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The subsequent solutions are given in English to support quotations of results in other papers. For
the same reason, we will sometimes refer to the English definitions in the appendix instead of the
German ones in the main text.

The above quoted chapter will subsequently be called the main text.

Before solutions are tried, the following corrections to the main text should be noted:

- In the 6" line of p. 93, the exponent in the definition of o; must bei-1instead of 2-i; i.e, o; ==

AL ().

-In Definition A.2.g, the subscripts are displaced. The first equation must be
90Xy + Xp) = 9(Xg) + 0(xp).

Links to additional documents (an extended version of the appendix of the main text, including
proofs, and further errata) are contained in the WWW-document http://userpage.fu-
berlin.de/~iseler/papers/dirbas_mat.htm.

To prevent confusions between the numberings of propositions, equations etc., the numbering X.y
resp. (x.y) is subsequently chosen such that x is the number of the respective exercise plus 100.
Other numbers of equdities, definitions, propositions etc. refer to the main text, and the same holds



for numbers of pagesin the range 80-121.

We resume the genera notational conventions from pp. 81-82 of the main text. In particular,
recall that propositions etc. containing expressions with subscript i or j refer to values 1 and 2 of
these subscripts unless another range is specified in the local context.

The author is aware that the solution of the exercises may be for some readers their first
experience with general notions of real vector spaces. Since these readers may be uncertain about
the applicability of wellknown properties of R", such properties will sometimes be derived from
requirements of Definitions A.1 and A.2 in the main text. However, a consistent application of this
approach would make the solutions tedious and hard to follow up. For this reason, the reader is
encouraged to try solutions under the simplifying assumption that the underlying vector space is an
R". A basic familiarity with this class of vector spaces should be sufficient for solutions under the
sad smplifying assumption. An additional hint refersto Exercise 13. Whereas a general solution of
this exercise requires some advanced anaytical tools, it becomes elementary under the smlifying
assumption that S isthe power set of afinite set W.

Subsequently, some exercises will be solved in away yielding as side results some generalisations,
whose discussion in the main text would have diverted from its train of thoughts. Naturally, many
readers will choose other solutions.

Exercise 1, p. 87

Let a binary relation R on areal vector space F be based on alinear map g:F-R such that the
defining equivaence

X1 RXy 1= g(X1) < 9(X5) (101.1)
holds for all elements x; and x, of F, and consider the set Cy, defined by
Cr:={xeF:g(x) > 0}. (101.2)

Certainly, this setisacone (i.e,, closed under multiplication by scalars A > 0): For every scalar A >0
and x € Cg, the linearity of the map g implies

g(A x) =A g(x) = 0, (101.3)
the last inequality following from the assumptions A > 0 and x € Cg, by the definition of the set Cg
in Equation (101.2). The same definition allowsto derive A x € Cgrfrom A x > 0.

To verify that the Equivalence (1.1) holds for al elements x, and x, of F, we can combine
Equivalence (101.1) and Equation (101.2) to the chain



X1 RXy = g(Xq) <9(X5) = g(Xo-Xq) > 0= Xo-Xq € Cg, (101.4)
the second equivaence in this chain being based on the linearity of the map g, which implies
9(X2X1) = 9(X2) ~ 9(Xy).

Exercise 2, p. 87

The cone C defined by Equation (101.2) is pointed, since the linearity of the map g implies
9(0) = 0. To verify its convexity, et x, and x, be arbitrary elements of C and consider the vector
x defined by

X=X+ (1-a) X, (102.1)
with o € [0, 1]. We have to show that every such x is an element of C. The linearity of g implies
g(x) = a g(X7) + (1-a) g(xp) > O, (102.2)

the final inequaity following from the assumptions « € [0, 1] and x; € Cg, the second one leading to
a(x;) > 0 by Equation (101.2).

Since linear orders have been introduced (on p. 83) as binary relations R one areal vector space
F, where Equivaence (1.1) holdsfor all elements x, and x, of F and a pointed, convex cone Cr, we
may combine the results of Exercises 1 and 2 in the conclusion that R is alinear order, indeed.

Exercise 3, p. 87

In the situation of the preceeding exercises, let x and y be elements of F such that the relation
n x Ry holds for every n € IN. Then Equivalence (101.1) leadsto n g(x) < g(y) for every n e I\.
(Note that the linearity of the map g impliesg(n x) = n g(x). ) But then we get g(x) < 0=g(0), and
another reference to Equivalence (101.1) allowsto derive x R 0.

Exercise 4, p. 88

To be proved: If Risabinary relation on asubset Y of e real vector space F, and Cy aconein F
such that the egivalence

Y1 Ry = Yoy € CR (104.2)
holds for all elementsy, and y, of Y, then the equivalence
Y11 RY12 = Y21 Ry (104.2)



must hold for all elementsyy;; of Y, where the equation

Y22-¥21 = A (Y12-Y11) (104.3)
holds for some scalar A > 0.

So let Y, R and Ci with these properties be given. For elementsy; J- of Y fulfilling Equation (104.3)
for ascalar A > 0, the outer equivalencesin the chain

Y11 RY12 = Y17 V11 € Cr = A (Y127 V11) € Cr = Y21 Ry (104.4)
follow from an application of Equivalence (104.1), whereas the second equivalence in the chain is
granted by the assumption that Cy is a cone.

Exercise5, p. 89

We haveto prove Corollary 2.2. So let R be abinary relation on areal vector space F. Since the
implication (3)=(1) has dready been proved in Exercise 4 (without explicit reference to the concept
of adirection-based relation), it suffices to verify the implications (1)=(2)=(3) and the concluding
assertion.

(D)=(2): Assumethat the relation Ris direction based, let y, 4, Y15, and y be arbitrary elements of F,
and A > 0 ascaar. With the definition

Yo = AYq; (105.1)
forj=1 and ] = 2, we can eadly verify the validity of Equation (104.3); hence Equivalence
(104.2) follows from the assumption that R is direction-based. But as specia cases of this result
for A = 1 resp. y = 0, we obtain that the relation R is, indeed, invariant under trandation (resp.
under multiplication by strictly positive scalars) .

(2)=(3): Under the assumption that the relation R is invariant under trandation and multiplication by
strictly positive scalars, define a subset Ci of F by

Cr={xe F:ORX}. (105.2)
This definition implies the outer equivaences in the following chain, whereas the second one
followsfor every A > 0 from the assumption that the relation R is invariant under multiplication by
strictly positive scalars:

XxeCgr = ORXx = ORAX = AxeCg (105.3)
But if this equivalence holds for every x e Ci and every scalar A > 0, then Cz must be a cone (in
the weak understanding of this concept explicated in Definition A.2.c). To establish the validity
of Equivalence (1.1) for all elements x; and x, of F, observe that the first equivalence in the



follwoing chain is granted by the assumption that the relation R is invariant under trandation (e.g.,
by -X,), whereas the second equivalence results from Equation (105.2).
X1 RXy = ORXy-X; < X5-%; € C (105.4)
Findly, observe that the concluding assertion of Corollary 2.2 is a side result of the above proof
of the implication (2)=(3). In particular, to fulfill Equivalence (1.1) for x; = 0, a set Cz must be
identical with the one defined in Equation (105.2).

