
The Drinking Philosophers Problem:
Resource Allocation in Distributed Systems

Seminar paper on Distributed Programming

Alexander Steen,
a.steen@fu-berlin.de

Freie Universität Berlin
Department of Computer Science

Abstract. In 1971 E. W. Dijkstra published the dining philosophers
problem, which, since then, has become representative for resource al-
location problems in concurrent and distributed programming. In this
seminar paper, a generalization called the drinking philosophers prob-
lem by Chandy and Misra is surveyed. Since the problems has practical
relevance, it has drawn a lot of attention and many different solutions
have been proposed. A solution due to Ginat et al. is presented in detail.
Additionally, an implementation in Go is given and discussed.

1 Introduction

One of the most fundamental and early challenges of concurrent programming
are those which involve protecting resources from shared usage. These resources
may for instance be files, which must not be written to in parallel. These prob-
lems emerged in 1962 when the first operating systems used multithreaded con-
trollers for executing multiple programs while others wait for I/O actions to
complete [1].

Since then, problems of concurrent programming have been deeply researched
and many important formalizations have been developed. Some of the most
popular and influential work is due to E.W. Dijkstra, who coined the term critical
section and published the dining philosophers problem [2] [3]. The latter has
become one of the most representative problems for conflict resolution between
independent processes.

With the rise of computer networks in the 1980s and 1990s, the use of dis-
tributed systems and distributed algorithms have appeared. Unlike in classical
concurrent systems, the communication between processes of different address
spaces (possibly on different machines) is realized by passing around messages
(see Fig. 1b) rather than by manipulating shared memory (Fig. 1a) [1].
The critical section problem of concurrent systems can also be applied to dis-
tributed systems. Here, critical sections may be the access to shared resources
among independent systems, such as files in a distributed file system or some
specialized hardware in the network. One of the main difficulties for distributed
algorithms is the restricted knowledge of an individual process about the global

mailto:a.steen@fu-berlin.de

2

(a) by shared memory (b) by message passing

Fig. 1: Communication between independent processes

state of the system. This means that each process has to act based on its local
state (and received messages, of course) in order to solve a problem.

Section 2 gives a short summary about the classical dining philosophers problem
as well as an introduction to the generalization, the drinking philosophers prob-
lem. The subsequent section surveys various solving strategies and discusses one
of them in detail. In section 4, an implementation in Go is presented. Finally,
the last section summarizes and gives credit to related problems.

2 The Problem Statement

This section gives a precise definition, what problems can be modeled in the
drinking philosopher paradigm. Prior to that, the well known dining philosopher
problem is recapped and described informally.

2.1 Dining Philosophers

The dining philosophers problem due to Edsger W. Dijkstra [4] is a resource
allocation problem which can be described as follows: Five philosophers meet for
diner and discussing at a round table with a fork placed on the table between
each of them. Since discussing philosophy related problems is an exhausting
thing to do, they need to eat once in a while. In order to do so, a philosopher
requires the forks to his left and right, which are shared with his left and right
colleague respectively. After a philosopher is done with eating, both forks will
be put back on the table. It’s important to note that a philosopher must hold
both forks, otherwise he cannot eat at all. Furthermore, a philosopher does not
speak about dining (i.e. the forks) with his colleagues and forks cannot be used
by two philosophers at a time. Due to the fact that there are only five forks and
each philosopher needs two of them for eating, it is obvious that at most two
philosophers can eat in parallel. A solution to this problem has to ensure that
multiple philosophers can eat at the same time. Additionally, deadly embraces
(deadlocks) and starvation has to be avoided.

3

(a) Problem setting (b) Formalization as graph

Fig. 2: Graphical representation of the dining philosophers problem

The setting of the diners problem given above can be formalized: Given an
undirected graph G = (V,E) with V = {0, 1, 2, 3, 4}, where each of the vertices
describes a philosopher. The edges of this graph can be interpreted as resources
shared between its two endpoints. Hence, uv ∈ E ⇔ v = (u+ 1) mod 5. Then,
the condition to eat for a philosopher associated to node v ∈ V is: v must acquire
all the adjacent resources.
The behavior of a philosopher process is given by the following repeating cycle:

forever do
think
become hungry
eat

Since this seminar paper treats distributed algorithms, a solution to this problem
uses message passing for communication between the philosophers rather than
shared synchronization objects, such as monitors or semaphores. While this will
of course violate the constraint that philosophers are not allowed to talk to each
other, it captures one important difficulties of distributed programming with
shared resources, that is, the resolution of so-called conflicts. A conflict arises
when multiple processes try to access a resource that must not be used by more
than one process at a time.

This problem has been well researched and there exist several solutions that
use either shared synchronization objects or, in the distributed case, message
passing ([1],[4],[5], [6]). It is important to note that the most difficult accom-
plishment of giving a solution to this problem is to guarantee fairness.

The following fair solution is due to Chandy and Misra [7]. In order to assert
fairness, the solution implements a precedence graph which assigns a priority
to each process based on its depth in this (acyclic) graph. This is a interesting
approach since it uses a fully deterministic way of giving precedence in cases of
conflicts without statically pre-assigned priorities (i.e. a static hierarchy).

