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The central Section A.2 of this document contains definitions, lemmas and corollaries, which
make available some well known properties of linear orders and linear equivalence relations to
stuations, where a binary relation R is defined only on a subset of areal vector space, or where not
al defining properties of linear orders can be taken for granted. The central Lemma A.6 is intended
to be atoolbox such that suitable selections of afew assertions (‘tools') enable corollaries for rather
genera application problems. In fact, the compilation of the toolbox has been motivated by the
observation that proofs for some application oriented facts, which will be reported as Corollaries
A.7, A.8 and A.9, can follow a rather paralel scheme and that a suitable conceptualisation
(Definition A.5) can make this scheme available for further applications.

Since commonly accepted terminologies for cones, subspaces and linear orders are lacking in
the pertinent literature, some basic concepts are summarized in the preliminary Section A.1. For
situations of the kind described above, it is advantageous to combine a taxonomy of cones defined
by Choquet (1969) with the taxonomy of linear orders in Holmes (1975) and Jameson (1970), since
the basic concepts are weaker there than in the terminologies of most other authors. Of course, this
approach requires atrandation of Holmes and Jameson's references to special classes of conesinto
Choquet's terminology.

Al Preliminaries

Definition A.1: A non-empty set F is areal vector space iff it is endowed with the operations
addition (x +y, with x, y € F) and scalar multiplication (A - X, with A € R and x € F) such that
the results of these operations are elements of F with the following properties for all elements x,
y and z of F, and all real numbers A and L
(1) x+(y+2=(x+y)+z
(2 x+y=y+x
(3) Thereisanedement O € F such that x + 0 = x for every x € F.

(4) Forevery x € F thereisan element -x € F such that x + (-x) = 0.

21 The present document is an extended version of the appendix of the chapter Iseler (1998), the
extension consisting mainly in Part j of Definition A.2 and Section A.3. However, the present
document is a self-contained, systematic presentation of the underlying mathematical theory,
whereas the main text of the chapter Iseler (1998) is a more informal introduction. To facilitate
shifting between the two documents, the numbering of sections, definitions, propositions, formulas
and footnotes is maintained.



B) A+ X=A-X+U-X

6) A-(X+ty)=A-X+A-y.

(N AM-X)=R-1-x

8 1-x=x

In this situation, the elements of F are called vectors, and the lements of R are called scalars.

For the following notational conventions, let A be ascalar, x and y elements of F, and X and Y
subsets of F:

X-y =x+(-y).

xI'A =N - x
A-X ={A-xxeX}.
-X ={x: -x€e X}.

X+Y ={x+y:xeX AN yeY}.

X-Y =X+(-VY).
Furthermore, the operator - for scalar multiplication may be omitted, leadingto A x := A - X, and
AX:=A-X

The subsequent definition explicates properties which may be greﬁent in subsets, maps and
relations. Note that some authors use materialy different definitions. 2

Definition A.2: The following definitions apply to every non-empty subset Sof areal vector space
F, every map g:F-R and every relation R on a subset of F:

a) Sissymmetriciff S=-S

b) Sisconvexiff thevector o x + (1-«) y isan element of Sfor al elements x and y of Sand every
a €1]0, 1.

c) Sisaconeiff A x € Sfor every x € Sand every A > 0. Furthermore, a cone Sispointed iff 0 € S
anditisaproper coneiff (Sn -9 < {0}. Findly, Sisthe cone generated by a given subset of F
iff Sisthe smallest cone containing this subset.

d) Sislineally closed (in F) iff for al elements x; and x, of F with x; ¢ Sand x, € Sthereisa
scalar 6 > 0 such that X, + a (Xo-Xq) ¢ Sfor every o € ]0, 3.

e) Sisalinear subspace of F iff it is closed under addition and scalar multiplication; i.e., iff the
Vectors x; + X, and A X, are elements of Sfor al elements x; and x, of Sand every A € R.
Furthermore, Sis an affine subspace of F iff the set S-{x} is alinear subspace of F for some
x € F. Findly, Sisthelinear (resp. affine) subspace generated by a given subset of F iff Sisthe
smallest linear (resp. affine) subset of F containing this subset.

f) Sisfinite dimensional iff there is anatural number n and a finite sequence { xi};=; , of elements
of F such that every x € Scan be represented asx = ) ;- p, A; X; with suitable scalars A;.

g) A map g:F-R islinear iff the equations g(x; + X5) = g(X4) + g(X,) and g(A x;) = A g(x,) hold for