To round the result, note that Corollary 2.2 shows the equivalence of three possible definitions of
linear orders. Adding one of the equivalent properties desribed in Assertions (1), (2) and (3) to the
requirement that R is reflexive and transitive, we get alinear order. In the solution to Ercercise 10,
afourth equivaent approach will be added,

Exercise 6, p. 89

Let Y be the set consisting of the vectors'y; J- in the right part of Figure 1. We have to prove the
following assertion: There exists a position of the zero-element and a binary relation R on Y with the
two invariances clamed in Assartion (2) of Corollary 2.2 such that y,; Ry4, and =(y,; Ry,,). Now
consider a Situation with

3/11 =0, (106.1)
an
R={(y11, Y12)}- (106.2)

|.e., the zero-element of tthe vector space isidentical withy,4, and the ordered pair (y,4, Y1) isthe
only ordered pair (y', y") of elements of Y where therelationy' Ry" holds.

Since Equation (106.2) impliesy,; Ry, aswell as =(y,; RY,,), it suffices to verify that this
situation is compatible with the invariances under consideration. Now these invariances refer to
situations, where y'; j ae (not necessarily different) elements of Y. For such situations, the
equivalence

Y1 RY12 © Y21 RY'» (106.3)
is claimed under two conditions: It must hold
- If there is an element x of F such that

y' 95 = y' X% (106.4)
- If thereisascalar A > 0 such that



=AY 1j» (106.5)
the vaildJ ity of Equatlon (106.4) resp. (106.5) being required for j = 1 and | = 2 with the same x resp.
with the same A. Of course, Equivalence (106.3) is tautologically true for x = 0 resp. A = 1: Then
Yoi = Yy follows immediately. There is also a non-tautological consequence of invariance under
transl atlon Consider asituation withy'1, =y'1, and y' 51 = y' 5o Here Equation (106.4) holds for
X =Y's - ¥'11. Requiring the validity of Equivalence (106.3) for such situations means that the
relation R must be either consistently reflexive or consistently non-reflexive. Indeed, the relation
specified by Equation (106.2) is consistently non-reflexive. But for y'1, # y'¢,, thereisn'tany x # 0
such that Equation (106.4) holds for elementsy';; of Y. (Try all triples of elementsy' 11 y'ipandy'sg
of Ywithy'qy # y' 1, andy'qq # Y'»y, and vernJy that the vector y' 15 + (y'1-Y'17) IS not contained
in Y. So there is no requirement of invariance under trandation beyond consistent relexivity or
non-reflexivity.

For invariance under multiplication by strictly positive scaars, consider the following geometric
interpretation of Equation (106.5) withO< A < 1. It meansthat y' 7 is an element of the line segment
connecting the zero-element and y' n Similarly, for A > 1 the equation impliesthat y';; is an element
of the line segment connecting the zero-element and y',;. But it is obvious that no configuration of
this kind can be made from the points Yii in the left part of Figure 1, if the zero-element is identical
withy,4 (Equation (106.1)). So thei mvanance under multiplication by strictly positive scalars cannot
be violated by the situation specified by Equations (106.1) and (106.2).

The obove geometric approach can aso help to specify the only position of the zero-element,
where invariance under multiplication by strictly positive scalars has non-trivial consegquences: Let
y bethe intersection point of the two lines containing the pointsy,, and y,; resp. y;, andy,,, and
consider a situation wherey = 0. Geometric intuition suggests that in this case the equation

Yo = L5y (106.6)
must hold in a situation with the given property
To verify thisintuition algebraically, we can easily derive the equation

Y11+ 2(Y11-Y21) = Y12 + 2 (Y127 Y20)- (106.8)

Equation (106.7) alows to replace y,; on the left hand side of Equation (106.8) by
Yoo - 1.5 (y1o-Y11), and then asimple rearrangement of terms gives the right hand side of Equation
(106.8). Under a geometric interpretation, the point y,1 + 2 (y11-Y»1) is the result of the following
operation: Extend the line connecting the pointsy,, and y21 beyond y,4, and - starting at y,, - step



along this extension twice the difference y,,-y,¢. An application of the same interpretation to the
right hand side of Equation (106.8), this equation shows that both operations result in the same
point; i.e., the resulting point belongs to both extensions. So it is the intersection of the two
extensions, for which we have introduced the denotation y. Then Equation (106.6) can be derived,
indeed, from the assumption y = O: If both sides of Equation (106.8) equa O, we can write
0=3 Yqj - 2y, and then a rearrangement of terms leads to Equation (106.6) . But then the joint
validity of yq; I!2y12 and =(y 1 Ry5) would be excluded by invariance under multiplication by
strictly positive scalars.

Although the existence of just one position of the zero-element and one relation R with the
required properties is sufficient, it may be interesting to give a more general description of
requirements following from invariance under trandation and under multiplication by strictly positive
scalar:

- Independendent of the position of the zero-element, invariance under translation implies that a
binary relation R on our set Y must be consistently reflexive or consistently non-reflexive.
- Theequivalencey;; Ry, = Y2 Ry, isnecessary, if and only if the equationyy; + 2 (yy; - y)

holds; i.e., iff y = 0.

Every binary relation R on Y fulfilling these requirements is invariant under trandation and
multiplication by strictly positive scalars.

The precise meaning of the invariances may also be clarified by to erroneous approaches for
situationswith 'y = 0. One could be tempted to define points y'; Py and consider the chain

Y11 RY12 2= Y11 RY'12 22y Ry 2= ¥y Ry
of questionable equivalences. Indeed, if the vectors y';; would be elements of the set Y, then the outer
equivalences would follow from invariance uncier trandation (by -y), whereas the second
equivalence would be granted by invariance under multiplication by the strictly positive scalar 1.5.
(it may be left to the reader to verify these claims.) However, if the relation R isarelation on a set
Y consisting only of the vectors y; i then the above temptative chain of equivalences would lead us
outside the domain of the relation.

A smilar argument applies to another consideration: From the above definition of avector y, we
can derive Yo = 15 Yy - 0.5y. In other words, the transition from y ifoy 2;'5 considered as a
concatenation of a multiplication by A = 1.5 and a trandation by x = -0.5y. But again, this
concatenation has consequences only if the results of the first operation (the products 1.5 ylj) are



elements of Y, i.e, if y = 0. More generally, such concatenations can very well be used to
demonstrate the difference between direction-basedness and invariance under trandation and
multiplication by strictly positive scalars: Whereas these invariances grant the equivalence

Ay +XRAY,+X = y Ry, (106.9)
for Y€, A>0and x € F only in Stuations with A Y€, this additional requirement is unnecessary
for a direction-based relation. (See the equivalence of Assertions (5a) and (5b) in Lemma A.6.) Of
course, considerations of this kind are unnecessary, if arelation R is defined on an entire vector
space F: For Y = F, the condition A yj € Y will dways hold.

