
 The present document is an extended version of the appendix of the chapter Iseler (1998), the21

extension consisting mainly in Part j of Definition A.2 and Section A.3. However, the present
document is a self-contained, systematic presentation of the underlying mathematical theory,
whereas the main text of the chapter Iseler (1998) is a more informal introduction. To facilitate
shifting between the two documents, the numbering of sections, definitions, propositions, formulas
and footnotes is maintained.
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A Systematic Account of Direction-Based Relations
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Albrecht Iseler, Freie Universität Berlin

The central Section A.2 of this document contains definitions, lemmas and corollaries, which
make available some well known properties of linear orders and linear equivalence relations to
situations, where a binary relation R is defined only on a subset of a real vector space, or where not
all defining properties of linear orders can be taken for granted. The central Lemma A.6 is intended
to be a toolbox such that suitable selections of a few assertions ('tools' ) enable corollaries for rather
general application problems. In fact, the compilation of the toolbox has been motivated by the
observation that proofs for some application oriented facts, which will be reported as Corollaries
A.7, A.8 and A.9, can follow a rather parallel scheme and that a suitable conceptualisation
(Definition A.5) can make this scheme available for further applications.

Since commonly accepted terminologies for cones, subspaces and linear orders are lacking in
the pertinent literature, some basic concepts are summarized in the preliminary Section A.1. For
situations of the kind described above, it is advantageous to combine a taxonomy of cones defined
by Choquet (1969) with the taxonomy of linear orders in Holmes (1975) and Jameson (1970), since
the basic concepts are weaker there than in the terminologies of most other authors. Of course, this
approach requires a translation of Holmes' and Jameson's references to special classes of cones into
Choquet's terminology.

A.1  Preliminaries

Definition A.1: A non-empty set F is a real vector space iff it is endowed with the operations
addition (x + y, with x, y 0 F) and scalar multiplication (8 @ x, with 8 0 R and x 0 F) such that
the results of these operations are elements of F with the following properties for all elements x,
y and z of F, and all real numbers 8 and µ:
(1) x + (y + z) = (x + y) + z.
(2) x  +  y = y + x.
(3) There is an element 0 0 F such that x + 0 = x for every x 0 F.
(4) For every x 0 F there is an element !x 0 F such that x + (!x) = 0.



  In particular, the application of some concepts to the empty set  varies in the literature. In the22

present context, we can afford to give criteria only for the application to a non-empty subset S of
a real vector space. Note that Lemma A.6 explicitly introduces suitable assumptions of being non-
empty for the sets under consideration.
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(5) (8 + µ) @ x = 8 @ x + µ @ x.
(6) 8 @ (x + y) = 8 @ x + 8 @ y.
(7) 8 @ (µ @ x) = (8 @ µ) @ x.
(8) 1 @ x = x.
In this situation, the elements of F are called vectors, and the elements of R are called scalars.

For the following notational conventions, let 8 be a scalar, x and y elements of F, and X and Y
subsets of F:

x ! y := x + (!y).
x / 8 := (1/8) @ x.
8 @ X := {8 @ x: x 0 X}.
!X := {x: !x 0 X}.
X + Y := {x + y: x 0 X  v  y 0 Y}.
X ! Y := X + (!Y).

Furthermore, the operator @ for scalar multiplication may be omitted, leading to 8 x := 8 @ x, and
8 X := 8 @ X.

The subsequent definition explicates properties which may be present in subsets, maps and
relations. Note that some authors use materially different definitions.22

Definition A.2: The following definitions apply to every non-empty subset S of a real vector space
F, every map g:F6R and every relation R on a subset of F:

a) S is symmetric iff S = !S.
b) S is convex iff the vector " x + (1!") y is an element of S for all elements x and y of S and every

" 0 ]0, 1[.
c) S is a cone iff 8 x 0 S for every  x 0 S and every 8 > 0. Furthermore, a cone S is pointed iff 0 0 S,

and it is a proper cone iff (S 1 !S) f {0}. Finally, S is the cone generated by a given subset of F
iff S is the smallest cone containing this subset.

d) S is lineally closed (in F) iff for all elements x  and x  of F with x  ó S and x  0 S there is a1  2    1    2
scalar * > 0 such that x  + " (x !x ) ó S for every " 0 ]0, *[.1   2 1

e) S is a linear subspace of F iff it is closed under addition and scalar multiplication; i.e., iff  the
vectors x  + x  and 8 x  are elements of S for all elements x  and x  of S and every 8 0 R.1  2   1        1  2
Furthermore, S is an affine subspace of F iff the set S!{x} is a linear subspace of F for some
x 0 F. Finally, S is the linear (resp. affine) subspace generated by a given subset of F iff S is the
smallest linear (resp. affine) subset of F containing this subset.