4

A precedence graph P is a directed acyclic graph where each node represents a
process and each directed edge from p to q means that p has precedence over
q. Then, the depth of a process p is defined as the length of the longest path
from a process without any predecessors to p. It is easy to see that neighboring
processes cannot have the same depth in P , which means that conflicts between
those processes can always be resolved in favor of the process with the lowest
depth.

In the solution to the diners problem, the precedence graph is implemented as
follows: Each fork shared by two processes is either clean or dirty. Then, process
p has precedence over q if (1) p holds the fork and the fork is clean, or (2) q
holds the fork and the fork is dirty, or (3) the fork is currently being sent from q
to p. Initially, all forks are dirty and must be placed (externally) such that the
associated precedence graph is acyclic. The rules which each philosopher obey
are:

(i) A hungry philosopher requests all necessary but currently not owned forks
from his neighbors

(ii) (Despite hygienic conventions) Dirty forks can be used arbitrarily often to
eat

(iii) Dirty forks are being cleaned during transmission
(iv) Clean forks remain clean until used for eating
(v) A eating philosopher defers fork requests
(vi) A non-eating philosopher satisfies requests for forks that are currently dirty

and defers requests for forks that are clean

The transmission of forks can be simulated by sending tokens representing the
fork.
This algorithm is fair since a philosopher will put precedence to his neighbors
after eating (by making the forks dirty; (iv)), but will not give away forks freshly
requested for eating (since those forks are clean; (iii), (vi)). An detailed proof of
the correctness is given by Chandy and Misra [7].

2.2 Drinking Philosophers

The problem statement of section 2.1 is rather restricted: The process network
describes a cycle graph, where each process always needs both of its adjacent
resources to perform its critical section. In 1984, Chandy and Misra presented a
generalization of this problem: The so called drinking philosophers problem [7].

In this paradigm of conflict resolution in distributed systems, the indepen-
dent processes of the system correspond to nodes in a general graph. It is impor-
tant to note that no restrictions on the graphs structure (e.g. connectivity, node
degrees) are made. This means, that the underlying network of processes is com-
pletely abstracted from. The resources shared between the processes correspond
to edges in this graph and are called bottles. The generalization introduced is
twofold: Not only that the structure of the process graph is arbitrary, but also

5

the set of required bottles may vary. At each round each process chooses a subset
of its adjacent bottles needed for this drinking session. This subset chosen does
not necessarily have to be the same in each drinking session. In this sense, this
paradigm is an abstraction of the dining problem: If we choose all of the adjacent
bottles as required at each drinking session, we can simulate the dining philoso-
phers problem. It’s easy to see that, with the drinking philosopher paradigm, a
lot of conflict resolution situations can be simulated.

In this paradigm, the processes again loop through states. These are tranquil,
thirsty and drinking, representing the states thinking, hungry and eating (respec-
tively) in the drinking philosophers problem, yielding

forever do
be tranquil
become thirsty
drink

Just like in the diners problem, philosophers are allowed to be tranquil arbitrarily
long. At any time, a process can decide to become thirsty. Then, a subset of the
adjacent bottles is chosen as needed for drinking. After acquiring those bottles,
a process only drinks finitely long after which it becomes tranquil and does not
need the bottles anymore.

Fig. 3: Drinking philosopher setting example

Figure 3 shows an example for a drinking philosopher setting: In this example,
any two processes connected by an undirected edge share a bottle (identified by
this edge), e.g. process 5 shares a bottle with process 0, 3 and 4 and so on.

The solution criteria requested by Chandy and Misra [7] are:

Concurrency All simultaneous drinking sessions that are not forbidden by in-
variant (i.e. each fork is used at most once in parallel) must be possible.

Fairness No Philosopher is staying thirsty forever.
Symmetry Each philosopher process obeys the same set of rules.

6

Economy A philosopher sends and receives only a finite number of messages
between state transitions.

Boundedness The number of messages in transit between any two philosophers
is bounded as well as each message’s size.

The fairness requirement is extremely difficult to fulfill here, since the decision
whether a process has precedence over all its neighbors cannot be decided locally
anymore (in contract to 2.1).

3 Solutions to the Drinking Philosophers Problem

The exist several solutions to the problem states in Section 2.2. The original
solution to the problem stated by Chandy [7] uses the presented distributed so-
lution to the diners problem as a layer to the actual solution. [yada bla]. One
disadvantage of this solution is the relatively inefficient inaction between the
actual solution and the diners solution layer. This is enhanced by Welch and
Lynch [8] who present a more modular approach with exchangeable diners layer.
Hence, the diners layer can be exchanged for a more efficient one if necessary.
Besides the precedence graph approach, a non-deterministic solution might also
be possible. Lehmann and Rabin proposed a non-deterministic solution for the
diners problem [9].
However, the solution due to Ginat, Shankar and Agrawala which is discussed
in this seminar paper uses session numbers to decide which process has prece-
dence [10]. Before we take a closer look at the solution, guarded commands will
be introduced. They are extremely handy for formulating conditional reactions
in distributed systems and used in the algorithms description in Sect. 3.2.

