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Solutions for Exercises

contained in the chapter

Albrecht Iseler:
Über richtungsbasierte Relationen in reellen Vektorräumen

in

K. Ch. Klauer & H. Westmeyer:
Psychologische Methoden und soziale Prozesse

Festschrift für Hubert Feger
Lengerich: 1998,

pp. 80-121

The subsequent solutions are given in English to support quotations of results in other papers. For
the same reason, we will sometimes refer to the English definitions in the appendix instead of the
German ones in the main text.

The above quoted chapter will subsequently be called the main text.
Before solutions are tried, the following corrections to the main text should be noted:

 - In the 6  line of p. 93, the exponent in the definition of "  must be i!1 instead of 2!i; i.e., "  :=th
i        i

8  / (1+8).i!1

 - In Definition A.2.g, the subscripts are displaced. The first equation must be
g(x  + x ) = g(x ) + g(x ).1  2   1   2

Links to additional documents (an extended version of the appendix of the main text, including
proofs, and further errata) are contained in the WWW-document http://userpage.fu-
berlin.de/~iseler/papers/dirbas_mat.htm.

To prevent confusions between the numberings of propositions, equations etc., the numbering x.y
resp. (x.y) is subsequently chosen such that x is the number of the respective exercise plus 100.
Other numbers of equalities, definitions, propositions etc. refer to the main text, and the same holds
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for numbers of pages in the range 80-121.
We resume the general notational conventions from pp. 81!82 of the main text. In particular,

recall that propositions etc. containing expressions with subscript i or j refer to values 1 and 2 of
these subscripts unless another range is specified in the local context.

The author is aware that the solution of the exercises may be for some readers their first
experience with general notions of real vector spaces. Since these readers may be uncertain about
the applicability of wellknown properties of R ,  such properties will sometimes be derived fromn

requirements of Definitions A.1 and A.2 in the main text. However, a consistent application of this
approach would make the solutions tedious and hard to follow up. For this reason, the reader is
encouraged to try solutions under the simplifying assumption that the underlying vector space is an
R . A basic familiarity with this class of vector spaces should be sufficient for solutions under then

said simplifying assumption. An additional hint refers to Exercise 13. Whereas a general solution of
this exercise requires some advanced analytical tools, it becomes elementary under the simlifying
assumption that S is the power set of a finite set W.

Subsequently, some exercises will be solved in a way yielding as side results some generalisations,
whose discussion in the main text would have diverted from its train of thoughts. Naturally, many
readers will choose other solutions.

Exercise 1, p. 87

Let a binary relation R on a real vector space F be based on a linear map g:F6R such that the
defining equivalence

x  R x   :]  g(x ) # g(x ) (101.1)1  2    1   2
holds for all elements x  and x  of F, and consider the set C  defined by1  2       R

C  := {x 0 F: g(x) $ 0}. (101.2)R
Certainly, this set is a cone (i.e., closed under multiplication by scalars 8 > 0): For every scalar 8 > 0
and x 0 C , the linearity of the map g impliesR

g(8 x) = 8 g(x) $ 0, (101.3)
the last inequality following from the assumptions 8 > 0 and x 0 C  by the definition of the set CR       R
in Equation (101.2). The same definition allows to derive 8 x 0 C  from 8 x $ 0.R

To verify that the Equivalence (1.1) holds for all elements x  and x  of F, we can combine1  2
Equivalence (101.1) and Equation (101.2) to the chain
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x  R x   ]  g(x ) # g(x )  ]  g(x !x ) $ 0 ]  x !x  0 C , (101.4)1  2    1   2     2 1      2 1  R
the second equivalence in this chain being based on the linearity of the map g, which implies
g(x !x ) = g(x ) ! g(x ).2 1   2   1

Exercise 2, p. 87

The cone C  defined by Equation (101.2) is pointed, since the linearity of the map g impliesR
g(0) = 0. To verify its convexity, let x  and x  be arbitrary elements of C  and consider the vector1  2     R
x defined by

x := " x  + (1!") x (102.1)1   2
with " 0 [0, 1]. We have to show that every such x is an element of C . The linearity of g impliesR

g(x) = " g(x ) + (1!") g(x ) $ 0, (102.2)1    2
the final inequality following from the assumptions " 0 [0, 1] and x  0 C , the second one leading toi  R
g(x ) $ 0 by Equation (101.2).i

Since linear orders have been introduced (on p. 83) as binary relations R one a real vector space
F, where Equivalence (1.1) holds for all elements x  and x  of F and a pointed, convex cone C , we1  2        R
may combine the results of Exercises 1 and 2 in the conclusion that R is a linear order, indeed.

Exercise 3, p. 87

In the situation of the preceeding exercises, let x and y be elements of F such that the relation
n x R y holds for every n 0 N. Then Equivalence (101.1) leads to n g(x) # g(y) for every n 0 N.
(Note that the linearity of the map g implies g(n x) = n g(x). ) But then we get g(x) # 0 = g(0), and
another reference to  Equivalence (101.1) allows to derive x R 0.