22 particular, the application of some concepts to the empty set variesin the literature. In the
present context, we can afford to give criteria only for the application to a non-empty subset S of
ared vector space. Note that Lemma A.6 explicitly introduces suitable assumptions of being non-
empty for the sets under consideration.



al elements x4 and x, of F and every real number A.

h) Thealgebraic dual of F isthe set of al linear maps F- R, endowed with pointwise addition and
scalar multiplication, this endowment making the set areal vector space.

i) If Risabinary relationon S A > 0 ascdar, and x an element of F, then abinary relation R™ on
a subset S of F isidentical with R up to a stretching (by A) and a trandation (by x) iff
S =1 S+{x} and therelationsx; Rx, and A x; + X R™ A X, + X are equivalent for al elements
X1 and X, of S The mentioning of a stretching by A = 1 or atrandation by x = 0 may be omitted.

]) A vector x isstrongly separable from Siff there exists alinear map g:F-R and a scalar y such
that the inequality g(x) < y < g(x*) holds for every x* € S,

Definition A.3: A linear order on a real vector space F is a reflexive and trangitive relation <
fulfilling the equivalences
(Xg+X) = (Xp+X) = Xy <X
and
(AX)) 2 (AX5) = Xq=Xo
for al vectors x, x; and x, and every scalar A > 0. In this situation, the following additional
definitions apply:
a) Theset{x € F: 0 < x} isthe positive cone of the relation <.
b) A map g:F-RR ismonotonic iff theimplication x; < X, = g(X;) < g(X,) holdsfor all vectors x;
and X,.
c) A Iinéar order < is Archimedean iff the following implication holds for every x € F: If there
exists avector y such that n x < y for every natural number n, then x < 0.

Observe that the notion of a monotonic map is reserved for (weakly) increasing monotonicity by part
b of the above definition.

A.2 Conceptualization and Results

The usual derivation of relations >, ~, < and ¥ from an order relation < can be generaized to
arbitrary binary relationsin the following way:

Definition A.4: For every binary relation R on a set Y, the following terminology and notation are
used for derived relations on Y (parts a through d, y,; and y, always being elements of Y) or a
subset Y of Y:

a) Theinverserelation R 1: yi R 1y, = y,Ry;.

b) The symmetric part Rg of R: y1RsYo = (Y1 Ry, ANy, Ryy).

c) The asymmetric part R, of R: Y1 RyY> = (Y1 Ry, A=(y, Ryy)).

d) The complementary relation R.:  y; R.y, = -(y; Ry,).

e) Now let Y beasubset of Y, and R™ abinary relationon Y. Then R™ istherestriction of Rto Y~
iff therelationsy, R™y, andy; Ry, are equivaent for al elementsy, and y, of Y. Furthermore,
Risan extension of R to Yiff R™ istherestriction of Rto Y.

Under the view of abinary relation Ron aset Y asasubset of Y x Y consisting of al ordered pairs



(Y1, y%) with the property y; RY,,, the above definitions can be rewritten as
R~ ={(y2 y1): (y1. ¥2) € R),

Rs =RnAy

Ry =R\A,,
and

R. =(YxY\R
with

Ay ={{y.y):yeV}
Furthermore, for Y™ c Y, abinary relation R™ on Y™ istherestriction of Rto Y~ (and R an extension
of RtoY)iff R =Rn (Y xY").

The following definition reformulates some properties of linear orders such that their presence in
binary relations on subsets of real vector spaces will enable further deductions.

Definition A.5: For arelation R on asubset Y of area vector space, the following terminology is
used:
a) Risdirection-based iff it is binary and the equivaence

Y11 RY12 = y21 Ry (A.D)
isvalid whenever y, 1, Y12, Yo7 and y,, are elements of Y such that
Y227Y21 =4 (Y127Y11) (A2)

for some scaar A > 0. In this situation, the direction cone of R isthe smallest cone in F where the
relation y, Ry, holdsif and only if the difference y,-y, is an element of the cone.

b) Rispre-cancellative iff it is binary and the equivaence

yrtoa(y-yp) Ry, +a(y-yo) < y1 Ry, (A3)

holds for o € ]O, 1] whenever y, y, andy, are elements of Y such that the vector y; + a (y-Y;)
isan element of Yfori € {1, 2}.