f) S is finite dimensional iff there is a natural number n and a finite sequence {x }  of elementsi i=1..n
of F such that every x 0 S can be represented as x = 3  8  x  with suitable scalars 8 .i=1..n i i    i

g) A map g:F6R is linear iff the equations g(x  + x ) = g(x ) + g(x ) and g(8 x ) = 8 g(x ) hold for1  2   1   2    1    1
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all elements x  and x  of F and every real number 8.1  2
h) The algebraic dual of F is the set of all linear maps F6R, endowed with pointwise addition and

scalar multiplication, this endowment making the set a real vector space.
i) If R is a binary relation on S, 8 > 0 a scalar, and x an element of F, then a binary relation R  on~

a subset S  of F is identical with R up to a stretching (by 8) and a translation (by x) iff~

S  = 8 S + {x} and the relations x  R x  and 8 x  + x R  8 x  + x are equivalent for all elements~                 ~
1  2   1     2

x  and x  of S. The mentioning of a stretching by 8 = 1 or a translation by x = 0 may be omitted.1  2
j) A vector x is strongly separable from S iff there exists a linear map g:F6R and a scalar ( such

that the inequality g(x) < ( < g(x*) holds for every x* 0 S.

Definition A.3: A linear order on a real vector space F is a reflexive and transitive relation ˜
fulfilling the equivalences

(x  + x) ˜ (x  + x)  ]  x  ˜ x1    2      1  2
and

(8 x ) ˜ (8 x )  ]  x  ˜ x1    2     1  2
for all vectors x, x  and x  and every scalar 8 > 0. In this situation, the following additional1  2
definitions apply:

a) The set {x 0 F: 0 ˜ x} is the positive cone of the relation ˜.
b) A map g:F6R is monotonic iff the implication x  ˜ x   Y  g(x ) # g(x ) holds for all vectors x1  2    1   2      1

and x .2
c) A linear order ˜ is Archimedean iff  the following implication holds for every x 0 F: If there

exists a vector y such that n x ˜ y for every natural number n, then x ˜ 0.

Observe that the notion of a monotonic map is reserved for (weakly) increasing monotonicity by part
b of the above definition.

A.2  Conceptualization and Results

The usual derivation of relations š, -, — and ä from an order relation ˜ can be generalized to
arbitrary binary relations in the following way:

Definition A.4: For every binary relation R on a set Y, the following terminology and notation are
used for derived relations on Y (parts a through d, y  and y  always being elements of Y) or a1  2
subset Y  of Y:~

a) The inverse relation R : y  R  y :]  y  R y .!1  !1
1  2   2  1

b) The symmetric part R  of R: y  R  y   :]  (y  R y  v y  R y ).s  1 s 2    1  2  2  1
c) The asymmetric part R  of R: y  R  y   :]  (y  R y  v ¬(y  R y )).a  1 a 2    1  2  2  1
d) The complementary relation R : y  R  y   :] ¬(y  R y ).c 1 c 2   1  2
e) Now let Y  be a subset of Y, and R  a binary relation on Y . Then R  is the restriction of R to Y~       ~     ~   ~       ~

iff the relations y  R  y  and y  R y  are equivalent for all elements y  and y  of Y . Furthermore,1  2  1  2      1  2
~               ~

R is an extension of R  to Y iff R  is the restriction of R to Y .~    ~       ~

Under the view of a binary relation R on a set Y as a subset of Y × Y consisting of all ordered pairs



  In particular, if R stands for š, then the psoitive cone of the order is !C  instead of C . 23
R   R
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(y , y ) with the property y  R y ,, the above definitions can be rewritten as1  2     1  2
R := {(y , y ): (y , y ) 0 R),!1

2  1  1  2
R := R 1 )s    Y,
R := R \ ) ,a    Y

and
R := (Y × Y) \ R,c

with
) := {(y, y): y 0 Y}.Y

Furthermore, for Y  f Y, a binary relation R  on Y  is the restriction of R to Y  (and R an extension~      ~  ~       ~

of R  to Y) iff R  = R 1 (Y  × Y ).~    ~    ~  ~

The following definition reformulates some properties of linear orders such that their presence in
binary relations on subsets of real vector spaces will enable further deductions.