Exercise 4, p. 88

To be proved: If R is a binary relation on a subset Y of e real vector space F, and C  a cone in FR
such that the eqivalence

y  R y   ]  y !y  0 C (104.1)1  2    2 1  R
holds for all elements y  and y  of Y, then the equivalence1  2

y  R y   ]  y  R y (104.2)11  12    21  22
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must hold for all elements y  of Y, where the equationij
y !y  = 8 (y !y ) (104.3)22 21   12 11

holds for some scalar 8 > 0.
So let Y, R and C  with these properties be given. For elements y  of Y fulfilling Equation (104.3)R        ij

for a scalar 8 > 0, the outer equivalences in the chain
y  R y   ]  y !y  0 C   ]  8 (y !y ) 0 C   ]  y  R y (104.4)11  12    12 11  R     12 11   R    21  22

follow from an application of Equivalence (104.1), whereas the second equivalence in the chain is
granted by the assumption that C  is a cone.R

Exercise 5, p. 89

We have to prove Corollary 2.2. So let R be a binary relation  on a real vector space F. Since the
implication (3)Y(1) has already been proved in Exercise 4 (without explicit reference to the concept
of a direction-based relation), it suffices to verify the implications (1)Y(2)Y(3) and the concluding
assertion.
(1)Y(2): Assume that the relation R is direction based, let y , y , and y be arbitrary elements of F,11  12

and 8 > 0 a scalar. With the definition
y  := 8 y (105.1)2j   1j

for j = 1 and j = 2, we can easily verify the validity of Equation (104.3); hence Equivalence
(104.2) follows from the assumption that R is direction-based. But as special cases of this result
for 8 = 1 resp. y = 0, we obtain that the relation R is, indeed, invariant under translation (resp.
under multiplication by strictly positive scalars) .

(2)Y(3): Under the assumption that the relation R is invariant under translation and multiplication by
strictly positive scalars, define a subset C  of F byR

C  := {x 0 F: 0 R x}. (105.2)R
This definition implies the outer equivalences in the following chain, whereas the second one
follows for every 8 > 0 from the assumption that the relation R is invariant under multiplication by
strictly positive scalars:

x 0 C   ]  0 R x  ]  0 R 8 x  ]  8 x 0 C (105.3)R                    R
But if this equivalence holds for every x 0 C  and every scalar 8 > 0, then C  must be a cone (inR        R
the weak understanding of this concept explicated in Definition  A.2.c). To establish the validity
of Equivalence (1.1) for all elements x  and x  of F, observe that the first equivalence in the1  2
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follwoing chain is granted by the assumption that the relation R is invariant under translation (e.g.,
by !x ), whereas the second equivalence results from Equation (105.2).1

x  R x   ]  0 R x !x   ]  x !x  0 C (105.4)1  2      2 1    2 1  R
Finally, observe that the concluding assertion of Corollary 2.2 is a side result of the above proof

of the implication (2)Y(3). In particular, to fulfill Equivalence (1.1) for x  = 0, a set C  must be1     R
identical with the one defined in Equation (105.2).

To round the result, note that Corollary 2.2 shows the equivalence of three possible definitions of
linear orders: Adding one of the equivalent properties desribed in Assertions (1), (2) and (3) to the
requirement that R is reflexive and transitive, we get a linear order. In the solution to Ercercise 10,
a fourth equivalent approach will be added,

Exercise 6, p. 89

Let Y be the set consisting of the vectors y  in the right part of Figure 1. We have to prove theij
following assertion: There exists a position of the zero-element and a binary relation R on Y with the
two invariances claimed in Assertion (2) of Corollary 2.2 such that y  R y  and ¬(y  R y ). Now11  12  21  22
consider a situation with

y  = 0, (106.1)11
and

R = {(y , y )}. (106.2)11  12
I.e., the zero-element of tthe vector space is identical with y , and the ordered pair (y , y ) is the11      11  12
only ordered pair (y', y") of elements of Y where the relation y' R y" holds.

Since Equation (106.2) implies y  R y  as well as ¬(y  R y ), it suffices to verify that this11  12    21  22
situation is compatible with the invariances under consideration. Now these invariances refer to
situations, where y'  are (not necessarily different) elements of Y. For such situations, theij
equivalence

y'  R y'   ]  y'  R y' (106.3)11  12    21  22
is claimed under two conditions: It must hold
 - If there is an element x of F such that

y'  = y'  + x, (106.4)2j  1j
 - If there is a scalar 8 > 0 such that
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y'  = 8 y' , (106.5)2j   1j
the validity of Equation (106.4) resp.  (106.5) being required for j = 1 and j = 2 with the same x resp.
with the same 8. Of course, Equivalence (106.3) is tautologically true for x = 0 resp. 8 = 1: Then
y  = y  follows immediately. There is also a non-tautological consequence of invariance under2j  1j
translation. Consider a situation with y'  = y'  and y'  = y' . Here Equation (106.4) holds for11  12  21  22
x = y'  ! y' . Requiring the validity of Equivalence (106.3) for such situations means that the21  11
relation R must be either consistently reflexive or consistently non-reflexive. Indeed, the relation
specified by Equation (106.2) is consistently non-reflexive. But for y'  … y' , there isn't any x … 011  12
such that Equation (106.4) holds for elements y'  of Y. (Try all triples of elements y' , y'  and y'ij        11  12  21
of Y with y'  … y'  and y'  … y' , and verify that the vector y'  + (y' !y' ) is not contained11  12  11  21       12  21 11
in Y. So there is no requirement of invariance under translation beyond consistent relexivity or
non-reflexivity. 

For invariance under multiplication by strictly positive scalars, consider the following geometric
interpretation of Equation (106.5) with 0 < 8 < 1. It means that y'  is an element of the line segment2j
connecting the zero-element and y' . Similarly, for 8 > 1 the equation implies that y'  is an element1j           1j
of the line segment connecting the zero-element and y' . But it is obvious that no configuration of2j
this kind can be made from the points y  in the left part of Figure 1, if the zero-element is identicalij
with y  (Equation (106.1)). So the invariance under multiplication by strictly positive scalars cannot11
be violated by the situation specified by Equations (106.1) and (106.2).