Exercise 7, p. 93

It has dready been pointed out in the remarks preceeding the solututions that the definition of the
coefficient o; is unfortunately wrong in the printed chapter. It must be

o = A7 (1), (107.1)
where A isthe scalar underlying the assumption
Y20 Y21 = A (Y12-Y11)- (107.2)

Combining Equation (107.1) with the assumption A > 0, we get 0 < «; < 1. So the two linear
combinations y;; + &y (x;-y;;) fori =1 and i = 2 are elements of the line segment fromy;; to x;. It
aufficesto verify that both linear combinations result in the same vector: Then this result must be the
intersection point. For greater generality, the equality of both pointsis subsequently established for
vectors x; fulfilling the equation

Xi =Y Y1+ (1-7) Yo (107.3)
with k := 3-i and an arbitrary scalar vy, which is 0.3 in the right part of Figure 1. For every such
situation, we can write:

yqj o (X-yq)) =Yg+ (L7 (L+A)) (v yor + (1-7) Yoo - ¥y))

=AY tYn - ¥ (Yo Y20) /(1 +4)

=AY+ Yo - YA (Y12-Y11)) / (1 + )

=Ygt (A (1+A) (v yu + (1-7) Yo - V)

=Y+ 0o (X-Yo))- (107.4)
The outer equalities are immediate applications of Equations (107.1) and (107.3), whereas the
second equality as well as the last but one are based on simple agebraic transformations. For the
trangtion from the second line to the third one, observe first that the changes immediately after y are



justified by Equation (107.2). The further changes are based on the equation

MYy + Y2 = A Y12t Yy (107.5)
Forj= & this equdity istautological, whereas its validity for j = 1 follows from a suitable rearrange-
ment of terms in Equation (107.2).

Although Equation (107.4) holds for every scalar v, its interpretation has to be qualified for y =0
andy = 1. For y = 1, we get X; = Y51 and X, =y4,. So the line segments from y; to X, and from
Y,1 to X, areidentical and don't have a unique intersection point. Nevertheless, we could pick out
onepoint y'; from this line ssgment by the definitiony'; :=y;q + «; (X;—Y;1) for such situations, the
identity of theresultsfori = 1 and i = 2 being established by Equation (107.4). Then the equivalence

y'1 RY'5> = Vi1 Ry (107.6)
holdsagain for i € {1, 2}, and Equivalence (2.2) follows.

Smilarly for y = 0: Then the line segment from y,, (= X,) to Y, (= X;) contains the point given
by the definitiony', == yj5 + a; (X~ Yjo)-

Exercise 8, p. 93

For F := R, let the subset Y of F be defined as

Y:={(c, B) € F: || = 1}, (108.1)
and consider the binary relation R on Y, which ist defined by
(o, By R(y,0) := (=7 Nap < y0) (108.2)

for all elements («, B) and (y, 0) of Y.
To show that the relation is pre-cancellative, let y = (y, 6), y; = (v, 87) axd y, = (y,, 8,) be
elementsof Y, and « € ]0, 1[ a scalar such that the vectors

Yi=yitaly-y;) = (v 0%) (108.3)
are elements of Y. We have to verify the equivalence

Y'1RY'> = y1 Ry, (108.4)
Now observe that the assumptions «: € ]O, 1] and y'; € Yimply

Y=Yi= Y'i (1085)
According to Equation (108.1), we must have

vl =1vil = [vil =1, (108.6)

if the vectorsy, y; and y'; are alements of Y. Furthermore, Equation (108.3) implies



Yi=vta(y-v), (108.7)
But then the assumption y; # y would lead to |y",| # 1. Since this consideration holds for i = 1 as
well asi = 2, we can just write y for theidentical first component of the vectorsyy, y; and y';. Then
the validity of Equivalence (108.4) results from the following chain:

Y'1RY' 2= (1,8 R(y, %)

=y 08y <y0)

=y (8 +a(8-049)) <y (8, + & (5-05))

eyad+(1l-a)yd;<yad+(l-a)yd,

=y0;<v8

= (v,87) R(v,6)

=Yy Ry,
For the transition from the fourth to the fifth line, note that subtracting y o & on both sides of the
inequality in the fourth line doesn't change the validity of thisinequality, and due to the assumption
o € ]0, 1], we may aso divide by (1-«). So the relation R is pre-cancellative, indeed.

To verify that the same relation is not direction-based, it suffices to give an example, where
Equivalence (2.2) is violated, although Equation (2.1) holds with A > 0. So consider the vectors

Y11 = (+1, 3),

Y12 = (+1,4),

y2]_ = (7 11 5)1
and

y22 = (* 1, 7)

Obvioudly, Equation (2.1) holds for A = 2. But whereas Equivalence (108.2) leads to y;; Ry,
snce 1-3 < 1-4, theinequality (-1)-5> (-1)-7 impliesthat the relation y,; Ry, failsto hold. Taken
together, these resultsform a violation of Equivaence (2.2).

Exercise9, p. 93

For given eements Yij X and y' J- of the set Y defined by Equation (108.1), let real numbers
o; € ]0, 1] be given such that the equation

Y =Yij T e (%) (109.1)
holdsforie {1, 2} anoij € {1, 2}. Then the arguments leading to Equation (108.5) can be repeated
to show that the first components of all vectorsy; RS abdy' j must be identical. But thisimplies that

10



in the example for a violation of direction-basedness in the above solution for Exercise 8 there
cannot be any elements x; and y'; of Y such that Equation (109.1) holds for suitable scalars o;.

More generdly, it can be shown for the relation R given by Equivalence (108.2) that violations of
direction-basedness occur only in situations, where the first components of the vectorsy,, and y,,
in Equivalence (2.2) are different.

Exercise 10, p. 93

The two claims in the last four lines refer to a subset Y of areal vector space with the following
property (‘solvability condition’): For al elements Yij of Y fullfilling Equation (2.1) for a suitable
scalar A > 0, there are elements x; and y' J- of Y and scalars o; € ]O, 1] such that Equation (109.1)
holdsfori e {1, 2} andj € {1, 2}.

We will first show that the solvability condition holds for every convex subset Y of areal vector
space F. Under this assumption, let y,4, Y15, Y21 @d Yo, be elements of Y, and A > 0 a scalar such
that Equation (2.1) holds. Furhermore, let y be an arbitrary element of the interval |0, 1[, and let the
scaars o; and the vectors x; be given by Equations (107.1) and (107.3). Then the proof of Equation
(107.4) can be taken from Exercise 7. So let y'; be the vectors, whose equality is shown in that
equation. Then the following chain of implications shows that the introduced scalars and vectors
have the properties required by the solvability condition:

A>0 =0;€]0,1[ = x €Y =y . €V. (110.1)
The last two implications in this chain follow from the assumed convexity of Y.