Definition A.5: For a relation R on a subset Y of a real vector space, the following terminology is
used:

a) R is direction-based iff it is binary and the equivalence
y  R y   ]  y  R y (A.1)11  12    21  22

is valid whenever y , y , y  and y  are elements of Y such that11  12  21  22
y !y  = 8 (y !y ) (A.2)22 21   12 11

for some scalar 8 > 0. In this situation, the direction cone of R is the smallest cone in F where the
relation y  R y  holds if and only if the difference y !y  is an element of the cone.1  2        2 1

b) R is pre-cancellative iff it is binary and the equivalence
y  + " (y!y ) R y  + " (y!y )  ]  y  R y (A.3)1   1   2   2     1  2

holds for " 0 ]0, 1[ whenever y, y  and y  are elements of Y such that the vector  y  + " (y!y )1  2          i   i
is an element of Y for i 0 {1, 2}.

c) R is pre-Archimedean iff it is binary and for all elements y, y  and y  of Y with y R  y  and y R y1  2     c 1    2
there is a real number * > 0 such that the implication z  0 Y Y y R  z  holds for every " 0 ]0, *[,"     c "
the vector z  being given by"

z  := y  + " (y !y ). (A.4)"  1   2 1

The notion of a direction-based relation is motivated by the view that the directions from y  to y11  12
and from y  to y  are identical iff Equation (A.2) holds with 8 > 0. The existence and uniqueness21  22
of a cone with the properties required in the definition of a direction cone are stated in Assertion (5)
of the subsequent lemma. This lemma also shows that pre-cancellative and pre-Archimedean
relations preform  (at least in some situations) cancellation and Archimedean properties of an
extended relation R' on F. The lemma systematises further correspondences of this kind. Note that
some claims referring to linear orders hold only for the ˜-orders underlying Definition A.3 and
Lemma A.12, but not for š-orders.23



  Some deviations from the assertions of Lemma A.6 for situations with Y = i are mentioned after24

the proof.

  For this terminology, observe that (for elements y  and y  of Y) the difference vector y !y  is an25
1  2      2 1

element of C  iff g(y ) # g(y ) for all g 0 G*.G*  1   2
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Lemma A.6: Let F be a real vector space, Y a non-empty  subset of F, and R a binary relation on Y,24

the derived relations R , R , R  and R  being given by Definition A.4. Furthermore, let X* be the!1
s  a  c

affine subspace of F generated by Y,  and X the linear subspace of F generated by the set Y!Y.
Let the sets D , C  and C  be defined byR  R  D

D  := {y !y : y  0 Y v y  0 Y v y  R y }, (A.5)R  2 1  1    2    1  2
C  := ^  8 D , (A.6)R  8>0  R

and
C  := ^  8 (Y!Y), (A.7)D  8>0

and assume that the sets D  and C  are non-empty. R  R
Let the binary relation R' on F be defined by

x  R' x   :]  x !x  0 C (A.8)1  2    2 1  R
for every x , x  0 F, and let R* and R  be the restrictions of R' to X* resp. to X.1  2       X
Let B' and B* be the sets of those direction-based relations on F resp. on X* which are extensions
of R.
Let G be the set of all linear maps g:F6R where the implication

y  R y  Y g(y ) # g(y ) (A.9)1  2  1   2
holds for all elements y  and y  of Y, and G  the set of their restrictions to X. Finally, if G* is a1  2    *X
non-empty subset of G, then the set C  is defined byG*

C  := _  {x 0 C : g(x) $ 0}, (A.10)G*  g0G*   D
and the elements of G* will be said to represent R jointly  iff the equivalence25

y !y  0 C   ]  y  R y (A.11)2 1  G*    1  2
holds for all elements y  and y  of Y.1  2
For purposes of notational convenience, the vector z  defined in Equation (A.4) will be used in"
the subsequent assertions, the scalar " and the vectors y  and y  being always given by the local1  2
context.

In this situation, the following properties follow:

(1) If one of the relations R, R  or R  is pre-cancellative (resp. direction-based) or the!1
c

relations R  and R  are both pre-cancellative (resp. direction-based), then the relations R,s  a
R , R , R  and R  are all pre-cancellative (resp. direction-based).!1

s  a  c
(2) If R is transitive, then R , R  and R  are transitive.!1

a  s
(3) D  f C  f C  f C  f C  f X = X*!X*, where G* may be every non-empty subset of G.R  R  G  G*  D
(4) C  is the cone generated by D , and C  is the cone generated by the set Y!Y. Furthermore,R      R   D

if G* is a non-empty subset of G, then C  is a pointed cone, which is convex if C  isG*         D
convex.

(5) The following assertions are equivalent:



  For some following assertions, the assumption of a convex set Y can be replaced by weaker26

conditions, which are explicated in the proofs of  (13) and (29).
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(5.a) The relation R is direction-based
(5.b) The equivalence 8 y  + x R 8 y  + x  ]  y  R y  holds for all elements y  and y  of1     2      1  2     1  2

Y, every x 0 F and every scalar 8 > 0 whenever the linear combinations 8 y  + x arei
elements of Y.