The obove geometric approach can also help to specify the only position of the zero-element,
where invariance under multiplication by strictly positive scalars has non-trivial consequences: Let
y be the intersection point of the two lines containing the points y  and y  resp. y  and y , and11  21  12  22
consider a situation where y = 0. Geometric intuition suggests that in this case the equation

y  = 1.5 y (106.6)2j   1j
must hold in a situation with the given property

y !y  = 1.5 (y !y ). (106.7)22 21   12 11
To verify this intuition algebraically, we can easily derive the equation

y  + 2 (y !y ) = y  + 2 (y !y ). (106.8)11   11 21   12   12 22
Equation (106.7) allows to replace y  on the left hand side of Equation (106.8) by21
y  ! 1.5 (y !y ), and then a simple rearrangement of terms gives the right hand side of Equation22   12 11
(106.8). Under a geometric interpretation, the point y  + 2 (y !y ) is the result of the following11   11 21
operation: Extend the line connecting the points y  and y21 beyond y , and - starting at y  - step11    11      11
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along this extension twice the difference y !y . An application of the same interpretation to the11 21
right hand side of Equation (106.8), this equation shows that both operations result in the same
point; i.e., the resulting point belongs to both extensions. So it is the intersection of the two
extensions, for which we have introduced the denotation y. Then Equation (106.6) can be derived,
indeed, from the assumption y = 0: If both sides of Equation (106.8) equal 0, we can write
0 = 3 y  ! 2 y , and then a rearrangement of terms leads to Equation (106.6) . But then the joint1j   2j
validity of y  R y  and ¬(y  R y ) would be excluded by invariance under multiplication by11  12   21  22
strictly positive scalars.

Although the existence of just one position of the zero-element and one relation R with the
required properties is sufficient, it may be interesting to give a more general description of
requirements following from invariance under translation and under multiplication by strictly positive
scalar:
 - Independendent of the position of the zero-element, invariance under translation implies that a

binary relation R on our set Y must be consistently reflexive or consistently non-reflexive.
 - The equivalence y  R y   ]  y  R y  is necessary, if and only if the equation y  + 2 (y  ! y )11  12    21  22         1j   1j  2j

holds; i.e., iff y = 0.
Every binary relation R on Y fulfilling these requirements is invariant under translation and
multiplication by strictly positive scalars.

The precise meaning of the invariances may also be clarified by to erroneous approaches for
situations with y … 0. One could be tempted to define points y'  := y  ! y and consider the chainij  ij

y  R y   ?]  y'  R y'   ?] y'  R y'   ?]  y  R y11  12    11  12   21  22    21  22
of questionable equivalences. Indeed, if the vectors y'  would be elements of the set Y, then the outerij
equivalences would follow from invariance under translation (by !y), whereas the second
equivalence would be granted by invariance under multiplication by the strictly positive scalar 1.5.
(it may be left to the reader to verify these claims.) However, if the relation R is a relation on a set
Y consisting only of the vectors y , then the above temptative chain of equivalences would lead usij
outside the domain of the relation.

A similar argument applies to another consideration: From the above definition of a vector y, we
can derive y  = 1.5 y  ! 0.5 y. In other words, the transition from y  to y  is considered as a2j   1j          1j  2j
concatenation of  a multiplication by 8 = 1.5 and a translation by x = !0.5y. But again, this
concatenation has consequences only if the results of the first operation (the products 1.5 y ) are1j
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elements of Y, i.e., if y = 0. More generally, such concatenations can very well be used to
demonstrate the difference between direction-basedness and invariance under translation and
multiplication by strictly positive scalars: Whereas these invariances grant the equivalence

8 y  + x R 8 y  + x  ]  y  R y (106.9)1     2      1  2
for y  0 Y, 8 > 0 and x 0 F only in situations with 8 y  0 Y, this additional requirement is unnecessaryj               j
for a direction-based relation. (See the equivalence of Assertions (5a) and (5b) in Lemma A.6.) Of
course, considerations of this kind are unnecessary, if a relation R is defined on an entire vector
space F: For Y = F, the condition 8 y  0 Y will always hold.j

Exercise 7, p. 93

It has already been pointed out in the remarks preceeding the solututions that the definition of the
coefficient "  is unfortunately wrong in the printed chapter. It must bei
"  := 8  / (1+8), (107.1)i

i!1

where 8 is the scalar underlying the assumption
y !y  = 8 (y !y ). (107.2)22 21   12 11
Combining Equation (107.1) with the assumption 8 > 0, we get 0 < "  < 1. So the two lineari

combinations y  + "  (x !y ) for i = 1 and i = 2 are elements of the line segment from y  to x . Itij  1 i ij                 ij  i
suffices to verify that both linear combinations result in the same vector: Then this result must be the
intersection point. For greater generality, the equality of both points is subsequently established for
vectors x  fulfilling the equationi

x  = ( y  + (1!() y (107.3)i   k1   k2
with k := 3!i and an arbitrary scalar (, which is 0.3 in the right part of Figure 1. For every such
situation, we can write:

y  + "  (x !y ) = y  + (1 / (1+8)) (( y  + (1!() y  ! y )1j  1 1 1j  1j      21   22  1j
= (8 y  + y  ! ( (y !y )) / (1 + 8)1j  22   22 21
= (8 y  + y  ! ( 8 (y !y )) / (1 + 8)12  2j    12 11
= y  + (8 / (1+8))  (( y  + (1!() y  ! y )2j       11   12  2j
= y  + "  (x !y ). (107.4)2j  2 2 2j

The outer equalities are immediate applications of Equations (107.1) and (107.3), whereas the
second equality as well as the last but one are based on simple algebraic transformations. For the
transition from the second line to the third one, observe first that the changes immediately after ( are
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justified by Equation (107.2). The further changes are based on the equation
8 y  + y  = 8 y  + y . (107.5)1j  22   12  2j

For j = 2, this equality is tautological, whereas its validity for j = 1 follows from a suitable rearrange-
ment of terms in Equation (107.2).

