $\forall a, b \in \mathbb{Z}$. 12 is coprime to 3J, so $[12]_{3r}$ is invertible in $\mathbb{Z}/_{3J\mathbb{Z}}$. (Explicitly: $[12]_{3T} = [36]_{3T} = [1]_{3T}$)

$$50 \ \left[a \right]_{12} \bigotimes \left[b \right]_{35} = \left[a \right]_{12} \bigotimes 12 \cdot \left[3 b \right]_{35} = 12 \left[a \right]_{12} \bigotimes \left[3 b \right]_{35} = \\ = \left[\left[\left[2 a \right]_{12} \bigotimes \left[3 b \right]_{35} = \left[0 \right]_{12} \bigotimes \left[3 b \right]_{35} = 0 \right] .$$

The one-to-one correspondence between ideals of 5/3and ideals of S which contain J, induces a bejection between Spec 5/3 and V(J). The corresponding inteal of \overline{q} is these $q \in V(\overline{d})$ with $q \cap R = f^*(\overline{q}) - \overline{p}$. Thus $p \in f^*(V(\overline{d}))$.

C. We have
$$C(x^3, x^2, x, y^2, y^3] \subseteq C[x, y]$$
 (along).
Furthermore, $C[x, y]$ is integral over A, because
X is a solution of $t^2 - x^3 \in A[t]$ and
y is a solution of $t^3 - y^3 \in A[t]$ and
 $C[x, y] = A[x, y]$.
So dim, $A = \dim_{kroll} C[x, y] = 2$.
d. If RSS is an integral ring extension,
Here, for every $P \in Spec \mathbb{R}$, there exists $q \in Spec S$
such that $q \cap \mathbb{R} = \mathbb{R}$.
Turthermore: P is maximal if and only if q
is maximal.
Applying this to the integral extension $A \subseteq C[x, y]$ is
 $A \subseteq C[x, y] = A[x, y]$.
As C is algebraically closed, we have by Hilbert's
Null stelleusalz, that:
Max Spec $C[x, y] = f(x-a, y-b)$, $(a, b) \in \mathbb{C}^2$.
Finally, $(x-a, y-b) \cap C[x_1^3 x_2^3, xy_1^2, y_3] =$
 $= (x^3 - q^2, x_1^2 - a^2b, xy_1^2 - a^2b^2, y_2^2 - b^3)$.