3.1 Guarded Commands

In 1975 Edsger Dijkstra developed a programming language calledGuarded Com-
mand Language (GCL) primarily used for the conceptual design of algorithms
and their formal verification [11]. It allows expressing guarded (see below) ac-
tions in a straight-forward fashion which enables to specify the behavior of a
system or algorithm without being forced to implement it with concrete control
structures. In this sense, algorithm and system descriptions can be abstracted,
granting a more focused and structured view on the underlying pre- and post con-
ditions. This is why many algorithms, in particular in distributed programming,
are often stated as guarded commands rather than in any specific imperative
language: The behavior of the processes executing the distributed algorithm can
be directly traced along the guarded commands and, in fact, more easily verified
correct by proofs.
A guarded command is an expression of the form ϕ → stmt, where ϕ is a
Boolean expression and stmt is some program statement. ϕ is called the guard
of the statement stmt and may be any Boolean expression consisting of the usual
logical connectives and operations over program variables. In fact, in practical

7

applications, ϕ and stmt may also contain informal conditions or pseudo code
(respectively). This was, however, not indented by the original description by
Dijkstra, who gave a complete definition of syntax and semantics of statements
and expressions in GCL.

The semantics of a guarded command ϕ→ stmt is straight-forward: When-
ever the system witnesses a state in which ϕ holds (e.g. the variables of the
context make ϕ true), stmt may be executed. It is important to note that stmt
does not necessarily have to be executed once ϕ holds; the system may, for ex-
ample, grant the execution of another guarded command with valid guard, or do
nothing at all. For practical uses it is convenient to assume that some guarded
command with valid guard is executed (the surrounding system decides how to
deal with valid guards explicitly). In the contrary case, when ϕ does not hold,
the statement stmt must not be executed.
It is often handy to assume that stmt is executed in one atomic step.

3.2 The solution of Ginat, Shankar and Agrawala

The algorithm of of Ginat et al. presented in this section was published five
years after the original problem statement by Chandy and Misra. The idea is to
organize priorities by session numbers [10], which are non decreasing through-
out the algorithms execution. To this end, each philosopher p has two integer
variables max_recp and s_nump: The first contains the highest session number
encountered so far (received from neighbors), the latter the last, upcoming or
current drinking session number (depending if p is tranquil, thirsty or drinking
respectively). The solution makes use of the fact that adjacent philosophers will
never have the same extended session number (s_nump, p), which is the ses-
sion number of the philosopher augmented by its identifier. In this sense, the
augmentation can be regarded as tie breaker, since extended session numbers
of adjacent philosophers cannot be equal and thus allow a conflict resolution
in favor of one of the two adjacent processes. An ordering of extended session
numbers is defined by the lexicographical ordering

(s_nump, p) < (s_numq, q) :⇐⇒
s_nump < s_numq ∨ (s_nump = s_numq ∧ p < q)

(1)

For each bottle b there exists an associated request token reqb which is sent by a
philosopher p if b is needed for the next drinking session but not currently hold
by p. This kind of request can only be sent if the process who is thirsty owns
the request token. To ensure fairness, a session number greater than max_rec
is picked after becoming thirsty and transmitted along with the request itself. A
request message has the form (reqb, s, p) where reqb is the request token corre-
sponding to the request, s the session number of the sender’s upcoming drinking
session and p the sender’s identifier. A request message for bottle b is answered
by the message (b) once the holder of b has lower precedence as the requesting
philosopher. This is expressed by the following conflict resolution rule:

8

Upon receipt of (reqb, s, p) by q, q immediately sends b to p iff

¬needq(b) ∨ (thirsty(q) ∧ (s, p) < (s_numq, q))

Otherwise b will be released after q has finished drinking, i.e. is becoming tran-
quil. It is assumed that messages arrive in the order they are sent. Initially, for
each process p the variables s_nump and max_recp are zero and for each pair
(p, q) of adjacent processes one is given b while the other one is given reqb.
For each process p, the following predicates are defined and used in their obvi-
ous meaning: holdp(b), holdp(reqb), needp(b) as well as thirsty(p), tranquil(p),
drinking(p), where thirsty(p)⊕ tranquil(p)⊕drinking(p) is invariant (⊕ being
exclusive or).
The following guarded command algorithm implements the above described so-
lution [10]. Each guarded command execution is assumed to be atomic.

R1 (becoming thirsty) tranquil(p) and p wanting to drink →
become thirsty
for each desired bottle b do needp(b)← true
s_nump ← max_recp + 1

R2 (start drinking) thirsty(p) ∧ ∀b : needp(b)⇒ holdp(b)→
become drinking

R3 (stop drinking) drinking(p) and p wanting to stop drinking →
become tranquil
for each consumed bottle b do

needp(b)← false
if holdp(reqb) then send(b); holdp(b)← false

R4 (requesting a bottle) needp(b) ∧ ¬holdp(b) ∧ holdp(reqb) →
send(reqb, s_nump, p); holdp(reqb)← false

R5 (receiving a request) recvp(reqb, s, q) →
holdp(reqb)← true
max_recp ← max(max_recp, s)
if ¬needp(b) ∨ (thirsty(p) ∧ (s, q) < (s_nump, p))

then send(b); holdp(b)← false

R6 (receiving a bottle) recvp(b) →
holdp(b)← true

The abbreviation recvp(.) is used to express the event that p receives a message.
Send(b) and Send(reqb, s_nump, p) sends the respective message to the adjacent
process with whom b is shared.
Rules R1, R2, R3 express the behavior described in Section 2.2: A process p
deciding to be thirsty chooses a subset of all adjacent bottles to be needed for
the upcoming drinking session. Additionally, a session number is picked (R1).