Although Equation (107.4) holds for every scalar (, its interpretation has to be qualified for ( = 0
and ( = 1. For ( = 1, we get x  = y  and x  = y . So the line segments from y  to x  and from1  21  2  11       11  1
y  to x  are identical and don't have a unique intersection point. Nevertheless, we could pick out21  2
one point y'  from this line segment by the definition y'  := y  + "  (x !y ) for such situations, the1        1  i1  i i i1
identity of the results for i = 1 and i = 2 being established by Equation (107.4). Then the equivalence

y'  R y'  ] y  R y (107.6)1  2  i1  i2
holds again for i 0 {1, 2}, and Equivalence (2.2) follows.

Similarly for ( = 0: Then the line segment from y  (= x ) to y  (= x ) contains the point given12  2   22  1
by the definition y'  := y  + "  (x !y ).2  i2  i i i2

Exercise 8, p. 93

For F := R , let  the subset Y of F be defined as2

Y := {(", $) 0 F: *"* = 1}, (108.1)
and consider the binary relation R on Y, which ist defined by

(", $) R ((, *)  :]  (" = ( v "$ # (*) (108.2)
for all elements (", $) and ((, *) of Y.

To show that the relation is pre-cancellative, let y = ((, *), y  = (( , * ) and y  = (( , * ) be1  1  1   2  2  2
elements of Y, and " 0 ]0, 1[ a scalar such that the vectors

y'  := y  + " (y!y ) := ((' , *' ) (108.3)i  i   i   i  i
are elements of Y. We have to verify the equivalence

y'  R y'   ]  y  R y . (108.4)1  2    1  2
Now observe that the assumptions " 0 ]0, 1[ and y'  0 Y implyi

( = (  = (' (108.5)i  i
According to Equation (108.1), we must have

*(* = *( * = *(' * = 1, (108.6)i   i
if the vectors y, y  and y'  are alements of Y. Furthermore, Equation (108.3) impliesi  i
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('  = (  + " ((!( ), (108.7)i  i   i
But then the assumption (  … ( would lead to *(' * … 1. Since this consideration holds for i = 1 asi      i
well as i = 2, we can just write ( for the identical first component of the vectors y, y  and y' . Theni  i
the validity of Equivalence (108.4) results from the following chain:

y'  R y' ] ((, *' ) R ((, *' )1  2   1    2
] ( *'  # ( *'1   2
] ( (*  + " (*!* )) # ( (*  + " (*!* ))1   1    2   2
] ( " * + (1!") ( *  # ( " * + (1!") ( *1        2
] ( *  # ( *1   2
] ((, * ) R ((, * )1    2
] y  R y1  2

For the transition from the fourth to the fifth line, note that subtracting ( " * on both sides of the
inequality in the fourth line doesn't change the validity of this inequality, and due to the assumption
" 0 ]0, 1[, we may also divide by (1!"). So the relation R is pre-cancellative, indeed.

To verify that the same relation is not direction-based, it suffices to give an example, where
Equivalence (2.2) is violated, although Equation (2.1) holds with 8 > 0. So consider the vectors

y  := (+1, 3),11
y  := (+1, 4),12
y  := (!1, 5),21

and
y  := (!1, 7).22

Obviously, Equation (2.1) holds for 8 = 2. But whereas Equivalence (108.2) leads to y  R y ,11  12
since 1@3 # 1@4, the inequality (!1)@5 > (!1)@7 implies that the relation y  R y  fails to hold. Taken21  22
together, these resultsform a violation of Equivalence (2.2).

Exercise 9, p. 93

For given elements y , x  and y'  of the set Y defined by Equation (108.1), let real numbersij  i  j
"  0 ]0, 1[ be given such that the equationi

y'  = y  + "  (x !y ) (109.1)j  ij  i i ij
holds for i 0 {1, 2} and j 0 {1, 2}. Then the arguments leading to Equation (108.5) can be repeated
to show that the first components of all vectors y , x  abd y'  must be identical. But this implies thatij  i  j
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in the example for a violation of direction-basedness in the above solution for Exercise 8 there
cannot be any elements x  and y'  of Y such that Equation (109.1) holds for suitable scalars " .i  j           i

More generally, it can be shown for the relation R given by Equivalence (108.2) that violations of
direction-basedness occur only in situations, where the first components of the vectors y  and y11  12
in Equivalence (2.2) are different.

Exercise 10, p. 93

The two claims in the last four lines refer to a subset Y of a real vector space with the following
property ('solvability condition'): For all elements y  of Y fullfilling Equation (2.1) for a suitableij
scalar 8 > 0, there are elements x  and y'  of Y and scalars "  0 ]0, 1[ such that Equation (109.1)i  j     i
holds for i 0 {1, 2} and j 0 {1, 2}.

We will first show that the solvability condition holds for every convex subset Y of a real vector
space F. Under this assumption, let y , y , y  and y  be elements of Y, and 8 > 0 a scalar such11  12  21  22
that Equation (2.1) holds. Furhermore, let ( be an arbitrary element of the interval ]0, 1[, and let the
scalars "  and the vectors x  be given by Equations (107.1) and (107.3). Then the proof of Equationi    i
(107.4) can be taken from Exercise 7. So let y'  be the vectors, whose equality is shown in thatj
equation. Then the following chain of implications shows that the introduced scalars and vectors
have the properties required by the solvability condition:

8 > 0  Y "  0 ]0, 1[  Y  x  0 Y  Y  y'  0 Y. (110.1)i       i      j
The last two implications in this chain follow from the assumed convexity of Y.

Now let R be a binary relation on Y fulfilling the solvability condition, and we will verify that R is
direction-based iff it is pre-cancellative. So assume first that R is pre-cancellative. and let vectors yij
and a scalar 8 > 0 be given such that Equation (2.1) holds. To show that Equivalence (2.2) follows
from these assumptions, let elements x  and y'  and scalars "  be given according to the solvabilityi  j   i
condition. Then the assumed pre-cancellativeness of the relation R implies the equivalence

y'  R y'  ] y  R y (110.2)1  2  i1  i2
for i 0 {1, 2}. Combining these two equivalences, we get Equivalence (2.2).