Now let R be abinary relation on Y fulfilling the solvability condition, and we will verify that R is
direction-based iff it is pre-cancel lative. So assume first that R is pre-cancellative. and let vectorsy;;
and ascdar A > 0 be given such that Equation (2.1) holds. To show that Equivalence (2.2) follows
from these assumptions, let elements x; and y'; and scalars «; be given according to the solvability
condition. Then the assumed pre-cancellativeness of the relation R implies the equivalence

Y1RY2<Vi1Ryj, (110.2)
fori e {1, 2}. Combining these two equivalences, we get Equivalence (2.2).

Conversdly, if Ris direction based, lety, y; and y, be elements of Y, and « € ]0, 1] a scalar such

11



that the vectors Yo given by the definition

Yo =Yt o (YY) (110.3)
aredements of Y. Then Equation (2.1) holds after the additional definitions Y =Y and A :=1-«,
and Equivalence (2.2) follows from the assumption that R is direction-based. But in the assumed
situation, Equivalence (2.3) only reformulates (2.3).

For the claim in the last two lines on p. 93, let Y be identical with areal vector space F. So Y is
convex, and we can combine our hitherto obtained results with the final remark in the solution to
Exercise 5: A reflexive and trangitive relation on Yis alinear order iff it is pre-cancencellative.

Exercise 11, p. 95

Let R be a direction-based relation on a real vector space F with direction cone Cg, given by
Equation (105.2). We have to show that the relation R is pre-Archimedian iff Cg islinedly closed.

So assume first that R is pre-Archimedian, and let elements x; and x, of F be given such that
X1 ¢ Crand x, € Cx. To verify the existence of a scalar 6 with the properties specified in Definition
A.2.d, observe that Equation (105.2) aloows two rewrite the assumptions X, ¢ Cg and X, € Cr as
0 R.x; and 0 Rx,. Now the assumed pre-Archimedian property of R allows to derive the existence
of ascaar 6 > 0 with the properties given by Definition A.5.c (the roles of the vectorsy, y, and y,
in that definition being taken by 0, X, and X, in the present situation). It suffices to show that this 6
fulfills the requirements of Definition A.2.d. So let a scalar « € ]0, o[ be given, and note that the
definition of the vector z, in Equation (A.4) has to be rewritten as

Z, = Xq + o (X Xq). (111.1)
for the present situation. Furthermore, since R is arelation on the entire vector space F, this space
takes the role of the set Y; hence z,, € Y. But then the implication z ,¢ Y = y R .z ,in Definition
A5.cleadsto O R, z,, and another reference to Equation (105.2) gives Xq + & (X,-X;) ¢ Cr.

Conversdly, under the assumption that Cg, islineally closed, let'y, y; and y, be elements of F such
that y R.y; andy RYy,, and define vectors x; and x, by x; :=y; - y. Recalling from Corollary 2.2
that a direction-based relation on an entire vector space is invariant under trandlation, we may apply
atrandation by -y to the assumptionsy R.y; andy Ry,, and rewrite them as0 R. x; resp. 0 Rx,.
Using Equation (105.2), we get x; ¢ Cg, and X, € Cg. Now let & be a scalar with the property

12



specified in Definition A.2.d, and we will show that this scalar also fulfills the requirements of
Definition A.5.c; i.e, for every a € ]0, [, therelationy Ry, + a (y,-Y;) fails to be present. Indeed,
this follows from the subsequent chain of equivalences:

YRy;+a(yo-y) = ORX;p+a (X-X)) = X+ (X-Xq) € Cu (111.2)
For the first equivalence in this chain, we use the invariance under trandation (by -y), and the
second oneis granted by Equation (105.2). But 6 has been chosen such that the last link of the chain
isfasefor a € ]0, 8[; so the same holds for the first one.

Exercise 12, p. 97

Wewill first present arather informal solution, and then put it into the more formal framework of
a probability space. So let C := {a, b} be the set of available conditions, X a C-valued random
variable indicating the applied experimental condition, and Y a W-valued random variable - the
dependent variable of the randomised experiment. Then the following equation holds for every A€ S
in the situation described in the text (P(..) standing for 'probability of ..):

YidA)  =P(YeA)
P(X=aAYeA) V (X=bAYe A))
PX=a)-P(YeA|X=a) + PX=b)-P(Ye A| X=D)
=Y (A) + (1-a) - Yip(A). (112.2)

For a more formal approach, let W be a non-empty set, S a system of subsets of W, and define
C:={a, b} and Q := C x W. Furhtermore, let A, be the o-algebrain W generated by the set system
S, and let the set C be endowed with its power set PW asits o-algebra. Finally, let A be the coursest
o-algebrain Q, where the projection maps pr,:Q-C and pr,:Q-W are measurable, and let P be a
probability measure on A. Then the probability space (Q, A, P) can be considered to model the
random selection of an experimental condition and the performance of the experiment under this
condition in the following understanding: An element w = (c*, w) of Q withc* e Candwe W
represents the choice of condition ¢* and the result win the experiment. Now let X:Q-C and Y:Q-W
be the two projection maps; i.e., X isa C-valued random variable indicating the selected condition,
and Y a W-valued random variable representing the result of the experiment; i.e., X and Y are the
independet and the dependent variables of the experiment. In particular, the definition

13



o« =P(X=a) (112.2)
specifies the probability that the experiment is performed under condition a. Without loss of
generality, we may assume O < a < 1. (Otherwise, the result is trivial.) Now define the maps
Yia:S-R, ¥;p:S-R and y;.:S-~R such that the equations

Vig(A) =P(Ye A| X=a), (112.3)

Yin(A) =P(Ye A | X=D), (112.4)
and

Vig(A) =P(Y € A). (112.5)

Before we proceed, observe that these definitions reflect the verba statements that the maps y;
Yip and y; represent the behavioura dispositions of subject i under condition a resp. b resp. in the
randomised experiment. Indeed, these statements imply the tacid assumption that the behaviourad
dispositions of subject i under a given experimental condition a or b are not affected by the
randomisation probability «. For this reason, the equation

Yic(A) = a Yig(A) + (1-a) yip(A), (112.6)
is introduced only as a plausible assumption and not as a necessary consequence of the assumed
situation. To be quite exact, we would have to consider a separate probability measure P, on A for
every o € ]0, 1] and introduce the assumption that the equalities

Py(YEA|X=a)=P(YeA|X=a) (112.7)
and
Py(YeEA|X=b)=P(YeA|X=bh) (112.8)

hold for all randomisation probabilities o' and " and every A € S. But then we may a'so maintain
the denotation P and let it refer to the probability measure P, for an arbitrary given o € ]0, 1[.
In this understanding, Equation (112.1) follows from the above definitions.