(5.c) There is a cone C  in F such that the properties y  R y  and y !y  0 C  are~             ~
1  2  2 1

equivalent for all elements y  and y  of Y.1  2
(5.d) The set B' is non-empty.
(5.e) The set B* is non-empty.
(5.f) The relation R' is an extension of R.
(5.g) The relation R* is an extension of R.
If these assertions hold, then C  is the (unique) direction cone of R, and a given cone C  inR

~

F has the property described in (5.c) iff
C  1  C  = C . (A.12)~

D  R
(6) If Y  is a subset of F, and C  is a cone in F, then a direction-based relation on Y  with~       ~           ~

direction cone C  exists iff C  f ^  8 (Y !Y ). Furthermore, a relation with these~   ~    ~ ~
8>0

properties is unique, if it exists.
(7) The relations R' , R* and R  are the unique direction-based relations on F resp. X* resp. XX

with direction cone C . Furthermore, R  is identical with R* up to a translation by !x iffR   X
x 0 X*.

(8) B* is the set of all restrictions to X* of elements of B'.
(9) The direction cone of every element of B* is a subset of X.
(10) A linear map g:F6R is an element of G iff g(x) $ 0 for all x 0 C .R
(11) G is a pointed, convex cone in the algebraic dual of F.
(12) If G* is a subset of G whose elements jointly represent the relation R, then the relation R is

reflexive, transitive, direction-based (with direction cone C  = C ), and pre-Archimedean,G*  R
and it is also connected if G* has only one element.

The subsequent Assertions (13) through (15) are valid if Y is convex :26

(13) C  = X.D
(14) For every finite sequence {x }  of elements of X, there are elements y and {y }  ofi i=1..n          i i=1..n

Y and a scalar 8 > 0 such that x  = 8 (y !y) for i = 1..n.i   i
(15) The following properties are equivalent:

(15.a) The relation R is pre-Archimedean.
(15.b) For all elements y, y  and y  of Y, the set 1  2

A := {" 0 [0, 1]: y R z }, (A.13)"
is a closed subset of R.

(15.c) For all elements y, y  and y  of Y with y R  y  and y R y , the above set A is a1  2     c 1    2
closed subset of R.

If R is direction-based, then Assertions (16) through (28) hold.
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(16) R is pre-cancellative.
(17) The equivalence y  R y   ]  8 (y !y ) 0 C  holds for y , y  0 Y and 8 > 0.1  2     2 1   R   1  2
(18) R  is the only direction-based relation on Y with direction cone !C .!1

R
(19) C  is a pointed cone iff R is reflexive.R
(20) C  is a proper cone iff the implication y  R  y   Y  y  = y  holds for all elements y  and yR        1 s 2    1  2     1  2

of Y.
(21) C  is symmetric iff R is symmetric.R
(22) C  c (!C ) = C  iff R is connected.R  R   D
(23) If a relation R  on a subset Y  of F is identical with R up to a stretching and a translation,~    ~

then R  is a direction-based relation with direction cone C .~
R

(24) For every subset Y  of Y, the restriction of R to Y  is direction-based, the direction cone of~        ~

this restriction being C  1 ^  8 (Y !Y ).R  8>0
~ ~

(25) If Y  is a subset of F with Y f Y , and R  is a direction-based relation on Y  with direction~         ~   ~      ~

cone C , then R  is an extension of R iff C  1 C  = C . ~   ~       ~
D  R

(26) A direction-based relation on F (resp. on X*) with direction cone C  is an element of B'~

(resp. of B*) iff C  1 C  = C . In particular, R’ and R* are the only elements of B' resp. of~
D  R

B* with direction cone C .R
(27) If y  and y  are elements of Y, and " and "' real numbers with " < "' such that the vectors1  2

z  and z  are elements of Y, then z  R z  iff y  R y ."  "'      "  "'  1  2
(28) If C  is convex resp. lineally closed, then R is transitive resp. pre-Archimedean.R

Assertions (29) through (33) are valid if Y is convex and R is pre-cancellative.
(29) R is direction-based.
(30) The relation R* is the only element of the set B*. Furthermore, R’ is the only element of B’

iff X=F.
(31) The following assertions are equivalent:

(31.a) The relation R is transitive.
(31.b) The set D  is convex.R
(31.c) C  is a convex cone.R
(31.d) (y R y  v y R y ) Y y R z   for every " 0 [0, 1] and all elements y, y , y  of  Y.1    2     "            1  2
(31.e) (y  R y v y  R y) Y z  R y for every " 0 [0, 1] and all elements y, y , y  of Y.1    2    "             1  2

(32) The following properties are equivalent:
(32.a) The relation R is pre-Archimedean.
(32.b) The cone C  is lineally closed.R
(32.c) The relation R  is pre-Archimedean.!1

(33) If R is pre-Archimedean, then R is reflexive.