9

As soon as all bottles are acquired, the process is allowed to start drinking
(R2). After that, the bottles aren’t needed anymore and are possibly sent to
neighboring processes in need (R3). Rules R4 and R6 treat requesting a bottle
and the eventually receiving it (respectively). Rule R5 implements the above
discussed conflict resolution rule: If the requesting process has precedence (i.e.
the session number if smaller), the bottle is sent to it; otherwise the answer is
postponed (see R3).

3.3 Analysis of the Algorithm

Restrictions The algorithm of Sect. 3.2 comes with some restrictions. It is re-
quired that the communication medium assures first-in-first-out message trans-
port. This is necessary since the request token reqb (which is always sent after
any sending of b) is required to arrive after a bottle b. Otherwise, rule execution
R5 may corrupt the system’s state. Furthermore, no message may be lost during
transmission. A weak fair execution of the guarded commands is assumed.
The main restriction, which has to be discussed for actual practical applications,
is the use of unbounded counters. The monotonicity of the session numbers is
critical for the algorithm’s fairness.

Correctness The proof of correctness is taken from Ginat et al.[10] with minor
modifications (mostly for readability matters).
Lemma 2 and Lemma 3 are used later to prove the fairness of the algorithm. They
are not proven in this paper but can be found in the original work. Additionally,
the following properties of the algorithm (as stated by Ginat et al.) are used
later on:

Lemma 1 (Properties). The following properties hold for all adjacent philoso-
phers p, q who share bottle b.

B1: reqb is in transit to q ⇒ b is held by q or in transit to q ahead of reqb
B2: holdq(b)⇒ b is not in transit to q
C1: holdq(b) ∧ holdq(reqb)⇒ needq(b) ∧ (max_recq ≥ s_nump)∧

(drinking(p) ∨ (s_numq < s_nump)) �

There are many more properties stated in the original work, primarily used
for proving Lemma 2 and Lemma 3. The proof of Lemma 1 is omitted in favor
of conciseness; a simple structural induction over the rules R1-R6 can be used
for validating the properties.

The first important observation is asserted by

Lemma 2 (Extended session numbers).
(a) s_nump and max_recp never decrease
(b) s_nump does not change while p is thirsty �

We continue by defining the dedication of a bottle b, which will help us
arguing that a philosopher will eventually gather all the required bottles. For

10

two thirsty adjacent philosophers p, q, let p < q mean that p has precedence over
q, i.e.

p < q :⇐⇒ (s_nump, p) < (s_numq, q)

Definition 1 (Dedication). Let p, q be two adjacent philosophers who share
b. b is dedicated to p iff

(1) thirsty(p) ∧ needp(b)
(2) One of the following holds

(i) b is in transit from q to p
(ii) holdp(b) and p < q
(iii) holdp(b) ∧ ¬needq(b) ∧ (s_nump, p) < (max_recq + 1, q)

�

Dedication of b can only happen if and only if the philosopher really needs b
(1) and has definitely precedence over the neighbor with whom he shares b (2).
In cases (i) and (ii) precedence is trivial, in case (iii) the neighboring process will
get a higher session number if it decided to be the thirsty, thus having a lower
priority. Informally, dedication of a bottle b to p states that b is ”temporally
owned” by p, allowing us to state

Lemma 3 (Dedication). If b is dedicated to p, then b will not be released by
p before p is tranquil. �

With assistance of Lemma 3, an ordering of processes is constructed, showing
that eventually each process will be "first in line" and thus drink. Since this is a
temporal property, the operator (read: leads-to) is introduced. The temporal
character of properties of the form whenever A holds, eventually b will hold can
be expressed with its help.

Definition 2 (Leads to). Let A,B be two propositions. Then, A B holds
iff whenever a state satisfying A is reached, somewhere in the future a state is
eventually reached in which B holds. �

Now we can easily formulate the fairness requirement which is, in fact, met
as expressed by

Theorem 1 (Liveness). For any philosopher p, thirsty(p) drinking(p). �

Proof. Let all processes with same extended session number be grouped together
and those groups be ordered by the ordering of the extended session numbers,
and let further denote pos(p) the position of the p’s group in this ordering. Then,
the theorem can be proved by proving the property

D(i) := (pos(p) = i ∧ thirsty(p)) drinking(p)

by induction over i. Let p, q be two adjacent philosophers who share bottle b
with needp(b).

11

1. Basis i = 1
Let pos(p) = 1. Since we have pos(p) < pos(q) ⇔ p < q and pos(.) ≥ 1 it
holds that pos(q) > 1. By Lemma 2 we know that p < q as long as thirsty(p)
holds.
Case 1: If b is dedicated to p, there is nothing to do, because b is (or will

be) hold by b until p drunk from it.
Case 2: b is not dedicated to p. But then b will eventually be dedicated to

p, because
Case (1): holdq(reqb):

ByB2 it holds that holdq(b) and thus, by C1 it follows that
drinking(q). Since drinking is finite, rule R3 will eventu-
ally be executed (i.e. b will be sent to p).