Conversely, if R is direction based, let y, y  and y  be elements of Y, and " 0 ]0, 1[ a scalar such1  2
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that the vectors y  given by the definition2j
y  := y  + "  (y!y ) (110.3)2j  j  i j

are elements of Y. Then Equation (2.1) holds after the additional definitions y  := y  and 8 := 1!",1j  j
and Equivalence (2.2) follows from the assumption that R is direction-based. But in the assumed
situation, Equivalence (2.3) only reformulates (2.3).

For the claim in the last two lines on p. 93, let Y be identical with a real vector space F. So Y is
convex, and we can combine our hitherto obtained results with the final remark in the solution to
Exercise 5: A reflexive and transitive relation on Y is a linear order iff it is pre-cancencellative.

Exercise 11, p. 95

Let R be a direction-based relation on a real vector space F with direction cone C  given byR
Equation (105.2). We have to show that the relation R is pre-Archimedian iff C  is lineally closed.R

So assume first that R is pre-Archimedian, and let elements x  and x  of F be given such that1  2
x  ó C  and x  0 C . To verify the existence of a scalar * with the properties specified in Definition1  R  2  R
A.2.d, observe that Equation (105.2) aloows two rewrite the assumptions x  ó C  and x  0 C  as1  R  2  R
0 R  x  and 0 R x . Now the assumed pre-Archimedian property of R allows to derive the existencec 1    2
of a scalar * > 0 with the properties given by Definition A.5.c (the roles of the vectors y, y  and y1  2
in that definition being taken by 0, x  and x  in the present situation). It suffices to show that this *1  2
fulfills the requirements of Definition A.2.d. So let a scalar " 0 ]0, *[ be given, and note that the
definition of the vector z  in Equation (A.4) has to be rewritten as"

z  := x  + " (x !x ). (111.1)"  1   2 1
for the present situation. Furthermore, since R is a relation on the entire vector space F, this space
takes the role of the set Y; hence z  0 Y. But then the implication z  0 Y Y y R  z  in Definition"       "     c "
A.5.c leads to 0 R  z , and another reference to Equation (105.2) gives x  + " (x !x ) ó C .c "         1   2 1   R

Conversely, under the assumption that C  is lineally closed, let y, y  and y  be elements of F suchR      1  2
that y R  y  and y R y , and define vectors x  and x  by x  := y  ! y. Recalling from Corollary 2.2c 1    2     1  2  i  i
that a direction-based relation on an entire vector space is invariant under translation, we may apply
a translation by !y to the assumptions y R  y  and y R y , and rewrite them  as 0 R  x  resp. 0 R x .c 1    2        c 1    2
Using Equation (105.2), we get x  ó C , and x  0 C . Now let * be a scalar with the property1  R   2  R
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specified in Definition A.2.d, and we will show that this scalar also fulfills the requirements of
Definition A.5.c; i.e., for every " 0 ]0, *[, the relation y R y  + " (y !y ) fails to be present. Indeed,1   2 1
this follows from the subsequent chain of equivalences:

y R y  + " (y !y )  ]  0 R x  + " (x !x )  ]  x  + " (x !x ) 0 C . (111.2)1   2 1       1   2 1     1   2 1   R
For the first equivalence in this chain, we use the invariance under translation (by !y), and the
second one is granted by Equation (105.2). But * has been chosen such that the last link of the chain
is false for " 0 ]0, *[; so the same holds for the first one.

Exercise 12, p. 97

We will first present a rather informal solution, and then put it into the more formal framework of
a probability space. So let C := {a, b} be the set of available conditions, X a C-valued random
variable indicating the applied experimental condition, and Y a W-valued random variable - the
dependent variable of the randomised experiment. Then the following equation holds for every A 0 S
in the situation described in the text (P(..) standing for 'probability of ..):

y (A) = P(Y 0 A)ic
= P((X = a v Y 0 A)  w  (X = b vY 0 A))
= P(X = a) @ P(Y 0 A * X = a)  +  P(X = b) @ P(Y 0 A * X = b)
= " @ y (A) + (1!") @ y (A). (112.1)ia     ib

For a more formal approach, let W be a non-empty set, S a system of subsets of W, and define
C := {a, b} and S := C × W. Furhtermore, let A  be the F-algebra in W generated by the set systemW
S, and let the set C be endowed with its power set PW as its F-algebra. Finally, let A be the coursest
F-algebra in S, where the projection maps pr :S6C and pr :S6W are measurable, and let P be a1   2
probability measure on A. Then the probability space (S, A, P) can be considered to model the
random selection of an experimental condition and the performance of the experiment under this
condition in the following understanding: An element T = (c*, w) of S with c* 0 C and w 0 W
represents the choice of condition c* and the result w in the experiment. Now let X:S6C and Y:S6W
be the two projection maps; i.e., X is a C-valued random variable indicating the selected condition,
and Y a W-valued random variable representing the result of the experiment; i.e., X and Y are the
independet and the dependent variables of the experiment. In particular, the definition
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" := P(X = a) (112.2)
specifies the probability that the experiment is performed under condition a. Without loss of
generality, we may assume 0 < " < 1. (Otherwise, the result is trivial.) Now define the maps
y :S6R, y :S6R and y :S6R such that the equationsia  ib   ic

y (A) = P(Y 0 A * X = a), (112.3)ia
y (A) = P(Y 0 A * X = b), (112.4)ib

and
y (A) = P(Y 0 A). (112.5)ia

Before we proceed, observe that these definitions reflect the verbal statements that the maps y ,ia
y  and y  represent the behavioural dispositions of subject i under condition a resp. b resp. in theib  ic
randomised experiment. Indeed, these statements imply the tacid assumption that the behavioural
dispositions of subject i under a given experimental condition a or b are not affected by the
randomisation probability ". For this reason, the equation

y (A) = " y (A) + (1!") y (A), (112.6)ic    ia    ib
is introduced only as a plausible assumption and not as a necessary consequence of the assumed
situation. To be quite exact, we would have to consider a separate probability measure P  on A for"
every " 0 ]0, 1[ and introduce the assumption that the equalities 

P (Y 0 A * X = a) = P (Y 0 A * X = a) (112.7)"'         ""
and

P (Y 0 A * X = b) = P (Y 0 A * X = b) (112.8)"'         ""
hold for all randomisation probabilities "' and "" and every A 0 S. But then we may also maintain
the denotation P and let it refer to the probability measure P  for an arbitrary given " 0 ]0, 1[."