If Y is convex and R is pre-cancellative and transitive, then Assertions (34) through (37) are also
valid:
(34) For all elements y, y  and y  of Y, there are real numbers * and *' such that 0 # * # *' # 1,1  2

and ]*, *'[ f A f [*, *'] for the set A given by Equation (A.13).
(35) If R is reflexive, then the relation R' (resp. R ) is the only linear order on F (resp. on X)X

with positive cone C , and G (resp. G ) is the set of all monotonic maps g:F6R (resp.R     *X
g:X6R).



  Weaker sufficient conditions for the equivalence claimed in (36.e) are outlined in the proof.27
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(36) The following assertions a through d are equivalent:
(36.a) The relation R is pre-Archimedean.
(36.b) R  is an Archimedean linear order on X.X
(36.c) R' is an Archimedean linear order on F.
(36.d) For all elements y, y  and y  of Y, the set A given by Equation (A.13) is either1  2

empty or a closed subinterval of [0, 1].
If C  is finite dimensional , then the following assertion is also equivalent with theR

27

foregoing ones:
(36.e) For all elements y  and y  of Y, the relation y  R y  is present iff the inequality1  2     1  2

g(y ) # g(y ) holds for every g 0 G. (I.e., the elements of G jointly represent the1   2
relation R.)

(37) If R is symmetric, then the relations R, R', R* and R  are equivalence relations, and C  is aX     R
linear subspace of X.

Finally, the remaining Assertions (38) through (40) follow under the assumption that Y is convex
and R is a pre-cancellative weak order:
(38) R  is a linear weak order on X, and X = C  c (!C ) = C !CX           R  R   R R
(39) If y, y  and y  are elements of Y such that y  R  y , then there is a unique number * 0 [0, 1]1  2       1 a 2

such that z  R  y for 0 # " < *, and y R  z  for * < " # 1." a          a "
(40) The following properties are equivalent:

(40.a) The relation R is pre-Archimedean
(40.b) R  is an Archimedean linear weak order on X.X
(40.c) There is a linear map g:F6R such that the equivalence 

y  R y   ]  g(y ) # g(y ) (A.14)1  2    1   2
holds for all elements y  and y  of Y.1  2

(40.d) For all elements y, y  and y  of Y with y  R  y and y R  y , the relation y R  z1  2    1 a    a 2     s "
holds for some " 0 ]0, 1[.

If these properties are given, then the number " fulfilling (40.d) is unique for given elements
y, y  and y  of Y with the assumed properties.1  2

The following corollaries are examples of application oriented facts following immediately from
Lemma A.6.

Corollary A.7: Let F be a real vector space, Y a convex subset of F, and - an equivalence relation
on Y. Then the following assertions are equivalent:
(1) There is a linear subspace X of F such that the equivalence

y'-y" ] (y"!y' ) 0 X
holds for all elements y' and y" of Y.

(2) The equivalence
y' + " (y!y' )  ~  y" + " (y!y")  ]  y' ~ y"

holds for all elements y, y' and y" of Y and every " 0 ]0, 1[.
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Corollary A.8: Let F be a real vector space, Y a convex subset of F, and ˜ a weak order on Y. Then
the equivalence (1) ] ( v ) holds for the following properties:
(1) There is a linear map g:F6R such that the equivalence

y' ˜ y" ] g(y' ) # g(y")
holds for all elements y' and y" of Y.

(2) The equivalence
y' + " (y!y' )  ˜  y" +" (y!y")  ]  y' ˜ y"

holds for all elements y, y' and y" of Y and every " 0 ]0, 1[.
(3) For all allements y, y' and y" of Y with y' — y — y", there is some " 0 ]0, 1[ with the

property y - y' + " (y"!y' ).
If these properties are given, then a map N:Y6R fulfills the equivalence

N(y ) # N(y )  ] y  ˜ y1   2    1  2
for all elements y  and y  of Y if and only if there is a linear map g:F6R with the property1  2
described in Assertion (1), and a strictly increasing map R:R6R such that N is the restriction of
R B g to Y.

Corollary A.9: Let W be a finite, non-empty set, Y the set of all probability measures on the power
set of W, and ˜ a weak order on Y with Properties (2) and (3) of Corollary A.8. Finally, define for
every map v:W6R the map g :Y6R byv

g (y) := 3  y({w}) @ v(w) (A.15)v   w0W
for every y 0 Y. Then there is a map v:W6R such that the equivalence

y' ˜ y"  ]  g (y' ) # g (y") (A.16)v   v
holds for all elements y' and y" of Y, this map being unique up to linear transformations " v + $
with " > 0.

Applications of Corollary A.9 can be based on the following interpretation of Equation (A.15): If Z
is a W-valued random variable with distribution y, then g (y) is the expectation of the real valuedv
random variable v(Z).
The uniqueness up to positive linear transformations of the map v fulfilling Equivalence (A.16)
follows from an application of the following lemma.