Case (2): reqb is in transit to q:
By B1 it holds that holdq(b) upon reception of the request
by p. Now, by rule R5, q either answers the request (and
thus b is dedicated to p) or postpones it In the latter case,
b will be dedicated to p due to Case (1).

Case (3): holdp(reqb):
By rule R4, reqb will be sent to q. Thus, by Case (2) b
will be dedicated to p.

By B1 reqb cannot be in transit to p, so this case does not have to
be considered. Hence, b will eventually be dedicated to p. Due to
the fact that the number of bottles needed by p is finite, and, by
Lemma 3, each dedicated bottle will be held by p until p is drinking,
we can conclude that p will eventually start drinking (rule R2).

2. Step D(1), . . . , D(k)→ D(k + 1)
Let pos(p) = k + 1. For p and q are neighbors it holds that pos(p) 6= pos(q).
If pos(p) < pos(q), the same arguments of the induction base step can be
applied. So, assume pos(p) > pos(p).
Case 1: If b is dedicated to p, there is nothing to do, because b is (or will

be) hold by b until p drunk from it.
Case 2: b is not dedicated to p. But then b will eventually be dedicated to

p, because
Case (1): holdq(reqb):

By B2 it holds that holdq(b) and thus, by C1, it follows
that needq(b). (A) If drinking(q), rule R3 will eventually
be executed (i.e. b will be sent to p), (B) if thirsty(q),
then (by induction hypothesis) q will be drinking in finite
time and (A) can be applied.

Case (2): ¬holdq(reqb):
The arguments (2) and (3) of the induction basis can be
applied to show that b will eventually be dedicated to p.

By B1 reqb cannot be in transit to p, so this case does not have to
be considered. So, since p gathers all needed bottles in finite time,
we can conclude by rule R2 that p will eventually start drinking.

�

12

Theorem 2 (Correctness). The algorithm stated in Sect. 3.2 is correct. In
particular, the algorithm provides fairness, symmetry and concurrency.

Proof. Bottles cannot be used by multiple processes by construction. A process
only starts drinking when all needed bottles are present (rule R2). Thus, the
algorithm is safe (i.e. does not violate the invariant).
Since all processes use the same of rules, the solution is symmetric.
Fairness is ensured by Theorem 1.
Processes do not communicate with non-adjacent processes and only require
neighboring resources. Thus, no legal execution is refused. �

Complexity. Let G = (V,E) be the process graph under consideration (as de-
scribed in Sect. 2.2) The message complexity of the presented algorithm can
easily be determined: Let p, q be two different processes. For each bottle b shared
between these processes p and q, p requires at most two messages two acquire
the bottle (one message sending the request token reqb, one message sent from q
containing the bottle b itself). In the best case, if p already holds b, no message
has to be sent at all. Thus, for any drinking session requiring k bottles, at most
2k messages have to be exchanged. This means that the message complexity for
each drinking session of any process p is bounded by 2 deg(p) = O(|V |), where
deg(p) is the degree of p in G.

Since for each bottle b shared between processes p and q at most two messages
can be in transit at the same time (q sending reqb to p; or p sending b to q; or p
sending b to q followed by p sending reqb to q) it follows that the total amount
of messages in transit is bounded by 2|E|, yielding

Theorem 3 (Economy and Boundedness). The number of messages in
transit between any two processes is at most 2. For any process p, the num-
ber of messages sent and received for each drinking session of p is bounded by
2 deg(p). In particular, the algorithm is economical and bounded. �

Further remarks The original solution of Chandy and Misra requires a strongly
fair execution of the guarded commands. This restriction has been discussed and
(partly) improved by Murphy and Shankar [12].

4 An Implementation in Google Go

The previous section presented the solution of Ginat et al. as set of guarded com-
mands. In this section, a concrete implementation of their ”theoretical” solution
in Go is presented.
In Sect.4.1 a brief description of the goals is given. Then, Sect. 4.2 discusses
the challenges of translating guarded commands to imperative code. Section 4.3
presents the implementation in Go; finally, the implementation is analyzed.

13

4.1 Goals of the Implementation

The implementation of the algorithm is not meant for providing a generic frame-
work for distributed resource allocation. It has merely the purpose of a proof-of-
concept. This is why the implementation is restricted to channel communication
between local actors. Of course, the channels can be replaced by different com-
munication objects to provide inter-network communication.
Another simplification is the use of a central coordination object, the Allocation
object, to pose requests to. In a real distributed scenario, such a central coordi-
nation object would be replaced by an per-philosopher interface.