Exercise 13, p. 99

Referring to a suggestion in the preliminary remarks, we will first present a sulution under the
assumption that S isthe power set of afinite set W, and then we will outline a generalisation to other
stuations. Under the above assumption, let Y be a set of probability measureson S, and v:W-R an
arbitrary map. Than the definition of the map g,.Y-R in the text can be rewritten as

() = Lwe wVW) - y({w}), (113.1)
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the validity of thismap being required for every y € Y. But this equation can be easily generalised to
the vector space F of al maps S-R: We can just require that Equation (113.1) holds for every map
y:S-R, and we obtain amap g,.F-R, whose linearity is easily verified:
AAY) =XwewVW) - A-y({w})
=4 Ywe wVW) - y({u})
= A gY)- (113.2)
Note that the first equality is based on pointwise multiplication of the map y by the scaar A.
Similarly, pointwise addition of mapsy, and y, leads to the following equation:
gu(Y1+Y2) = YwewVW) - (y1({w}) +y({w})
= YwewVW - y1iwh) + Yo wVW - yo({w})
= gy(y1) + 0,(¥2)- (113.3)
So the map g,,F-R isalinear, indeed.

The generdisation of this proof to situations with an infinite set W requires some analytical tools,
which may be unfamiliar to some readers. For this proof, let W be a nonempty set, S a system of
subsets of W, A the o-algebrain Wwhich is generated by W, and v:W-R a map, which is measurable
with respect to A.

Before the proper proof, we should make explicit an assumption underlying the definition of the
expectation EZ~y V(Z) on p. 98: The assumption that an element y of the set Y (i.e,, amap y:S-R)
'specifies the distribution of the random variable Z. More explicitly, this means that every map
y:S-R, whichisan eement of Y, has a unique extension to a probability measure on A. (Otherwise,
y could not specify the distribution of Z.) On the background of this explication, we can introduce
the notation P,, for this unique extension.

Now let M, be the set of all finite, non-negative measures p on A, where theintegral [ vduis
finite, and define amap h:M_~R such that h(y) is the value of that integral for every p € M,. It was
required in the main text that the expectation of the random variable v(Z) must be finite, if Zisa
W-valued random variable, whose distribution is specified by an element of Y. In our present
notation, we can reformulate this assumption as Py e M,. In summary, Y is a set of maps S-R,
which arerestrictionsto S of elements of M,

On this background, the definition of the map g,:Y-R in the main text can be rewritten as

a(y) := h(Py). (113.4)

15



Having thus reformulated the assumed situation, we will now extend the map h:M,-R to a map
h':M-R, where M is the set of those maps p: A-R which can be represented as a difference of two
elements of M. Now the theory of Jordan-Hahn-decompositions (see e.g. Bauer, 1992, p. 125,

Exercise 3) dlowsto specify a unique decomposition of this kind. For every p € M, there are unique

elements 1, and p_ of M, such that the following properties hold for every A € A:

- H(A) = pu(A) - P(A).

- (A) >0 = p_(A) =0.

-H(A)>0 = p(A) =0.

The first property can also be formulated asu = p,. - 1_, and thisis frequently called the Jordan-

Hahn-decomposition of p. Hence, the map h':M-R iswell defined by the specification

h'(W) := h(u,) - h(p.), (113.5)
which must hold for every p € M with the above Jordan-Hahn-decomposition.

An explicit presentation of some further steps of the proof would lead too far; but some readers
may verify the following assertions:
- For p € M4, we have 1, = |; hence h' is an extension of h, indeed.
- Theset M isavector space, or - more precisely - alinear subspace of the space of all maps A-R.
- Themap h' islinear.
- Let F( be the set of those maps S-IR, which are restrictionsto S of elements of M, and define a
map f:M-Fq such that f(l) (with p € M) istherestriction to S of p. Then Fj isalinear subspace
of F (the set of al maps S-R), and the map f is linear and bijective. (The concept of alinear map
isexplicated in Definition A.2.g only for maps F-R; but this definition can be generalised to maps
from one real vector space into another one.)
On the background of these facts, we may define amap g:Fy-R by

g(y) :=h'(f X)) (1136)
for every y € Fp. Again, it is|eft to the reader whether he or she wants to verify two well known
properties og linear maps. The inverse of a bijective linear map is linear, and a concatenation of two
linear mapsislinear. Hence the map g is linear. At this point, we must introduce a fact, whose proof
may overcharge most readers: If Fg isalinear subspace of area vector space F, then every linear
map Fy~R can be extended to alinear map F-R. (See e.g. Holmes, 1975, p. 3, for aproof.) So let
the map g':F-R be an arbitrary linear extension of the previoudly introduced map g:Fy-IR. Then it
is left to prove that g' is an extension of the map g,:Y-IR given by Equation (113.4). Now observe
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that the definition of the map f impliesf~ 1(y) P for every element y of Y. Furthermore, since the
map h' is an extension of h, the definition of the map g implies g(y) = gv(y) Finadly, we get
g'(y) = g/y), Snce g isan extenson of g. But if this holds for every y € Y, then ¢' is an extension of
0,, indeed.

Exercise 14, p. 99

Let W be the set of possible response patternsin atest consisting of m items with item parameters
(real numbers) n4..n,, More presisely, every element w of W is an m-dimensional vector with
W = 1, if item j is'solved’, and W, = 0 otherwise. Furthermore, let Y be the set of all probability
measures on PW with the following property: Thereisarea number 0 such that the probability of
response pattern wis

m o O-m)w

114 e
It is easily verified that the set Y is convex for m = 1, and we will show that it is non-convex for
m > 1. It suffices to present an example of two elementsyl andy, of Yand ascaar « € ]0, 1[ such
that the vector o y; + (1-a) y, is not contﬂned i Q Y. hFor cqcng?nlengaeb IWe introduce a
reparametrisation. With the definition 5 := e nj, the set Y is the set of al probability measures on

PW, where the probability of response parren wis

E 1+ts

with t > O (coressponding to &% in the former parametrisation.
Now let setsAJ (withj =1..m) consst of dl elements w of WW|thw 0;i.e, thesetA represents
the event 'item j not solved'. Then the equations
(A) 1/ (1+t ﬁ) (114.1)
and
Y(AL 1 AY) = Y(A) - Y(A) (114.2)
follow immediately for the probability measure y based on parameter t.
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On the background of these equations, it is easy to give an example proving the non-convexity of
the set Y. More precisely, we will show that the assumption of a convex set Y would lead to a
contradiction. So assume tentatively that Y is convex, let y, andy, be the probability measures based
on parameterst, := /s, and t, := 4/s;, and with « := 2/3, let the vector y, be given as
y3:=ayy + (1-a) y,. (114.3)
Fory; andy,, an application of Equation (114.1) withj = 1 leadsto y;(A;) = 0.5 and y,(A,) = 0.2,
and then Equation (114.3) yields
y3(A)) =05+ (1-a)-0.2=04. (114.9)
Now the tentatively assumed convexity of Y impliesthat y, is an element of Y. Combining Equations
(114.1) and (114.4), we can also reconstruct the underlying parameter t; by solving the equation
04=1/(1+t3-s)), whichleadstot; = 1.5/s,.
For an application of Equation (114.1) with j = 2, it is convenient to define z := s,/s,., which
impliesz> 0, s'nceq > 0O followsfor j = 1..m from the definition of S Then Equation (114.1) leads
to
Yi(A) =1/ (1+1 - ) =1/ (1+2),
Yo(A) =1/ (1+t,-s)=1/(1+42),
and
Ya(Ay) =1/(1+t3-s)=1/(1+152).
But for y5(A,), we can also apply Equation (114.3) and write

y3(A2) = yl(Az) + (1* OC) yz(Az) =2/ (3 + 3 Z) + 1/ (3 + 12 Z).
Combining the right hand sides of the two equations for y5(A,), we get