c) Rispre-Archimedean iff it isbinary and for dl dementsy, y; andy, of Ywithy R.y, andy Ry,
thereisarea number 6 > 0 such that the implication z, € Y =y R; z, holds for every « € |0, 8],
the vector z, being given by

Zy =y1ta(Yo-Yq): (A.4)

The notion of adirection-based relation is motivated by the view that the directionsfromy,; toy,,
and fromy,, to y,, areidentical iff Equation (A.2) holds with A > 0. The existence and uniqueness
of aconewith the properties required in the definition of a direction cone are stated in Assertion (5)
of the subsequent lemma. This lemma also shows that pre-cancellative and pre-Archimedean
relations preform (at least in some situations) cancellation and Archimedean properties of an
extended relation R on F. The lemma systematises further correspondences of this kind. Note that
some claims referring to linear orders hold only for the <-orders underlying Definition A.3 and
LemmaA.12, but not for =-orders.23

23 |n particular, if R stands for =, then the psoitive cone of the order is - Cr instead of Cr.



Lemma AG: Let F beareal vector space, Y anon- ernpty24 subset of F, and R abinary relation on'Y,
the derived rdlations R 1, R, R, and R, being given by Definition A.4. Furthermore, let X* be the
affine subspace of F generated by Y, and X the linear subspace of F generated by the set Y-Y.

L et the sets D, Ci and Cp, be defined by

Dr:={YoY1:Y1 € YANY,€ YAY; RY5}, (A.5)

CR = U)\,>O A DR’ (A6)
and

Cp = UA>0 A (Y-Y), (A.7)

and assume that the sets D and C are non-empty.
Let the binary relation R on F be defined by

X1 R Xy 1= Xy,-X1 € Cg (A.8)
for every x;, X, € F, and let R* and Ry be the restrictions of R’ to X* resp. to X.
Let B' and B* bethe sets of those direction-based relations on F resp. on X* which are extensions
of R.
Let G bethe set of al linear maps g:F-R where the implication

y1 Ry = 0(y1) < 9(y2) (A.9)
holdsfor all dementsy, andy, of Y, and G the set of their restrictionsto X. Findly, if G* isa
non- empty subset of G, then the set Cg.« is defined by

Cg+ =N geG* {xe CD a(x) > O}, _ (A.10)
and the elements of G* will be said to represent R joi ntly iff the equivalence

holdsfor al elementsy, andy, of Y.

For purposes of notational convenience, the vector z,, defined in Equation (A.4) will be used in
the subsequent assertions, the scalar o and the vectorsy, and y, being always given by the local
context.

In this situation, the following properties follow:

(1) If one of the relations R, R1or R. is pre-cancellative (resp. direction-based) or the
relatlons R and R, are both pre-cancellative (resp. direction-based), then the relations R,
R1 , Ry Ryand R, areall pre-cancellative (resp. direction-based).

(2 IfR is transitive, then R 1, R, and R, are transitive.

(3) DrcCrcCicCqrcChce X = x* -X*, where G* may be every non-empty subset of G.

(4) Cristheconegenerated by D, and Cp, isthe cone generated by the set Y-Y. Furthermore,
if G* is a non-empty subset of G, then C» is a pointed cone, which is convex if Cp is
CONnvex.

(5) Thefollowing assertions are equivalent:

24 5ome deviations from the assertions of Lemma A.6 for situations with Y = o are mentioned after
the proof.

25 For this termi nology, observethat (for elementsy; and y, of Y) the difference vector y,-y; isan
element of C« iff g(y4) < g(y,) fordl g € G*.



(5.@) Thereation Ris direction-based

(5.b) TheequivdenceAy,; +XRA Yy, +Xx = y; Ry, holdsfor al elementsy,; and y, of
Y, every x € F and every scalar A > 0 whenever the linear combinations A y; + x are
elements of Y.

(5.c) Thereisacone C in F such that the propertiesy,; Ry, and y,-y; € C™ are
equivalent for al elementsy, andy, of Y.

(5.d) Theset B' is non-empty.

(5.e) The set B* is non-empty.

(5.f) Therelation R isan extension of R.

(5.9) Therelation R* isan extension of R.

If these assertions hold, then Cr, is the (unique) direction cone of R, and agiven cone C in

F has the property described in (5.c) iff

C n Cy=Cx (A.12)

(6) If Y isasubset of F, and C isaconein F, then a direction-based relation on Y~ with
direction cone C™ exists iff C™ < Uy, A (Y'-Y"). Furthermore, a relation with these
propertiesis unique, if it exists.