4.2 Translation from GCL

Since Go is an imperative language, the algorithm described in Sect. 3.2 cannot
be implemented simply by adopting each rule in a sequential manner.
Let’s recall the semantics of an GCL program: Any guarded command ϕ→ stmt
might be executed by the system environment as long as its guard, i.e. ϕ, holds.
Note, that if ϕ holds permanently, the infinitely repeating execution of stmt is, of
course, also a valid execution of the program1 (even if there are further guarded
commands in the program’s description). This suggests that there is no fixed
order in which the commands of a GCL program will be executed – revealing
the difficulty of translating GCL programs to imperative ones: In imperative
languages, the statements of a program describe its entire control flow, i.e. the
possible sequences of execution. This means that, in the translation from GCL
to Go, we have to explicitly encode all feasible executions of the GCL program
using the imperative control structures.
If there are no blocking operations (such as recv(.)) in the guard of any command,
a possible imperative translation is a while-loop containing a if-else-construct
with one case per guarded command. Suppose a GCL program P is given by the
set {ϕi → stmti} and each ϕi does not contain any blocking operation. Then, a
Go translation of P is given by

for {
if ϕ1 {
stmt1

} else if ϕ2 {
stmt2

} else if ...
...

} else {
return

}
}

Listing 1.1: Imperative translation of P, Version 1

1 Fairness assumptions of the system’s scheduler might in fact restrict certain execu-
tions.

14

given that each stmti has been correctly translated to Go.
In fact, the above translation is not completely correct: Although the code does
not introduce any infeasible executions, it does not offer all possible ones. This
is due to the if statement semantics of Go: The case predicates are checked for
validity in a linear order ϕ1, ϕ2, . . ., where the first statement with valid case
predicate is executed. So, if ϕ1 is always true, the statements stmt2, . . . will
never be executed.

A quick and easy fix for this problem is to introduce randomness to the
translation, which relies on the confidence, that the implementation of Go’s ran-
dom generator guarantees nearly uniform distribution. With this tool, a random
number i from 1, . . . , n is chosen uniformly at each iteration of the do-loop, and
the case condition of the i-th case is checked. This yields

for {
i := Intn(n)
if ϕ1 && i == 0 {
stmt1

} else if ϕ2 && i == 1 {
stmt2

} else if ...
...

}
if !ϕ1 && ... && !ϕn {

return
}

}

Listing 1.2: Imperative translation of P, Version 2

where Intn(n) is a function that chooses a random number from 0, . . . , n − 1
(contained in the package math/rand).

To handle blocking operation in guards, each of the cases need to run in
separate goroutines; this transformation is left to the reader. Note that in this
translation scheme (in the presence of blocking operations in guards), the detec-
tion of termination is not trivial. Since in many cases the GCL programs describe
reactive systems that are not supposed to terminate, termination detection can
be ignored.

The above described transformation is naive in the sense that it creates one
thread per guarded command. In many cases, this is an overkill and not necessary
to express all executions of the GCL program: By reasoning about the guards
and the effects of the commands, one can manually identify executions that
cannot occur.
As an example, consider the following two guarded commands, where initially
i = 0:

(i) i = 0→ i = i + 1
(ii) i = 1→ i = i - 1

15

Since after executing (i) its guard is false and its guard can only be made
true again by (ii), an execution of the form (i), (i), ... is impossible. An analogous
argument holds for (ii), and initially the guard of (ii) is false. Thus, a simple and
correct imperative translation is given by

i := 0
for {

i = i + 1
i = i - 1

}

This kind of simplification is also used in the next section for the implementa-
tion of the Drinking Philosophers Problem. Subsequently, the correctness of the
translation is proved.

4.3 Translation to Go

Adopting to a generic allocation interface. The Drinking Philosophers problem
setting describes the problem (and solution) of distributed resource allocation
in a fairly abstract way. It is, for example, not obvious how participants show
that they ”want to drink” (cf. rule R1) and consequently trigger certain guarded
commands. To this end, resource allocation is modeled as interface – processes
that need resources (i.e. ”want to drink”) solely need to invoke the appropriate
function.

type Allocation interface {
// Process p requests the resources
// associated to the elements in res.
// Blocks , until all resources has been
// acquired.
//
// Pre:
// - All elements in res are valid Process
// descriptors (or neighboring processes);
// - Request(p,.) has not been called prior to
// this call without a subsequent call to
// Release(p);
// - Start() has been executed prior to this call
Request(p Process , res [] Process)

// Process p releases the resources
// acquired due to the previous Request call
//
// Pre:
// - Start() has been executed prior to this call
Release(p Process)

// Start needs to be called EXACTLY ONCE
// before any invocation of Request and Release.

16

//
// Pre: Start has not been called in the past
Start()

}

Listing 1.3: Definition of a resource allocation interface

The listing 1.3 displays this proposed interface which is derived from the usual
Lock/Unlock-interfaces for mutual exclusion. The Start function is required to
start the concurrent handling of message exchanges in the background.

Code excerpts. In the remainder of this section, only essential fragments of the
Go implementation will be displayed.

Before the actual implementation of the guarded commands (rule R1 - R5)
is given, the required state information of each philosopher needs to be modeled
(see listing 1.4). Whether a philosopher is tranquil, thirsty or drinking is modeled
as constant symbols of type Γ .

type Γ uint8
const (

TRANQUIL Γ = iota
THIRSTY
DRINKING

)

type Ω struct {
γ Γ // the current state
need map[Process]bool // needed bottles
hold map[Process]bool // bottles held
hold_req map[Process]bool // request tokens held
max_rec Session
s_num Session
mutex *sync.Mutex // mutex and cond are used to
cond *sync.Cond // safely run the guarded command

// translations under mutual exclusion
}

Listing 1.4: Definition of philosopher state

The implementation of the predicates and extended session numbers defined in
sect. 3.2 is straight-forward. Since, per philosopher, the guarded commands need
to run under mutual exclusion (i.e. as observably atomic instruction), mutex-
objects mutex are introduced. Additionally, a philosopher process may need to
wait until all required bottles have been received. To implement this waiting
efficiently, a monitor condition cond is used. All of this information in then
integrated in a struct of type Ω.