1/(1+152 =2/(3+32+1/(3+122).
Now it is eadsly verified that this equation has exactly two forma solutions: z= 0 and z = 1.
(Multiplying both sides of the equation by the product of the three denominators, we obtain a
guadratic equation in z, which canot have more than two solutions for z) But since the formally
correct solution z = 0 is excluded by the property z> 0, we obtain z= 1 as the only solution which
is compatible with the assumed situation. So a reference to the definition of zleadsto s, = s, and
thisimpliesy;(A,) = y;(A) fori=1.3.

Finaly, we can derive the probabilities y;(A; N A,) from Equation (114.2):

y1(A; nAy) =05-05=0.25,

Yo(A; N A =0.2-0.2=0.04,
and
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Obvioudly, this result contradicts Equation (114.3) with o = 2/3.
In summary, we have derived a contradiction from the tentative assumption that the set Y is
convex. Hence, Y is non-convex.

Exercise 15, p. 99

It suffices to show that the expectation of the number of 'correct solutions is a strictly increasing
function of the parameter 0 in the origina parametrisation of the solution to Exercise 14. So let
random variables ZJ- for j = 1..m be definied such that Z; := 1, if item | is 'solved, and Z;:= 0
otherwise. (With the interpretation of w contained in the solution to Exercise 14, we can also say
that Z is thejth component of the random variable Z from the main text.) Then it is easily verified
that tl!1e expectation of Z is the probability that item j is solved, and this probability is a strictly
increasing function of 6. Egut obvioudly, the number of correct solutionsis the sum of the Z;; so the
same holds for the respective expections. Finally, the sum of afinite collection of strictly increasing
maps is strictly increasing.

Exercise 16, p. 101

Let <, bethelexicographical order on R? as defined in the main text. For afirst example, consider
the vectorsy := (5, 3), y' :=(4, 2) and y" := (6, 2), and the scalar & := 0.5. Then the property
y' <Ly <L Yy" followsimmediately from the order of the first components of these vectors. For the
vector z,, which is defined in the main text for « € [0, 1] by z, :=y" + « (y" -Yy'), we can write
z, = (4 + 2 «, 2) in this situation. Now the first component of this vector is smaller than 5 for
0 < a<9;s0z, < Y follows from the definition of the relation < . For o = 8, we have z, = (5, 2),
and since the first components of this vector and of y are identical, their order is determined by the
second component, leading to z,, <, y. Finaly, for & < « < 1, the first component of z,, is greater
than 5, leading toy <| ,«. In summary, we have z, <| y for a € [0, 8], andy < z, for « € |5, 1].

A second example is identical with the first one with the exception 'y := (5, 1). For « # 9, the
arguments of the first example can be repeated. For o = 8, we have again z, = (5, 2), and the order
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of the vectors z, and y is determined by their second components; but for the new vector y this
means 'y < z,. So the changed definition of y leadsto z, < y for « € [0, 8[, and y < z, for
o€ [0, 1].

Exercise 17, p. 103

The largest abvantage of y over zisin the first dimension; but it is smaller than the advantage of
z over y in the third dimension, leading to y < z. Findly, the largest advantage of x over z (first
dimension) is greater than the largest advantage of z over x (third dimension); hence z < x

Exercise 18, p. 103

In this exercise and the following one, the default range 1..2 of subscript j isreplaced by 1..3.

To generalise the order based on the 'largest advantage' of one vector over another one, we should
gart with amoreformd explication of the notion of largest advantages. For an ordered pair (X4, X5)
of dements of R3 with components X, (j) resp. X»(j), we define real numbers d; (xl, X,) as follows:
Let {kq, ko, k3) be a permutation of the numbers 1, 2 and 3 such that

Xo(Kq) = X1(Kp) = Xo(Kp) = X1(Ky) < Xo(K3) - Xq(Kg). (118.1)
Then the three differences in this inequality are called d; (xl, X5); 1.€e.:
d(xl, Xo) —x2(k) xl(k) (118.2)

Note that the permutatlon { kl, Ko, K3) will not be unique in situatios, where some of the differences
ininequality (118.1) are equd; but even in such situations, the numbers dJ (X1, X5) given by Equation
(118.2) are independet of the choice of a particular permutation from those fulfilling Inequality
(118.1).

In this notation, the largest advantage of x; over X, is -d;(X;, X,), whereas the largest advantage
of X, over x; isd;(Xq,X,).

In the main text, two preference relations are defined, which differ in the treatment of situations
with —d;(X4, X,) = dz(X1,X5). These preference relations will subsequently be denoted as <" and <".
Tge following equivalences have to be understood as definitions applying to all vectors x; and X, of
R*:
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X 2" Xy 1= =dg(Xq, Xp) < d3(Xq, Xo). (118.3)
Xq 2" Xy 1= —d(Xq, X9) < dg(Xq, X9) V

(—d1(Xq, X5) = da(X1, X5) A do(Xq, X5 > 0). (118.4)

The reader isinvited to reformulate in this notation the argumentsleadingtox <y, y < z,and z < x

in themain text and in the solution to Exercise 17. So the relations <" and <" aren't orders, since they

are intrangitive. Nevertheless, notations like x <'y have to be understood as x <'y A =(y <' X).
Similarly, x <" y meansx <" y A\ =(y <" X).

Having thus defined the relations, we can easily show that they are direction-based. For vectors
Y11, Y12, Y21 @d Yo, and ascalar A > 0 with the property yoo-yo1 = A (Y1o-Y11), the equation
d(Yo1, Yoo) = A dj(yll, y1o) followsimmediately (for j = 1...3) from the definition of d; in Equation
(118.2). But then the definitions of the relations <' and <" immediately lead to the equivalences

Y11 2" Y12 = Y21 'Y @dyqg <" Y1o = Yo1 <" Yoo

Exercise 19, p. 104

The vectors x, y and z introduced in the main text show that the relations <' and <" are
intransitive. Hence, the non-convexity of the respective direction cones follows from Corollary
3.1.(5).