(7) TherdationsR' , R* and Ry are the unique direction-based relations on F resp. X* resp. X
with direction cone Cg. Furthermore, Ry is identical with R* up to atrandation by -x iff
X e X*.

(8) B* istheset of dl restrictionsto X* of elements of B'.

(9) Thedirection cone of every element of B* is asubset of X.

(10) A linear map g:F-R isan element of G iff g(x) > O for al x € Cp,.

(11) Gisapointed, convex conein the algebraic dual of F.

(12) If G* isasubset of G whose elements jointly represent the relation R, then the relation R is
reflexive, trangtive, direction-based (with direction cone Cg« = Cg), and pre-Archimedean,
and it is also connected if G* has only one element.

The subsequent Assertions (13) through (15) arevaid if Yis convex2%:

(13) Cp =X

(14) For every finite sequence { X;} =1 , of elements of X, there are elementsy and {y;}-; , of
Y and ascalar A > 0 such that x; = A (y;-y) fori = 1..n.

(15) Thefollowing properties are equivalent:

(15.a) Thereation Ris pre-Archimedean.
(15.b) For all elementsy, y; andy, of Y, the set

A={ac[0,1:yRz}, (A.13)
isaclosed subset of R.
(15.c) For al elementsy, y; and y, of Ywithy R.y; andy RYy,, the above set Aisa
closed subset of R.

If Risdirection-based, then Assertions (16) through (28) hold.

26 For some following assertions, the assumption of a convex set Y can be replaced by weaker
conditions, which are explicated in the proofs of (13) and (29).



(16) Rispre-cancellative.

a7 The equivdencey; Ry, = A (yo,-yq) € Cgholdsforyq, y, € Yand A > 0.

(18) R listhe only direction-based relation on Y with direction cone -Cg,.

(19) Cgrisapointed coneiff Risreflexive.

(20) Crisaproper coneiff theimplicationy, Rgy, = y; =Y, holdsfor al elementsy,; andy,
of Y.

(21) Crissymmetriciff Rissymmetric.

(22) Cru (-Cg) = Cp iff Ris connected.

(23) If arelation R™ on asubset Y™ of F isidentical with R up to a stretching and a trandlation,
then R™ is adirection-based relation with direction cone Cy,.

(24) For every subset Y™ of Y, the restriction of Rto Y™ is direction-based, the direction cone of
thisrestriction being Cg n Uy 59 4 (Y -Y7).

(25) If Y isasubset of F withYc Y7, and R™ isadirection-based relation on Y~ with direction
cone C, then R™ isan extension of Riff C” n Cp = CR.

(26) A direction-based relation on F (resp. on X*) with direction cone C™ is an element of B'
(resp. of B¥) iff C”n Cp = CR. In particular, R and R* are the only elements of B' resp. of
B* with direction cone Cg,.

(27) Ify, andy, are elements of Y, and « and o' real numbers with o < o' such that the vectors
z, and z,, are elements of Y, then z, Rz, iff y; Ry».

(28) If Crisconvex resp. lineally closed, then Ris transitive resp. pre-Archimedean.

Assertions (29) through (33) are valid if Yisconvex and R is pre-cancellative.
(29) Risdirection-based.
(30) Therdation R* isthe only element of the set B*. Furthermore, R’ is the only element of B’
iff X=F.
(31) Thefollowing assertions are equivalent:
(31.d) Thereation Ristrangtive.
(31.b) Theset Dy is convex.
(31.c) Crisaconvex cone.
(31.d) (yRy; ANYRY,) =y Rz, forevery a € [0, 1] and dl elementsy, y,, y, of .
(3le) (yyRyANy,RYy) =12z, Ryforeveryac [0, 1] and al elementsy, y,, y, of .
(32) Thefollowing properties are equivalent:
(32.@) Therelation R is pre-Archimedean.
(32.b) TheconeCgris Ilneally closed.
(32.c) Therelation R 1lis pre-Archimedean.
(33) If Rispre-Archimedean, then Risreflexive.

If Yisconvex and R is pre-cancellative and transitive, then Assertions (34) through (37) are also

valid:

(34) Fordl dementsy, y; andy, of Y, there are real numbers 6 and 6' suchthat 0 < 6 < &' < 1,
and ]9, 0 < Ac [0, & for the set A given by Equation (A.13).