In this understanding, Equation (112.1) follows from the above definitions.

Exercise 13, p. 99

Referring to a suggestion in the preliminary remarks, we will first present a sulution under the
assumption that S is the power set of a finite set W, and then we will outline a generalisation to other
situations. Under the above assumption, let Y be a set of probability measures on S, and v:W6R an
arbitrary map. Than the definition of the map g :Y6R in the text can be rewritten asv

g (y) := 3  v(w) @ y({w}), (113.1)v   w 0 W
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the validity of this map being required for every y 0 Y. But this equation can be easily generalised to
the vector space F of all maps S6R: We can just require that Equation (113.1) holds for every map
y:S6R, and we obtain a map g :F6R, whose linearity is easily verified:v

g (8 y) = 3  v(w) @ 8 @ y({w})v   w 0 W
= 8 @ 3  v(w) @ y({w})w 0 W
= 8 g (y). (113.2)v

Note that the first equality is based on pointwise multiplication of the map y by the scalar 8.
Similarly, pointwise addition of maps y  and y  leads to the following equation:1  2

g (y +y ) = 3  v(w) @ (y ({w}) + y ({w})v 1 2  w 0 W   1   2
= 3  v(w) @ y ({w})  +  3  v(w) @ y ({w})w 0 W   1     w 0 W   2
= g (y ) + g (y ). (113.3)v 1   v 2

So the map g ;F6R isa linear, indeed.v

The generalisation of this proof to situations with an infinite set W requires some analytical tools,
which may be unfamiliar to some readers. For this proof, let W be a nonempty set, S a system of
subsets of W, A the F-algebra in W which is generated by W, and v:W6R a map, which is measurable
with respect to A.

Before the proper proof, we should make explicit an assumption underlying the definition of the
expectation E v(Z) on p. 98: The assumption that an element y of the set Y (i.e., a map y:S6R)Z-  y
'specifies' the distribution of the random variable Z. More explicitly, this means that every map
y:S6R, which is an element of Y, has a unique extension to a probability measure on A. (Otherwise,
y could not specify the distribution of Z.) On the background of this explication, we can introduce
the notation P  for this unique extension.y

Now let M  be the set of all finite, non-negative measures µ on A, where the integral I v dµ is+
finite, and define a map h:M 6R such that h(µ) is the value of that integral for every µ 0 M . It was+               +
required in the main text that the expectation of the random variable v(Z) must be finite, if Z is a
W-valued random variable, whose distribution is specified by an element of Y. In our present
notation, we can reformulate this assumption as P  0 M . In summary, Y is a set of maps S6R,y +
which are restrictions to S of elements of M .+

On this background, the definition of the map g :Y6R in the main text can be rewritten asv
g (y) := h(P ). (113.4)v y
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Having thus reformulated the assumed situation, we will now extend the map h:M 6R to a map+
h':M6R, where M is the set of those maps µ:A6R which can be represented as a difference of two
elements of M. Now the theory of Jordan-Hahn-decompositions (see e.g. Bauer, 1992, p. 125,
Exercise 3) allows to specify a unique decomposition of this kind. For every µ 0 M, there are unique
elements µ  and µ  of M  such that the following properties hold for every A 0 A:+  !  +
 - µ(A) = µ (A) ! µ (A).+   !
 - µ (A) > 0  Y µ (A) = 0.+      !
 - µ (A) > 0  Y µ (A) = 0.!      +
The first property can also be formulated as µ = µ  ! µ , and this is frequently called the Jordan-+  !
Hahn-decomposition of µ. Hence, the map h':M6R is well defined by the specification

h'(µ) := h(µ ) ! h(µ ), (113.5)+   !
which must hold for every µ 0 M with the above Jordan-Hahn-decomposition.

An explicit presentation of some further steps of the proof would lead too far; but some readers
may verify the following assertions:
 - For µ 0 M , we have µ  = µ; hence h' is an extension of h, indeed.+    +
 - The set M is a vector space, or - more precisely - a linear subspace of the space of all maps A6R.
 - The map h' is linear.
 - Let F  be the set of those maps S6R, which are restrictions to S of elements of M, and define a0

map f:M6F  such that f(µ) (with µ 0 M) is the restriction to S of µ. Then F  is a linear subspace0                0
of F (the set of all maps S6R), and the map f is linear and bijective. (The concept of a linear map
is explicated in Definition A.2.g only for maps F6R; but this definition can be generalised to maps
from one real vector space into another one.)