Lemma A.10: Let A be a F-algebra in a set W. Furthermore, let u:W6R and v:W6R be measurable
maps, and Y a convex set of probability measures on A with the following property: For every
w 0 W, there is an element y  of Y such that y (u (u(w)) 1 v (v(w))) = 1. Then the followingw     w

!1   !1

assertions are equivalent:
(1) There are real numbers " and $ with " > 0 such that u = " v + $.
(2) The equivalence

I u dy' # I u dy"  ]  I v dy' # I v dy"
holds for all elements y' and y" of Y.
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A.3  Proofs

A.3.1  Some Basic Facts.

The lemmas in this section summarise some basic facts referring to real vector spaces and linear
orders, which are proved in many pertinent textbooks and will be used for proofs in later sections.

The following properties of subsets and linear maps are immediate consequences of Definition
A.2. For (10) and (11), see e.g. Holmes (1975, p. 3, 5 and 64).

Lemma A.11: Let A and S be non-empty subsets of a real vector space F.
(1) If S is an intersection of convex sets, then S is convex.
(2) The linear space generated by S is finite dimensional iff S is finite dimensional.
(3) S is the cone generated by A iff S = ^  8 A. If these properties are given and A is convex,8>0

then S is convex.
(4) If S is a cone, then S is convex iff it is closed under addition (i.e., iff x +x  0 S for all1 2

elements x  and x  of S).1  2
(5) If S is a lineally closed cone, then S is pointed.
(6) If S is a linear subspace of F, then a subset of S is lineally closed in F iff it is lineally closed

in S.
(7) S is a linear subspace of F iff S is a symmetric and convex cone.
(8) If S is the affine subspace of F generated by A, then the linear subspace generated by A!A

is S!S. Furthermore, that linear subspace is S!{x} iff x 0 S.
(9) If S is the cone generated by A!A with convex A, then S is also the linear subspace

generated by A!A.
(10) If S is a linear subspace of F, then every linear map S6R can be extended to a linear map

F6R.
(11) If S is a (linear or affine) subspace of F or a lineally closed, convex subset of a finite

dimensional F, then every x 0 F\S is strongly separable from S.

Proofs of the following correspondences between linear orders and their positive cones are
given e.g. by Jameson (1970). Since this author uses a different terminology for cones (see pp. 2 and
3), the results have been translated into the taxonomy of our Definition A.2.c

Lemma A.12: Let ˜ be a linear order on a real vector space F, and let the set C := {x 0 F: 0 ˜ x} be
the positive cone of the order. Then the following properties apply:
(1) For all elements x  and x  of F, the relation x  ˜ x  holds iff x !x  0 C. Furthermore, C is1  2     1  2   2 1

the only subset of F with this property.
(2) C is a pointed, convex cone.
(3) For every pointed convex cone in F, there is a unique linear order on F such that the given

cone is the positive cone of the order.
(4) The order ˜ is antisymmetric iff C is a proper cone.
(5) The order ˜ is connected (i.e., a weak order) iff F = C ^ (!C) = C!C.
(6) The order ˜ is Archimedean iff C is lineally closed.
(7) The order ˜ is connected and Archimedean iff there exists a linear map g:F6R such that
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C = {x 0 F: g(x) $ 0}.

A.3.2  Proof of Lemma A.6.

Before we prove the assertions of the lemma, we introduce the convention that a range of
i = 1,2 and j = 1,2 has to be assumed for terms with subscript i or j, unless a different range is
specified in the respective context. Furthermore, 8 will always be a scalar such that 8 > 0. We will
also frequently refer to elements x = 8 (y !y ) or x  = 8 (y !y) of X or a subset of X. Let it be said2 1   i   i
once and for all that this stands for the following sentences: Let x resp. x  be element(s) of X (or ai
locally specified subset of X). Furthermore, let a scalar 8 > 0 and elements (y and) y  of Y be giveni
such that x = 8 (y !y ) resp. x  = 8 (y !y), the existence of suitable 8 and y  being granted by (13)2 1   i   i        i
or (14) or Equation (A.6) or (A.7).

Finally, take it as a convention that during the proof of an implication the antecedent part of the
implication is assumed to be valid without saying.

For situations with sufficiently specified elements y, y  and y  of Y, observe that the definition1  2
of z  in Equation (A.4) implies"

z !z  = ("!"' ) (y !y ) (A.17)" "'   2 1
and

z !y  = ("!i+1) @ (y !y ) (A.18)" i     2 1
for all real numbers " and "'.