(35) If Risreflexive, then the relation R’ (resp. Ry) is the only linear order on F (resp. on X)
with positive cone Cg, and G (resp. G| ) is the set of al monotonic maps g:F-R (resp.
g:X~R).



(36) Thefollowing assertions a through d are equivalent:
(36.@) Therelation R is pre-Archimedean.
(36.b) Ry isan Archimedean linear order on X.
(36.c) R isan Archimedean linear order on F.
(36.d) For all elementsy, y; and y, of Y, the set A given by Equation (A.13) is either
empty or aclosed subinterval of [0, 1].
If Cg is finite dimensional®’, then the following assertion is also equivalent with the
foregoing ones:
(36.€) For all eementsy; and y, of Y, the relation y; Ry, is present iff the inequality
a(yq) < 9(y,) holds for every g € G. (l.e, the elements of G jointly represent the
relation R.)
(37) If Rissymmetric, then therelations R, R', R* and Ry are equivalence relations, and Cr isa
linear subspace of X.

Findly, the remaining Assertions (38) through (40) follow under the assumption that Y is convex
and Ris apre-cancellative weak order:
(38) Ryisalinear weak order on X, and X = Cr u (-Cg) = Cxr-Cgr
(39) Ify,y; andy, aredementsof Y such that y; R, Y, then there is a unique number 6 € [0, 1]
suchthat z, RyyforO<a<d,andy Rz, ford <a < 1.
(40) Thefollowing properties are equivalent:
(40.a) Therelation Ris pre-Archimedean
(40.b) Ry isan Archimedean linear weak order on X.
(40.c) Thereisalinear map g:F-R such that the equivalence
y1RYy> = 9(yq) < 9(yo) (A.14)
holds for all elementsy, andy, of .
(40.d) For al elementsy, y; andy, of Ywithy; R,y andy R, Yy,, therelationy Ry z,
holds for some « € ]0, 1].
If these properties are given, then the number « fulfilling (40.d) is unique for given eements
Yy, y1 andy, of Y with the assumed properties.

The following corollaries are examples of application oriented facts following immediately from
LemmaA.6.

Corollary A.7: Let F be areal vector space, Y a convex subset of F, and ~ an equivalence relation
on Y. Then the following assertions are equivalent:
(1) Thereisalinear subspace X of F such that the equivalence
y-y' = (y"-y)eX
holdsfor al dementsy' and y" of .
(2) Theequivaence
ytoa(y-y') ~y taly-y') =y ~y"
holdsfor adl dementsy, y' andy" of Yand every o € ]0, 1].

27 \Weaker sufficient conditions for the equivalence claimed in (36.€) are outlined in the proof.



Corollary A.8: Let F beareal vector space, Y a convex subset of F, and < aweak order on Y. Then
the equivalence (1) = ((2) /A (3)) holds for the following properties:
(1) Thereisalinear map g:F-R such that the equivalence
y =y" =gly') <aly")
holdsfor al dementsy' and y" of .
(2) Theequivaence
y'toa(y-y') <y ta(y-y') =y =y"
holdsfor adl dementsy, y' andy" of Yand every o € ]0, 1].
(3) For dl dlementsy, y' and y" of Ywithy' <y < y", thereis some « € ]0, 1] with the
property y ~y' +a (y" -y").
If these properties are given, then amap ¢:Y-R fulfills the equivalence
Oy < dy) =y1=Y,
for all elementsy, and y, of Y if and only if there is a linear map g:F-R with the property
described in Assertion (1), and a strictly increasing map §r:R-R such that ¢ is the restriction of
Pyogto.

Corollary A.9: Let W be afinite, non-empty set, Y the set of al probability measures on the power
set of W, and < awesk order on Y with Properties (2) and (3) of Corollary A.8. Finaly, define for
every map v.\W-RR the map g,.Y-R by

A(Y) = LwewY{W}) - V(W) (A.15)
for every y € Y. Then thereisamap v:W-R such that the equivalence
y =y = ogfy’) < g/y") (A.16)

holdsfor al elementsy' and y" of Y, this map being unique up to linear transformations « v + 3
with o > 0.

Applications of Corollary A.9 can be based on the following interpretation of Equation (A.15): If Z
is a W-valued random variable with distribution y, then g,(y) is the expectation of the real valued
random variable v(Z).

The unigqueness up to positive linear transformations of the map v fulfilling Equivalence (A.16)
follows from an application of the following lemma.