Exercise 20, p. 104

Let x, y and z be element of areal vectorspace F. Now consider the equation

a+ta(c-a)=x+A(b-x) (120.2)
immediately before Footnote 16 of the main text , which is the main part of an explication of the
relation 'viewed from x, vector b lies between a and c'. For the vectors x, y and z of the present
dtuation, we have to write the rdation 'viewed from O, the vector z-x lies between y-x and z-y'. So
we have to assign the roles of the vectors a, b, ¢ and x in the above equation to the vectors y-x,
z-X, z-y and 0, leading to

(y-x) +a((z-y) - (y-x)) = 0+ 24 ((z-x) - 0). (120.2)
Taking « = A = 0.5, and using well known rules for bracket-operations, we get
05z-05y =05z- 0.5y, (120.3)
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and no furhter proof is necessary to verify the validity of this equation for all elements x, y and z of
areal vector space F.

Nevertheless, some readers may ask whether dl agebraic operations known from real numbers are
legal in real vector spaces. Indeed, the answer to this question is negative. For readers of limited
familiarity with real vector spaces, it may be a good exercise to justify systematically all operations,
which have been applied above, by the axioms of rea vector spaces. (See Definition A.1 in the
appendix of the main text for these axioms.)

Exercise 21, p. 106

In the context of p. 106, the set Cy, is defined as the smallest conein F containing D as a subset.
To verify the equation

Cr=Uy50A DR, (121.2)
it suffices to prove the following general proposition, which will aso be helpful in further Exercises:

Propostion 121.1.1 Let A be a non-empty subset of areal vector space F, and let a subset C of F be
defined as
C:=Up gL A (121.2)
Then C isthe smallest conein F containing A as a subset.

For asolution of Exercise 21, we identify the set Dg from the main text with the set A of the above
proposition. Then the proposition will imply that C (being defined as the smallest cone in F
containing Dy, as a subset) isidentical with the set C given by Equation (121.2).

Of course, the product A A of ascdar A and a subset A of areal vector space has to be interpreted
in the undserstanding of the respective notational convention (immediatly after Definition A.1in the
appendix of the main text): It isthe set of al vectors A a, where ais an lement of A. In particular
for A =1, weobtan A A=A. So Aisasubset of C, and it is left to show that C isa cone, and a
subset of every cone containing A as a subset.

To prove these properties, let C™ be an arbitrary conein F containing A as a subset, x an arbitrary
element of C, and A a strictly positive scalar. It sufficesto verify the propertiesx e C" and A x € C.
So let abean element of A, and p astrictly positive scalar such that x = [ a, the existence of a and
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H with these properties being granted by the assumption x € C and by the definition of C. Then ais
andement of C7, snceAisasubset of C, and thisimpliespa e C, since C isacone. Findly, the
equation A x = (A-Y) aleadsto A x € C,since A - > 0.

Exercise 22, p. 106

We have to verify the claim that the cone Cx, (i.e., the smallest cone in F containing D) is a
potential direction cone of the relation R. In other words, we have to show that the equivalence

y1 Ry, <y, -y, €Cq (122.1)
holds for all elementsy, andy, of .

So let y, and y, be arbitrary elements of Y, and assume for the proof of the forward implication
that the relation y; Ry, holds. Then the vector y, - y, isan element of D by the definition of this
set. So this difference is also an element of the cone C , which contains Dy, as a subset.

Conversdly, if y,-y, € Cg, let x be an element of Dg and A a strictly positive scalar such that
Y>-Y1 = A X. (The existence of such A and x granted by the equation Cg = U, .5 A Dg, which has
been established in Exercise 23.) Then the Definition of D implies the existence of elementsy'; and
y's of Y such that x = y'5-y'; and y'; Ry',. But for a direction-based relation R, this implies
y1 RYs, since the assumed properties can be combined to y,-y; = A (Y'>-Y'9).

Exercise 23, p. 106

We have to show that Cristhe only potential direction cone of the relation Riff Cy = F. A proof
with a uselful side result can be based on the equation
C nCp=Cg (123.1)
which has been introduced in the main text for every cone C™ in F as a necessary and sufficient
condition of being a potential direction cone. With the notation D for the set system of all potentia
direction cones, this set system is described by the equation
D={C cF:3Ac(F\Cp): C =CrulU; 5oL A} (123.2)
Proof: For every potential direction cone C™, we can take the set A := C"\Cp. Conversdly, if Ais
asubset of F\Cp, then Proposition 121.1 shows that the set U, . A Aisacone. It can be left to
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the reader to show that the union of two cones (e.g. Cg and U, .o A A) isa cone and that Equation
(123.1) holds for every element C™ of the set system D specified by Equation (123.2).
Recalling that C, is a subset of Cp, we see that every subset A of F\Cp isdigoint from Cg. On this
background, Equation (123.2) alows the following conclusion: The set Cy, is the only element of the
set system D iff the empty set is the only subset A of F\C,. Obviousdly, this condition is equivalent
with Cp = F, since Cp is a subset of F.

Exercise 24, p. 106

We have to show that the sets Cg, which are analysed in the context of p. 106 and in Corollary 3.1
are identical under the assumption Y = F. To avoid ambiguity of notation, let C™ be a potential
direction cone of the relation R (whose uniqueness in situations with Y = F is shown on p. 106), and
reserve the denotation Cy, for the cone treated in Corollary 3.1; i.e.,

Cr={xe F:ORX}. (124.1)
Now let x be an arbitrary element of F, and we will verify the equivalence
x-0e C” = xeCy (124.2)

For the forward implication, the assumption x-0 € C~ immediately implies 0 R x, since C™ is a
potential direction cone. So x € Cg is granted by Equation (124.1). Conversely, for x € Cg,
Equation (124.1) gives 0 R x, and x-0 follows, since C™ is a potential direction cone.

Exercise 25, p. 107

Let C™ be apotentia direction cone of a direction based relation R on a non-empty subset Y of a
real vector space F. We have to show that the cone C™ ispointed (i.e., 0 € C") iff therdation Ris
reflexive.

Under the assumption 0 € C™, wehavey-y € C for every element y of the set Y, and thisimplies
y Ry, since C™ is assumed to be a potential direction cone. But if y Ry holdsfor every y € Y, then
the relation Risreflexive.

Conversaly, the assumption of areflexive relation R impliesy Ry for every element y of Y, which
impliesy-y € C for the direction cone C".
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Exercise 26, p. 108

To verify the equivalence of Assertions (1) and (3) of Corollary 3.2, we will first present an easy
proof of theimplication (3) = (1). So assume that the direction cone Cy, of a direction-based relation
R on aconvex set Yis convex, and let yg, Y4, Y, and y3 be elements of Y such that the equation

y1+a(Y3-Y1) =Yoo+ A (Y2 Yo) (126.1)
holds for suitable real numbers o € ]0, 1] and A > 0. To verify the implication concluding Assertion
(1), we haveto derive therelaion y, Ry, from the premissa the relations yg Ry, and yg R y5 hold.
Now this premissaimplies that the vectors y, -y, and y5-y, are elements of the direction cone Cg,.
Furthermore, Equation (126.1) can be rewritten as

A (Y2-Yo) = a (Y3-Yo) + (1-a) (Y1-Yo)- (126.2)
Since the right hand side of this equation is a convex linear combination of elements of the convex
set Cpg, the vector A (yo-Yq) isaso an element of this set, and thisimpliesy,-yq € Cg, since Cr is
acone. But then yg Ry, follows from the property defining a direction cone.