To facilitate the application of results to other binary relations R  on a subset Y  of F, let the~    ~

sets C (Y~, R~) and C (Y~) be defined for such situations by an analogous application ofR    D
Equations (A.6) and (A.7). Furthermore, let X(Y~) be the subspace of F generated by Y !Y . The~ ~

following applications to R', R* and R  follow immediately:X
X(F) = C (F) = F, (A.19)D
X(X*) = C (X*) = X(X) = C (X) = X, (A.20)D     D

and
C (F, R' ) = C (X*, R) = C (X, R ) = C . (A.21)R   R    R  X   R

Conclusions based on such correspondeces will be called immediate generalizations. In particular,
after the proof of (5), results referring to the relation R and the set C  can be generalized to everyR
direction-based relation R  on a set Y  f F and its direction cone, which ist C (Y , R ).~    ~         ~  ~

R

Now the assertions of the lemma will be proved.

(1) and (2): These assertions are immediate consequences of Definitions A.4 and A.5.

(3): See Equations (A.5), (A.6), (A.7) and (A.10). For the inclusion C  f C , let an elementR  G
x = 8 (y !y ) of C  be given such that y  R y . Then g(y ) # g(y ) follows from Implication (A.12)2 1   R     1  2   1   2
for every g 0 G, and this implies g(x) $ 0, since elements of G are linear.

(4): Combine Lemma A.11.(3) with Equations (A.6) and (A.7) for C  resp. C . The claim referringR  D
to C  follows immediately from Equation (A.10). (Note that this equation can be rewritten asG*
C   = C  _ (_  {x 0 F: g(x) $ 0}) to represent C  as an intersection of convex sets inG*   D  g0G*         G*
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situations with convex C . Hence C  is convex in such situations by Lemma A.11.(1).)D   G*

(5): We will first prove the implications aYbYcYdYeYa.
aYb: For the vectors and the scalar in b, Equation (A.2) holds with the definitions y  :=  b and1j

y  := 8 y  + x. Hence Equivalence (A.1) follows, if R is direction-based.2j   j
bYc: To obtain useful side results, we will show that (under the assumtion of b) the equivalence in

(5.c) holds for all elements y  and y  of Y, if C  is a cone fulfilling equation (A.12). So let C  be1  2
~         ~

a such cone (the existence being granted by the fact that C  is a cone with this property; see (3)R
and (4)). Furthermore, let y  and y  be arbitrary elements of Y. Then y !y  0 C  follows from1  2       2 1  D
Equation (A.7). Furthermore, if y  R y , then y !y  0 C  follows from Equation  (A.6).1  2   2 1  R
Combining both results, we get y !y  0 C . Conversely, if y !y  0 C , then y !y  0 C  follows2 1     2 1    2 1  R

~      ~

from y !y  0 C . So Equation (A.6) implies the existence of elements y  and y  and a scalar2 1  D          3  4
8 > 0 such that y  R y , and y !y  = (y !y ) / 8. Then the definition x := y  ! 8 y  allows to3  4   2 1  4 3         3   1
derive y  R y  from y  R y  if b holds.1  2  3  4

cYd: Let C  be a cone in F fulfilling property c, and let the relation R  on F be defined by~             ~

x  R  x   :]  x !x  0 C . Then it is easily verified that R  is an extension of R, and a direction-1  2    2 1
~       ~        ~

based relation on F. Hence R  is an element of B', and B' is non-empty.~

dYe: Let R  be an element of B'. Then it follows immediately that the restriction of R  to X* is an~              ~

element of B*.
eYa: Let R  be an element of B*, and let elements y  of Y and a scalar 8 > 0 be given such that~

ij
Equation (A.2) holds. Then y  R  y   ]  y  R  y , since R  (being an element of B*) must11  12    21  22

~      ~   ~

be direction-based. So Equivalence (A.1) follows, since all elements of B* are extensions of R.
For the proof of the additional claims referring to C , assume the validity of (5.a) throughR

(5.e). As a side result of the proof of the implication bYc, Equation (A.12) is sufficient for a cone C~

to fulfill the equivalence in (5.c) for all elements y  and y  of Y. In particular, C  has this property.1  2     R
To show that Equation (A.12) is also necessary for this property, let C  be such a cone in F. It~

suffices to verify that the properties x 0 C  and x 0 C  are equivalent for every element x of C ;~
R        D

then equation (A.12) follows, since C  is a subset of C . So let x = 8 (y !y ) be an arbitraryR     D       2 1
element of C . Since C  and  C  are cones, we get the outer equivalences in the following chain:D      R

~

x 0 C   ]  y !y  0 C   ]  y  R y   ]  y !y  0 C   ]  x 0 C .~      ~
2 1      1  2    2 1  R      R