Lemma A.10: Let A be ac-algebrain aset W. Furthermore, let u:W-R and v:W-R be measurable
maps, and Y a convex set of probability measures on A with the following property: For every
w e W, thereis an element y,,, of Y such that y,(u” 1(u(w)) N v 1(v(w))) = 1. Then the following
assertions are equivalent:
(1) Therearereal numbers o and 3 with o« > 0 such that u= o« v + f3.
(2) Theequivaence
Judy'< Judy" = [vay' < [vay"
holdsfor al elementsy' and y" of .



A.3 Proofs

A.3.1 Some Basic Facts.

The lemmas in this section summarise some basic facts referring to real vector spaces and linear
orders, which are proved in many pertinent textbooks and will be used for proofsin later sections.

The following properties of subsets and linear maps are immediate consequences of Definition
A.2. For (10) and (11), see e.g. Holmes (1975, p. 3, 5 and 64).

Lemma A.11: Let A and Sbe non-empty subsets of areal vector space F.

(1)
(2)
3)
(4)

(5)
(6)

(7)
(8)

(9)
(10)

(11)

If Sisan intersection of convex sets, then Sis convex.

The linear space generated by Sisfinite dimensiond iff Sisfinite dimensional.

Sisthe cone generated by Aiff S=U, 4 A A. If these properties are given and A is convex,
then Sis convex.

If Sis acone, then Sis convex iff it is closed under addition (i.e., iff x;+x, € Sfor all
elements x; and x, of S).

If Sisalinedly closed cone, then Sis pointed.

If Sisalinear subspace of F, then a subset of Sislinedly closed in F iff it islineally closed
inS

Sisalinear subspace of F iff Sisasymmetric and convex cone.

If Sisthe affine subspace of F generated by A, then the linear subspace generated by A-A
iIsS-S Furthermore, that linear subspaceis S-{x} iff x ¢ S

If Sis the cone generated by A-A with convex A, then Sis aso the linear subspace
generated by A-A.

If Sisalinear subspace of F, then every linear map S-R can be extended to a linear map
F-R.

If Sis a (linear or affine) subspace of F or a lineally closed, convex subset of a finite
dimensiond F, then every x € F\Sis strongly separable from S,

Proofs of the following correspondences between linear orders and their positive cones are
given eg. by Jameson (1970). Since this author uses a different terminology for cones (see pp. 2 and
3), the results have been trandated into the taxonomy of our Definition A.2.c

Lemma A.12: Let < bealinear order on areal vector space F, and let theset C:= {x € F: 0 < x} be
the positive cone of the order. Then the following properties apply:

(1)

(2)
3)

(4)
(5)
(6)
(7)

10

For dl dements x; and x, of F, the relation x; =< X, holdsiff x,-x; € C. Furthermore, Cis
the only subset of F with this property.

C isapointed, convex cone.

For every pointed convex cone in F, there is a unique linear order on F such that the given
cone is the positive cone of the order.

The order < isantisymmetric iff C isa proper cone.

The order < is connected (i.e., aweak order) iff F=CU (-C) = C-C.

The order < is Archimedean iff C islineally closed.

The order < is connected and Archimedean iff there exists a linear map g:F-R such that



C={xeF:g(x) > 0}.
A.3.2 Proof of Lemma A.6.

Before we prove the assertions of the lemma, we introduce the convention that a range of
i =1,2andj = 1,2 has to be assumed for terms with subscript i or j, unless a different range is
specified in the respective context. Furthermore, A will aways be a scalar such that A > 0. We will
aso frequently refer to elements x = A (y,-y;) or x; = A (y;-y) of X or asubset of X. Let it be said
once and for al that this stands for the following sentences: Let x resp. x; be element(s) of X (or a
locally specified subset of X). Furthermore, let ascalar A > 0 and elements (y and) y; of Y be given
suchthat X = A (yo-Y4) resp. x; = A (y;-y), the existence of suitable A and y; being granted by (13)
or (14) or Equation (A.6) or (A.7).

Findly, take it as a convention that during the proof of an implication the antecedent part of the
implication is assumed to be valid without saying.

