
Frederik Wilde, Nikita Gutjahr, Magdalena Haselsteiner Bonus Sheet

Equation (#) on the problem sheet will be referred to as equation (s#).

Problem 1

(a)

H =
p2

2m
+ V (q),

∂H

∂q
= ∂qV (q) = −ṗ, ∂H

∂p
=

p

m
= q̇

(b) We calculate ∂qV (q) explicitly and using the result of (a) we find(
ṗ
q̇

)
=

(
q − q3
p/m

)
.

Note that φ does not explicitly depend on time! In order to solve these differential
equations uniquely we need two initial values, since they reduce to an uncoupled
differential equation of second order:

mq̈ = q − q3,

where p is obtained by calculating mdtq.

(c) We rewrite equation (s4):

ṗ = µ(1− q2)p− q −Θ(λ),

which is already our first line of the equation. The rest follows simply by definition:

q̇ = p, λ̇ = 1,

which yields ṗq̇
λ̇

 =

µ(1− q2)p− q −Θ(λ)
p
1

 . (1)

Since g2 is identified with x, a vector g that solves eq.(1), provides an x that solves
eq.(s4).

(d) The ODE of a harmonic oscillator in the above notation would beṗq̇
λ̇

 =

−ω2q
p
1

 .

Since the problem is time-translationary invariant, the free parameter in the bot-
tom line is irrelevant for the physics. Solving the middle line yields one free pa-
rameter q0:

q(t)− q0 =

∫ t

0

dt′p(t′).
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Plugging this into the first line, and solving for p we obtain another free parameter.
For NA particles we obtain one ODE of second order for each particle and each
spatial dimension. Thus for a unique solution, we need 6NA initial conditions.

(e) We rearrange equation (s5):

rk − rk−1
∆t

= f(rk−1, (k − 1)/N),

where the limit ∆t −→ 0 on the left-hand side yields the definition of the time
derivative of r(t). Furthermore on the right-hand side (k − 1)/N −→ t = const.
since both k and N grow in the same fashion.

(f) We first choose the potential

V1(q) =
1

2
q2
(

1

2
q2 − 1

)
+

1

20
cos(40q)

which is depicted in the LHS of figure 1. The RHS contains a prediction for the
behaviour of different particles given a square centered around (0,0) in phase space
as the set of initial points.

Figure 1: Left-hand side: Plot of the potential V1(q). Right-hand side: The square represents
the set of particles in their initial phase space configuration. Note that the black stars on the
x-axis represent particles with zero momentum and initial potential energy of the summit of
the neighboring ’hill’, as seen by the green horizontal line. Particles outwards from these points
will certainly be trapped. But also some particles furtherout with non-zero initial momentum,
as indicated by the darkly shaded areas. If the initial momentum is high enough though, the
particles will escape the first well nonetheless.

The predicted behaviour can be seen in the animation V1.gif of the time evolution
of phase space. The great loop clearly reflects the mexican-hat-potential in V1(q).

Subsequently we evaluated the phase space dynamics for the potential

V2(x) = 0.1 ·
[
(x− 1)2 +

1

1.8 + 105(x− 0.5)2
+

1

1.1 + 105(x− 0.9)2

]
,
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which is depicted in figure 2.

Figure 2: Plot of the potential V2 (blue line) and the mexican hat potential (yellow line),
which has an overall harmonic shape but exhibits to narrow scatterers which reflect some
particles and hence lead to three different cycling frequencies, which we describe by the name
’phase space race’.

The dynamics can be seen in V2.gif and clearly exhibit the movement of three
different bulks in phase space.

Finally we created a rather ’random’ potential

V3(x) = 0.1·
[
sin(20x) + cos(15x2 + 1) +

1

2 + 104(x+ 1.5)2
+

1

1.5 + 104(x− 1.5)2

]
,

where the last two terms are peaks to keep particles from escaping a finite domain.

Figure 3: Plot of the potential V3 (blue line) and the mexican hat potential (yellow line).

The dynamics can be seen in V3.gif, where some particles in the left part of the
initial region are trapped, by the same mechanism as in V1. It is clear to see, that a
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connection of the upper and the lower particle stream in phase space (this happens
when particles get scattered back) can only happen when the particles encounter
a peak of greater hight than ever before on their way out.

Shearing into a rhombus: This behaviour should be expected for all well-behaved
potentials in a sufficiently small time intervall starting from the t = 0. Since
the particles in the upper (lower) part of the square have momentum towards the
right (left), they will, in the first instant of time evolution, simply move towards
the right (left) with a speed according to their distance to the x-axis.

(h) Yes!
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