To verify the implication (1)=(3), assume that Assertion (1) holds, let x; and x, be arbitrary
elements of the direction cone Cr,  ascdar with 0 < o < 1. We have to verify x € Cg, for the vector
X defined as

X=Xy + (1-a) Xg. (126.3)
In afirst step, we will prove the existence of a scalar A > 0 and of elements Yij of Y such that
yi1 Ryi2, and x; = A (Y5 Y;9- Equation (121.1) implies the existence of strictly positive scalars
A4 and A, and of elements X'y and X', of D such that x; = A; X';. The derivation of a scalar A and
elementsy;; of Y depends on the order of A, and 4.

- For Ay < A,, define A := A,, B := A4/A,, and let y, yq5, Yoq and y,, be elements of Y such that

X'1 =Y12-Y: X'5 = Yoo-Yo1, Y RYqo, and y,q Ry, the existence of elements of Y with these

properties being granted by the definition of the set D. Then the definition

Y11 =By +(1-B) y1, (126.4)
gives another element of Y (recall the assumed convexity of this set) such that
Y12-Y11 = B (Y12-Y)- (126.5)

This equation has two consequences. First, y;1 Ry, followsfromy Ry, ,, since Ris direction-
based, and 3 > 0. Furthermore, the assumptions, definitions and results can be combined in the
eguations
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C)I(l = A X' = AP (Y12-Y) = A (Y12~ Y1) (126.6)
an
- For A1 > A,, we use asymmetric gpproach. Define A := Aq, B := A,/Aq, and let yq4, Y1o, Y and y,,
be dlements of Y with the properties X'y = y15-Y11, X'2 = YooY, Y11 RYp andy Ry,,. After the
definiton
Yo1:= By +(1-B) yoo, (126.8)
we can repeat the above arguments to verify the properties x; = 4 (yj>-Y1o) and yj; Rys.
Having established the existence of ascalar A > 0 and elements y; J- with these properties, we define
further vectors as suggested in Footnote 20 of the main text.:

Yo:=0.25 (Y11 + Y12 T Y21 T Y20, (126.9)

Y1:=Yo+0.25(y12-Y11), (126.10)

¥3:=Y0 + 025 (Y227 Y21): (126.11)
and

Yo =y +a(yz-yq)- (126.12)

Certainly, these vectors are elements of Y due to the convexity of this set. Furthermore, the
definitions imply

Y1-Y¥0=0.25(Y12-Y11) (126.13)
and
Y3-Yg = 0.25 (Y25 Y21), (126.14)

and these equations allow to deriveyg Ry, and yg Ry; fromy,; Ry, resp. y,1 Ryo,, since the
relation R is direction-based. So the assumed validity of Assertion (1) leadsto yy Ry,, and thisis
equivaent withy,-yg € Cg, Since Cristhe direction cone of the relation R. But then x € C, follows
from the cone property of C and the subsequente contionuation of Equation (126.3):
X =0 Xy+ (1-a) Xq.

= A (Yoo-Yor) + (1) A (Y12-Y11)

= A (a4 (y3-Yo) + (1-a)4 (Y1-Yo))

=4A (y1 + o (Y3-Y1) -Yo)

=4A (Yo-Yo)- (126.15)
Note that the trangtions to the third line and to the last one are based on the definitions of the
vectorsy, Y, and ys.
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Exercise 27, p. 109

We may use Corollary 2.2 and transfer the roles of the relation R and the cone Cy, of that corollary
to therelation R™ and the cone C™ of the present situation.

Exercise 28, p. 109

In the Situation assumed on p. 109 of the main text, the direction cone Cy, of the relation Risaso
the direction cone of the relation R' (see Exercise 27). For situations, where the smallest affine
subspace of F containing Y is a proper subset of F, we have to show that some element of F cannot
be represented as a difference of two elements of Cp,.

So let R be a direction-based relation on a non-empty subset Y of a real vector space F.
Furthermore, let X* be the smallest affine subspace of F including the set Y as a subset, assume that
and let X bealinear subspace of F resulting from a suitable trandation of X*. In other words, X isa
linear subspace of F such that the equation

X={X+x:xe X} (128.1}
holds for a suitable trandation vector x; € F. So let Xt be a given element of F with this property. We
dam that the direction cone Cy, of the relation R is a subset of X. If this claim can be verlfled then
al differences of elements of C must be elements of X, since X is a linear subspace.! Hence, for
x € F\X*, the vector x + x; cannot be represented as a difference of two elements of C, since
X + X ¢ X follows from x ¢ F\X* by Equation (128.1).

To provetheincluson Cy < X, let x be an arbitrary element of Cg, and we will show that x isaso
an element of X. So let y, and y, be lements of Y, and A ascalar such that

L Although Definition A.2.e requires only that a linear subspace is closed under addition
and scalar multiplication, this implies being closed under differences: Ifx; and ». aie
elements of a linear subspace S of a real vector space, then the difference x,, - x; can
be written as ». +A x; with A =- 1. ButA x € S follows from closure under scalar
multiplication, and then closure under addition leads tox, +A x; € §

Readers, who are uncertain whether the property (- 1) x = - x {which is well knowr
inR™) applies to general real vector spaces, can derive it from Assertion (5) of Definition
A2, usingh =-Tandp=1
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X=2A(Yy - Yq)- (128.2)
(For the existence of y4, y, and A with these properties, note that Equation (121.1) implies the
existence of ascalar A and an element X' of the set D such that x = A x'. Furthermore, the existence
of elementsy, andy, of Ywith x' =y, -y, follows from the definition of Dg on p. 105.)

Now observe that the vectorsy, and y, - being elements of Y - must also be contained in X*, since
X* is assumed to include Y as a subset. So the vectorsy; + x; and y, + x; are elements of X by
Equation (128.1). But then X - being a linear subspace of F - must also contain the vector
A ((yo + %) - (Y +Xp), which isequa to x by Equation (128.2).

Infact, the inclusion Cr < X could also be taken from Lemma A.6.(3). Note, however, that both
sets are defined in Lemma A.6 in away differing formally from their introduction in the context of
p. 109. Although the equivaence of the definitions can be derived from 'well known' properties of
linear and affine subspaces, averson of this proof, which is comprehensible for beginnersin the area
of genera real vector spaces, would be rather tedious.
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