The messages exchanged during the algorithm are modeled by the Message
type displayed in listing 1.5.

17

type Message interface {
IsReq() bool
IsBottle () bool
Session () Session
From() Process

}

Listing 1.5: Definition of message type

The implementation of the message type is omitted here, as is the initializa-
tion of the Allocation implementation. The latter creates an Ω struct for each
philosopher and randomly distributes the bottles between adjacent ones. The
neighborhood is modeled by a simple Network type, which is, in fact, a graph
interface. The representation of this graph is not further discussed in this paper.

Listing 1.6 below presents the implementation of the Request function that
successively executes rules R1, R4 and R2. Each rule execution is protected by a
mutex lock; the waiting is realized by a Wait call on the philosophers’ condition
variable.

func (a *ImpGinat) Request(proc Process , res [] Process) {
...

// Rule R1
// becoming thirsty: choose subset of bottles needed
// according to res.
ω.mutex.Lock()
ω.γ = THIRSTY
for _,k := range res {
ω.need[k] = true

}
ω.s_num = ω.max_rec + 1
ω.mutex.Unlock ()
// end of rule R1

...
// Rule R4
// requesting bottles
ω.mutex.Lock()
for k,_ := range(ω.need) {

if (!ω.hold[k] && ω.hold_req[k]) {
a.request(proc ,k,ω.s_num)
delete(ω.hold_req ,k)

}
}
ω.mutex.Unlock ()
// end of rule R4

...
// Rule R2
// Checking if all desired bottles are there ,
// then drinking.

18

ω.mutex.Lock()
for ; !ω.holdsAllBottles (); {

...
ω.cond.Wait()

}
ω.γ = DRINKING
ω.mutex.Unlock ()
// end of rule R2

...
}

Listing 1.6: Implementation of the drinking philosopher algorithm, Part 1

If Request is called by a participating process, the invocation returns as soon
as all requested resources have been acquired. In contrast to this, the Release
function immediately returns to the caller (cf. listing 1.7).

func (a *ImpGinat) Release(proc Process) {
...

// Rule R3
// Finished drinking , possibly release send bottles
ω.mutex.Lock()
ω.γ = TRANQUIL
for k,_ := range(ω.need) {

if (ω.hold_req[k]) {
a.sendBottle(proc ,k)
delete(ω.hold ,k)

}
delete(ω.need ,k)

}
ω.mutex.Unlock ()
// end of rule R3

...
}

Listing 1.7: Implementation of the drinking philosopher algorithm, Part 2

As discussed in the previous section, guarded commands that include block-
ing operations in its guards need to be executed in separate threads. The relevant
guarded commands, where this condition applies, are rules R5 and R6 – both
are guarded by a reception of messages. This is why the implementation of these
rules are transferred into a separate function handleMessages and then later in-
voked as Goroutine via go handleMessages(...). Observe that the rule R4 needs
to be included as well, since rule R5 may make R4’s guard valid again by sending
away a bottle. The implementation of handleMessages is displayed in listing 1.8.

19

func (a *ImpGinat) handleMessages(proc Process) {
...

for {
msg := <-(a.inbox[proc])
from := msg.From()
if msg.IsReq() {

// Rule R5
// receiving a request and resolving a conflict

...
ω.mutex.Lock()
session := msg.Session ()
ω.hold_req[from] = true
ω.max_rec = Max(ω.max_rec , session)
if (!ω.need[from]) || (ω.γ == THIRSTY

&& lt(session ,from ,ω.s_num ,proc)) {
a.sendBottle(proc ,from)
delete(ω.hold ,from)
// hold(from) as become false
// recheck Rule R4 for requesting if needed
if ω.need[from] {

a.request(proc ,from ,ω.s_num)
delete(ω.hold_req ,from)

...
}
// end of rule R4

}
ω.mutex.Unlock ()
// end of rule R5

} else {
// Rule R6
// receiving a bottle

...
ω.mutex.Lock()
ω.hold[from] = true
ω.cond.Signal ()
ω.mutex.Unlock ()
// end of rule R6

}
...

}
}

Listing 1.8: Implementation of the drinking philosopher algorithm, Part 3

The correctness of this translation is discussed in the next section.

Testing. A test case has been implemented in which a previously defined number
of philosophers continuously request a randomly chosen subset of adjacent re-
sources. The test case has been run for different numbers of philosophers several

20

times. It shows that each of the philosophers eventually possesses the requested
resources.

4.4 Analysis

The implementation make use of Go’s Goroutines, which allow to start function
calls in independent threads. The guarded commands R5 and R6 are imple-
mented in a single Goroutine since both of them talk about receiving a message.
A straight-forward case distinction then decides which rule to execute.
The implementation is fair, as long as the scheduler is weakly fair.

Theorem 4 (Correctness). The implementation described in the previous sec-
tion does not deny any valid execution of the algorithm.