On the background of these facts, we may define a map g:F 6R by0
g(y) := h'(f (y)) (113.6)!1

for every y 0 F . Again, it is left to the reader whether he or she wants to verify two well known0
properties og linear maps: The inverse of a bijective linear map is linear, and a concatenation of two
linear maps is linear. Hence the map g is linear. At this point, we must introduce a fact, whose proof
may overcharge most readers: If F  is a linear subspace of a real vector space F, then every linear0
map F 6R can be extended to a linear map F6R. (See e.g. Holmes, 1975, p. 3, for a proof.) So let0
the map g':F6R be an arbitrary linear extension of the previously introduced map g:F 6R. Then it0
is left to prove that g' is an extension of the map g :Y6R given by Equation (113.4). Now observev
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that the definition of the map f implies f (y) = P  for every element y of Y. Furthermore, since the!1
y

map h' is an extension of h, the definition of the map g implies g(y) = g (y). Finally, we getv
g'(y) = g (y), since g' is an extension of g. But if this holds for every y 0 Y, then g' is an extension ofv
g , indeed.v

Exercise 14, p. 99

Let W be the set of possible response patterns in a test consisting of m items with item parameters
(real numbers) 0 ..0 . More presisely, every element w of W is an m-dimensional vector with1 m
w  := 1, if item j is 'solved', and w  = 0 otherwise. Furthermore, let Y be the set of all probabilityj         j
measures on PW with the following property: There is a real number 2 such that the probability of
response pattern w is

It is easily verified that the set Y is convex for m = 1, and we will show that it is non-convex for
m > 1. It suffices to present an example of two elements y  and y  of Y and a scalar " 0 ]0, 1[ such1  2
that the vector " y  + (1!") y  is not contained in Y. For convenience, we introduce a1   2
reparametrisation. With the definition s  := ej

!0j, the set Y is the set of all probability measures on

PW, where the probability of response parren w is

with t > 0 (coressponding to e  in the former parametrisation.2

Now let sets A  (with j = 1..m) consist of all elements w of W with w  = 0; i.e., the set A  representsj             j      j
the event 'item j not solved'. Then the equations

y(A ) = 1 / (1+t@s ), (114.1)j     j
and

y(A  1 A ) = y(A ) @ y(A ) (114.2)1  2   1   2
follow immediately for the probability measure y based on parameter t.
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On the background of these equations, it is easy to give an example proving the non-convexity of
the set Y. More precisely, we will show that the assumption of a convex set Y would lead to a
contradiction. So assume tentatively that Y is convex, let y  and y  be the probability measures based1  2
on parameters t  := 1/s  and t  := 4/s , and with " := 2/3, let the vector y  be given as1  1  2  1          3

y  := " y  + (1!") y . (114.3)3   1   2
For y  and y , an application of Equation (114.1) with j = 1 leads to y (A ) = 0.5 and y (A ) = 0.2,1  2             1 1     2 1
and then Equation  (114.3) yields

y (A ) = " @ 0.5 + (1!") @ 0.2 = 0.4. (114.4)3 1
Now the tentatively assumed convexity of Y implies that y  is an element of Y. Combining Equations3
(114.1) and (114.4), we can also reconstruct the underlying parameter t  by solving the equation3
0.4 = 1 / (1 + t  @ s ), which leads to t  = 1.5/s .3  1     3  1

For an application of Equation (114.1) with j = 2, it is convenient to define z := s /s ., which2 1
implies z > 0, since s  > 0 follows for j = 1..m from the definition of s . Then Equation (114.1)  leadsj            j
to

y (A ) = 1 / (1 + t  @ s ) = 1 / (1 + z),1 2       1  2
y (A ) = 1 / (1 + t  @ s ) = 1 / (1 + 4 z),2 2       2  2

and
y (A ) = 1 / (1 + t  @ s ) = 1 / (1 + 1.5 z).3 2       3  2

But for y (A ), we can also apply Equation (114.3) and write3 2
y (A ) = " y (A ) + (1!") y (A ) = 2 / (3 + 3 z) +  1 / (3 + 12 z).3 2    1 2    2 2

Combining the right hand sides of the two equations for y (A ), we get3 2
1 / (1 + 1.5 z)  = 2 / (3 + 3 z) + 1 / (3 + 12 z).

Now it is easily verified that this equation has exactly two formal solutions: z = 0 and z = 1.
(Multiplying both sides of the equation by the product of the three denominators, we obtain a
quadratic equation in z, which canot have more than two solutions for z.) But since the formally
correct solution z = 0 is excluded by the property z > 0, we obtain z = 1 as the only solution which
is compatible with the assumed situation. So a reference to the definition of z leads to s  = s , and2  1
this implies y (A ) = y (A ) for i = 1..3.i 2   i 1

Finally, we can derive the probabilities y (A  1 A ) from Equation (114.2):i 1  2
y (A  1 A ) = 0.5 @ 0.5 = 0.25,1 1  2
y (A  1 A ) = 0.2 @ 0.2 = 0.04,2 1  2

and
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y (A  1 A ) = 0.4 @ 0.4 = 0.16.3 1  2
Obviously, this result contradicts Equation (114.3) with " = 2/3.

In summary, we have derived a contradiction from the tentative assumption that the set Y is
convex. Hence, Y is non-convex.

Exercise 15, p. 99

It suffices to show that the expectation of the number of 'correct solutions' is a strictly increasing
function of the parameter 2 in the original parametrisation of the solution to Exercise 14. So let
random variables Z  for j = 1..m be definied such that Z  := 1, if item j is 'solved', and Z  := 0j         j         j
otherwise. (With the interpretation of w contained in the solution to Exercise 14, we can also say
that Z  is the j  component of the random variable Z from the main text.) Then it is easily verifiedj

th

that the expectation of Z  is the probability that item j is solved, and this probability is a strictlyj
increasing function of 2. But obviously, the number of correct solutions is the sum of the Z ; so thej
same holds for the respective expections. Finally, the sum of a finite collection of strictly increasing
maps is strictly increasing.