In summary, Equation (A.12) must hold for a cone C  fulfilling the equivalence in (5.c) for all~

elements y  and y  of Y. But this implies C  f C  for every such cone. Hence C  (being one of1  2      R        R
~

them) is the smallest one, i.e., the unique direction cone of R according to Definition A.5.a.
For the equivalence of assertions (5.f) and (5.g) with the foregoing ones, it can be taken as a

side result that R' and R* are extensions of R iff C  is a cone with the properties of (5.c).R

(6): Let Y  be a subset of F, and C  a cone in F. A reference to Definition A.5.a shows: If a~       ~

direction-based relation on Y  with direction cone C  exists, then it must be the (unique) relation R~    ~         ~

where the properties y  R  y  and y !y  0 C  are equivalent for all elements y  and y  of Y .  So let1  2  2 1        1  2
~     ~          ~

R  be this relation. Then it is an immediate generalization of (5) that R  is direction-based, and that~             ~

C  is its direction cone iff C  is a subset of C (Y ).~      ~     ~
D

(7): It follows from Equivalence (A.8) and immediate generalizations of (5) that the relations R', R*
and R  are direction-based, since the definition C  := C  gives a cone with the property required forX        R

~
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(5.c). So another reference to (5) and to Equation (A.21) shows that C  is the direction cone ofR
these relations. - Now X = X* + {!x} is equivalent with x0X* by Lemma A.11.(8), and the chain of
equivalences x  R  x   ]  x  R' x   ]  x +x R' x +x  ]  x +x R* x +x follows for x0X* and1 X 2    1  2    1   2     1   2
x , x  0 X from the definitions of R  and R* (outer equivalences) and from an immediate1  2       X
generalization of (5.b). Hence R  is identical with R* up to a translation by !x iff x0X* (seeX
Definition A.2.i).

(8): It follows immediately from the definitions of B' and B* that every restriction to X* of an
element of B' is an element of B*. Conversely, for a given element R  of B* with direction cone C ,~      ~

let R  be the direction-based relation on F with direction cone C  (the existence and uniqueness of~
~

this relation being granted by (6)). Then the relations x  R  x  and x  R  x  are equivalent for all1  2  1 ~ 2
~

elements x  and x  of X*, since both relations are equivalent to x !x  0 C . So R  is a direction-1  2         2 1    ~
~

based extension of R  to F, and it is also an extension of R, since R  0 B*. But then R  is an element~            ~
~

of B', and R  is the restriction of R  to X*.~
~

(9): This assertion is an immediate generalization of the set inclusion C  f X in (3). See EquationR
(A.20) for X(X*) = X.

(10): Let a linear map g:F6R be an element of G, and x = 8 (y !y ) an arbitrary element of C .2 1      R
Then Equation (A.6) implies y  R y , and g(x) = 8 (g(y )!g(y )) $ 0 follows for 8 > 0 from the1  2      2 1
linearity of g and from g 0 G. - Conversely, if a linear map g:F6R fulfills g(x) $ 0 for all x 0 C ,R
then the chain of implications y  R y  Y y !y  0 C  Y g(y !y ) $ 0 Y g(y ) # g(y ) is granted by1  2  2 1  R  2 1     1   2
Equation (A.6) and the linearity of g. Hence g 0 G.

(11): The set G is non-empty, since the non-empty set C  is a subset of G by (3). Furthermore, itR
follows from (10) that G is closed under addition and under multiplication by non-negative scalars.
Hence it is a pointed, convex cone by Definition A.2.c and Lemma A.11.(4).

(12): Let G* be a subset of G whose elements jointly represent the relation R. To verify that R is
reflexive, transitive, and direction-based with direction cone C  = C , combine Equivalence (A.11)G*  R
with (3), (4) and (5) and Lemma A.11.(4). For a proof of the pre-Archimedian property of R, let y,
y  and y  be elements of Y such that y R  y  and y R y , and let g be an element of G* such that1  2        c 1    2
g(y !y) < 0, the existence following from Equivalence (A.11) and Equation (A.10). Then1
g(y !y) $ 0 follows from Implication (A.9), since g is linear. This linearity also implies that the2
scalar * defined by * := (g(y)!g(y )) / (g(y )!g(y )) is greater than 0, and that the inequality1   2 1
g(z !y) < 0 holds for every " 0 ]0, *[. Hence z !y ó C  follows from Equation (A.10), and"            "   G*
Equivalence (A.11) yields y R  z  for z  0 Y. So * is a number with the properties required byc "  "
Definition A.5.c. - Finally, if g is the only element of G*, then the linearity of g implies for all
elements y  and y  of Y that either y !y  or y !y  is an element of C . But then the connectedness1  2     2 1  1 2     G*
of R follows from Equivalence (A.11).

For the proof of (13) through (15), assume that Y is convex.

(13): See (4) and Lemma A.11.(9). Note that convexity of Y is sufficient, but not necessary for the