For situations with sufficiently specified elementsy, y; and y, of Y, observe that the definition
of z, in Equation (A.4) implies

2,2y = (0-a’) (Yo-Y1) (A.17)
and
Z,-Y; = (a-i+1) - (yo-yy) (A.18)

for al real numbers o and o'

To facilitate the application of results to other binary relations R~ on asubset Y™ of F, let the
sets Cr(Y~, R~) and Cp(Y~) be defined for such situations by an analogous application of
Equations (A.6) and (A.7). Furthermore, let X(Y ~) be the subspace of F generated by Y -Y". The
following applications to R, R* and Ry follow immediately:

X(F) =Cp(F) =F, (A.19)

X(X*)  =Cp(X*) =X(X) =Cp(X) =X, (A.20)
and

Cr(F, R) = Cr(X*, R) = Cx(X, Ry) = Cx (A.21)

Conclusions based on such correspondeces will be called immediate generalizations. In particular,
after the proof of (5), results referring to the relation R and the set C can be generalized to every
direction-based relation R™ on aset Y™ < F and its direction cone, whichist Cx(Y", R").

Now the assertions of the lemma will be proved.
(2) and (2): These assertions are immediate consequences of Definitions A.4 and A.5.
(3): See Equations (A.5), (A.6), (A.7) and (A.10). For the inclusion Cg < Cg, let an element
X = A (Yo-y,) of Cybegiven suchthat y; Ry,. Then g(y;) < 9(y,) follows from Implication (A.12)
for every g € G, and thisimplies g(x) > 0, since elements of G are linear.
(4): Combine LemmaA.11.(3) with Equations (A.6) and (A.7) for Cg resp. Cpy. The claim referring

to Cg« follows immediately from Equation (A.10). (Note that this equation can be rewritten as
Ce+ =CpN (ﬂgee* {x € F: g(x) > 0}) to represent C« as an intersection of convex sets in
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situations with convex Cp. Hence Cg« is convex in such situations by Lemma A.11.(1).)

(5): Wewill first prove the implications a=b—=c=d=e=a.
a=b: For the vectors and the scalar in b, Equation (A.2) holds with the definitions yy = b and
Yo = A yj+x Hence Equivalence (A.1) follows, if Ris direction-based.
b=c: To obtain useful side results, we will show that (under the assumtion of b) the equivalencein
(5.c) holdsfor dl elementsy,; and y, of Y, if C™ isacone fulfilling equation (A.12). So let C™ be
asuch cone (the existence being granted by the fact that C, is a cone with this property; see (3)
and (4)). Furthermore, let y, and y, be arbitrary elements of Y. Theny,-y, € C, follows from
Equation (A.7). Furthermore, if y; R y,, then y,-y,; € Cg follows from Equation (A.6).
Combining both results, we get y,-y, € C™. Conversdly, if y,-y, € C, theny,-y, € Cx follows
from y,-y; € Cp. So Equation (A.6) implies the existence of elementsy;and y ,and a scaar
A >0 such that y3 Ry,, and y,-y41 = (Y4-Y3) / A. Then the definition x :==y, - Ay, dlowsto
derivey; Ry, fromy; Ry, if b holds.
c=d: Let C" be a cone in F fulfilling property c, and let the relation R~ on F be defined by
X1 R7 X, 1= Xy,-X; € C. Thenitiseasly verified that R™ is an extension of R, and a direction-
based relation on F. Hence R™ is an element of B', and B' is non-empty.
d=e: Let R™ be an element of B'. Then it follows immediately that the restriction of R™ to X* isan
element of B*.
e=a Let R™ be an element of B*, and let elements y;; of Y and a scalar A > 0 be given such that
Equation (A.2) holds. Thenyy R"y15 = Yo1 R™ Y5y, Since R™ (being an element of B*) must
be direction-based. So Equivdence (A.1) follows, since al elements of B* are extensions of R.
For the proof of the additional claims referring to Cg, assume the validity of (5.a) through
(5.€). Asadde reault of the proof of theimplication b—=c, Equation (A.12) is sufficient for acone C™
to fulfill the equivalence in (5.c) for al elementsy, andy, of Y. In particular, C has this property.
To show that Equation (A.12) is also necessary for this property, let C™ be such aconein F. It
suffices to verify that the properties x € C and x € C are equivalent for every element x of Cp;
then equation (A.12) follows, since Cy, is a subset of Cp. So let x = A (y,-Yy;) be an arbitrary
element of C. Since C™ and Cy, are cones, we get the outer equivalences in the following chain:
XeC < y,-y€C = y Ry, @ y,-y; € Cq = xeCy
In summary, Equation (A.12) must hold for a cone C™ fulfilling the equivalence in (5.c) for al
elementsy, and y, of Y. But thisimplies C; < C™ for every such cone. Hence Cy, (being one of
them) isthe smallest one, i.e., the unique direction cone of R according to Definition A.5.a
For the equivaence of assertions (5.f) and (5.g) with the foregoing ones, it can be taken asa
sideresult that R and R* are extensions of Riff Cg is acone with the properties of (5.c).