Proof sketch.

(1) Since a philosopher starts in a tranquil state, only rule R1 (becoming thirsty)
can be executed.

(2) After executing R1, rules R2 (start drinking) or R4 (requesting a bottle).
Since, in general, a philosopher does not own all required bottles, R2 is
chosen to be executed after R4. This order does not deny any valid execution
because the execution of R4 is skipped, if all required bottles are already
owned.

(3) R3 is only executed if Release(.) is called. Since this can only be done after
a successful invocation of Request(.), the guard of R3 holds.

(4) The Goroutine executing handleMessages continuously checks whether the
guards of R5 and R6 are valid. If R5 (receiving a request) is executed, only
R4’s guard might become true again. If R6 (receiving a bottle) is executed,
R2’s guard might become true. The latter case is handled by signaling the
waiting condition; the first is handled by explicit rechecking (and possibly
executing). �

This proof can be formalized by examining the initial state of the algorithm, and
then successively build up sets of possible following rule executions.

5 Related Work

Resource allocation in distributed networks has been researched intensively. A
few selected development are now mentioned. A generalization is already dis-
cussed in the paper of Ginat et al. which contributed the solution discussed in
sect. 3.2: Instead of associated one bottle per edge, multiple bottles (of different
type) can be associated to each edge.

Another solution to the drinking philosophers problem by Lynch is based on
partial ordering of resources [13]. An improvement was proposed by Styer and Pe-
terson which uses locality of resources to optimize the waiting time [14]. Another
approach is developed by Lehmann and Rabin; they use a non-deterministic ap-
proach for the dining philosopher problem [9]. It may be possible to apply an
analogous technique for distributed problems.

21

6 Conclusion

In this seminar paper, a short historical review of the topic is given. The Drinking
Philosophers Problem is introduced as a generalization of the popular Dining
Philosophers Problem. Various correctness properties are discussed and proved
for the solution of Ginat et al. Finally, a proof-of-concept implementation in Go
is given and discussed.

”Sandy Murphy and Udaya Shankar, two researchers at the University of
Maryland, recently received a reprint request for their article ’A note on the
Drinking Philosophers Problem,’ published in Transactions on Programming

Languages and Systems.
Not too unusual, except that the request came from the Research Institute on

Alcoholism in Buffalo.” [16]

References

1. Andrews, G.: Foundations of Multithreaded, Parallel, and Distributed Program-
ming. Addison-Wesley (1999)

2. Dijkstra, E.W.: Solution of a problem in concurrent programming control. Com-
mun. ACM 8(9) (September 1965) 569–

3. Dijkstra, E.W.: The origin of concurrent programming. Springer-Verlag New York,
Inc., New York, NY, USA (2002) 65–138

4. Dijkstra, E.W.: Hierarchical ordering of sequential processes. Acta Inf. 1 (1971)
115–138

5. Dijkstra, E.W.: Two starvation-free solutions of a general exclusion problem. (1977)
6. Chang, E.J.H.: n-philosophers: An exercise in distributed control. Computer Net-

works 4 (1980) 71–76
7. Chandy, K.M., Misra, J.: The drinking philosophers problem. ACM Trans. Pro-

gram. Lang. Syst. 6(4) (October 1984) 632–646
8. Welch, J.L., Lynch, N.A.: A modular drinking philosophers algorithm. Distrib.

Comput. 6(4) (July 1993) 233–244
9. Lehmann, D., Rabin, M.O.: On the advantages of free choice: a symmetric and fully

distributed solution to the dining philosophers problem. In: Proceedings of the 8th
ACM SIGPLAN-SIGACT symposium on Principles of programming languages.
POPL ’81, New York, NY, USA, ACM (1981) 133–138

10. Ginat, D., Shankar, A., Agrawala, A.: An efficient solution to the drinking philoso-
phers problem and its extensions. In Bermond, J.C., Raynal, M., eds.: Distributed
Algorithms. Volume 392 of Lecture Notes in Computer Science. Springer Berlin
Heidelberg (1989) 83–93

11. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of
programs. Commun. ACM 18(8) (August 1975) 453–457

12. Murphy, S.L., Shankar, A.U.: A note on the drinking philosophers problem. ACM
Trans. Program. Lang. Syst. 10(1) (1988) 178–188

22

13. Lynch, N.A.: Fast allocation of nearby resources in a distributed system. In: Pro-
ceedings of the twelfth annual ACM symposium on Theory of computing. STOC
’80, New York, NY, USA, ACM (1980) 70–81

14. Styer, E., Peterson, G.L.: Improved algorithms for distributed resource allocation.
In: Proceedings of the seventh annual ACM Symposium on Principles of distributed
computing. PODC ’88, New York, NY, USA, ACM (1988) 105–116

15. Awerbuch, B., Saks, M.: A dining philosophers algorithm with polynomial response
time. In: Foundations of Computer Science, 1990. Proceedings., 31st Annual Sym-
posium on. (1990) 65–74 vol.1

16. Drinking Philosophers [rec.humor.funny].
http://www.netfunny.com/rhf/jokes/89q2/drinking.319.html Accessed: 26.11.2013.

	The Drinking Philosophers Problem: Resource Allocation in Distributed Systems