(6): Let Y be asubset of F, and C™ a cone in F. A reference to Definition A.5.a shows: If a
direction-based relation on Y~ with direction cone C™ exists, then it must be the (unique) relation R™
where the propertiesy; R™y, andy,-y; € C™ are equivalent for all elementsy, andy, of Y™. So let
R™ bethisrelation. Then it is an immediate generalization of (5) that R™ is direction-based, and that
C isitsdirection coneiff C™ isasubset of C(Y").

(7): It follows from Equivaence (A.8) and immediate generalizations of (5) that the relations R, R*
and Ry are direction-based, since the definition C™ := Cy, gives a cone with the property required for
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(5.c). So another reference to (5) and to Equation (A.21) shows that Cy, is the direction cone of
theserdations. - Now X = X* + {-x} isequivaent with xeX* by LemmaA.11.(8), and the chain of
equivalences X; Ry Xo = X; R X5 = X;#X R X+X < X1+X R* X,+x follows for xeX* and
X1, X5 € X from the definitions of R @and R* (outer equivalences) and from an immediate
generalization of (5.b). Hence Ry is identical with R* up to a trandation by -x iff xeX* (see
Definition A.2.i).

(8): It follows immediately from the definitions of B' and B* that every restriction to X* of an
element of B' isan dement of B*. Conversdly, for agiven element R™ of B* with direction cone C,
let R_ be the direction-based relation on F with direction cone C™ (the existence and uniqueness of
this relation being granted by (6)). Then the relations x; R™ x, and x4 R_ X, are equivaent for all
elements x; and x, of X*, since both relations are equivalent to x,-x; € C". So R_isadirection-
based extension of R™to F, and it isaso an extension of R, since R™ € B*. But then R_ is an element
of B', and R istherestriction of R_to X*.

(9): This assertion is an immediate generalization of the set inclusion Ci < X in (3). See Equation
(A.20) for X(X*) = X.

(10): Let alinear map g:F-R be an element of G, and x = A (y,-Yy4) an arbitrary element of C
Then Equation (A.6) impliesy; Ry,, and g(x) = A (9(y,)-9(y,)) > O follows for A4 > 0 from the
linearity of g and from g € G. - Conversely, if alinear map g:F-R fulfillsg(x) > O for al x € Cg,
then the chain of implicationsy; Ry, = y,-y; € Cr=0(Y>-Y1) > 0=0(y,) < 9(y,) isgranted by
Equation (A.6) and the linearity of g. Henceg € G.

(11): The set G is non-empty, since the non-empty set Cy is a subset of G by (3). Furthermore, it
follows from (10) that G is closed under addition and under multiplication by non-negative scaars.
Hence it is a pointed, convex cone by Definition A.2.c and LemmaA.11.(4).

(12): Let G* be a subset of G whose elements jointly represent the relation R. To verify that R is
reflexive, trandtive, and direction-based with direction cone C» = Cg, combine Equivalence (A.11)
with (3), (4) and (5) and Lemma A.11.(4). For a proof of the pre-Archimedian property of R, let y,
y, and y, be elements of Y such that y R, y; andy RY,, and let g be an element of G* such that
a(y;-y) < 0O, the existence following from Equivalence (A.11) and Equation (A.10). Then
a(y,-y) > 0 follows from Implication (A.9), since g is linear. This linearity aso implies that the
scalar & defined by 6 := (9(y)-9(y4)) / (9(y2)-9(yq)) is greater than O, and that the inequality
9(z,-y) < 0 holds for every o € ]0, 8[. Hence z,-y ¢ Cg« follows from Equation (A.10), and
Equivalence (A.11) yields y R, z, for z, € Y. So & is a number with the properties required by
Definition A.5.c. - Findly, if g is the only element of G*, then the linearity of g implies for al
eementsy, andy, of Ythat either y,-y, or y, -y, isan element of C.. But then the connectedness
of R follows from Equivaence (A.11).

For the proof of (13) through (15), assume that Y is convex.

(13): See (4) and LemmaA.11.(9). Note that convexity of Y is sufficient, but not necessary for the
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