Exercise 16, p. 101

Let ˜  be the lexicographical order on R  as defined in the main text. For a first example, considerL
2

the vectors y := (5, 3),  y' := (4, 2) and y" := (6, 2), and the scalar * := 0.5. Then the property
y' —  y —  y" follows immediately from the order of the first components of these vectors. For theL  L
vector z , which is defined in the main text for " 0 [0, 1] by z  := y' + " (y"!y'), we can write"               "
z  = (4 + 2 ", 2) in this situation. Now the first component of this vector is smaller than 5 for"
0 # " < *; so z  —  y follows from the definition of the relation ˜ . For " = *, we have z  = (5, 2)," L         L        "
and since the first components of this vector and of y are identical, their order is determined by the
second component, leading to z  —  y. Finally, for * < " # 1, the first component of z  is greater" L             "
than 5, leading to y — ". In summary, we have z  —  y for " 0 [0, *], and y —  z  for " 0 ]*, 1].L      " L         L "z

A second example is identical with the first one with the exception y := (5, 1). For " … *, the
arguments of the first example can be repeated. For " = *, we have again z  = (5, 2), and the order"
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of the vectors z  and y is determined by their second components; but for the new vector y this"
means y —  z . So the changed definition of y leads to z  —  y for " 0 [0, *[, and y —  z  forL "          " L         L "
" 0 [*, 1].

Exercise 17, p. 103

The largest abvantage of y over z is in the first dimension; but it is smaller than the advantage of
z over y in the third dimension, leading to y — z. Finally,  the largest advantage of x over z (first
dimension) is greater than the largest advantage of z over x (third dimension); hence z — x

Exercise 18, p. 103

In this exercise and the following one, the default range 1..2 of  subscript j is replaced by 1..3. 
To generalise the order based on the 'largest advantage' of one vector over another one, we should

start with a more formal explication of the notion of largest advantages. For an ordered pair (x , x )1  2
of elements of R  with components x (j) resp. x (j), we define real numbers d (x , x ) as follows:3

1   2      j 1  2
Let {k , k , k ) be a permutation of the numbers 1, 2 and 3 such that1  2  3

x (k ) ! x (k )  #  x (k ) ! x (k )  #  x (k ) ! x (k ). (118.1)2 1   1 1     2 2   1 2     2 3   1 3
Then the three differences in this inequality are called d (x , x ); i.e.:j 1  2

d (x , x ) := x (k ) ! x (k ). (118.2)j 1  2   2 j   1 j
Note that the permutation {k , k , k ) will not be unique in situatios, where some of the differences1  2  3
in inequality (118.1) are equal; but even in such situations, the numbers d (x , x ) given by Equationj 1  2
(118.2) are independet of the choice of a particular permutation from those fulfilling Inequality
(118.1).

In this notation, the largest advantage  of x  over x  is !d (x , x ), whereas the largest advantage1  2  1 1  2
of x  over x  is d (x ,x ).2  1  3 1 2

In the main text, two preference relations are defined, which differ in the treatment of situations
with !d (x , x ) = d (x ,x ). These preference relations will subsequently be denoted as ˜' and ˜".1 1  2   3 1 2
The following equivalences have to be understood as definitions applying to all vectors x  and x  of1  2
R :3
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x  ˜' x   :]  !d (x , x ) # d (x , x ). (118.3)1  2    1 1  2   3 1  2
x  ˜" x   :]  !d (x , x ) < d (x , x )  w  1  2    1 1  2   3 1  2

                         (!d (x , x ) = d (x , x ) v d (x , x  $ 0). (118.4)1 1  2   3 1  2   2 1  2
The reader is invited to reformulate in this notation the arguments leading to x — y, y — z, and z — x
in themain text and in the solution to Exercise 17. So the relations ˜' and ˜" aren't orders, since they
are intransitive. Nevertheless, notations like x —' y have to be understood as x #' y v ¬(y #' x).
Similarly, x —" y means x #" y v ¬(y #" x).

Having thus defined the relations, we can easily show that they are direction-based. For vectors
y , y , y  and y  and a scalar 8 > 0 with the property y !y  = 8 (y !y ), the equation11  12  21  22          22 21   12 11
d (y , y ) = 8 d (y , y ) follows immediately (for j = 1...3) from the definition of d  in Equationj 21  22    j 11  12            j
(118.2). But then the definitions of the relations ˜' and ˜" immediately lead to the equivalences
y  ˜' y   ] y  ˜' y  and y  ˜" y   ] y  ˜" y .11  12   21  22  11  12   21  22

Exercise 19, p. 104

The vectors x, y and z introduced in the main text show that the relations ˜' and ˜" are
intransitive. Hence, the non-convexity of the respective direction cones follows from Corollary
3.1.(5).

Exercise 20, p. 104

Let x, y and z be element of a real vectorspace F. Now consider the equation
a + " (c!a) = x + 8 (b!x) (120.1)

immediately before Footnote 16 of the main text , which is the main part of an explication of the
relation 'viewed from x, vector b lies between a and c'. For the vectors x, y and z of the present
situation, we have to write the relation 'viewed from 0, the vector z!x lies between y!x and z!y'. So
we have to assign the roles of the vectors a, b, c and x in the above equation to the vectors y!x,
z!x, z!y and 0, leading to

(y!x) + " ((z!y) ! (y!x))  =  0 + 8 ((z!x) ! 0). (120.2)
Taking " = 8 = 0.5, and using well known rules for bracket-operations, we get

0.5 z ! 0.5 y  = 0.5 z ! 0.5 y, (120.3)
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and no furhter proof is necessary to verify the validity of this equation for all elements x, y and z of
a real vector space F.

Nevertheless, some readers may ask whether all algebraic operations known from real numbers are
legal in real vector spaces. Indeed, the answer to this question is negative. For readers of limited
familiarity with real vector spaces, it may be a good exercise to justify systematically all operations,
which have been applied above, by the axioms of real vector spaces. (See Definition A.1 in the
appendix of the main text for these axioms.)

Exercise 21, p. 106

In the context of p. 106, the set C  is defined as the smallest cone in F containing D  as a subset.R          R
To verify the equation

C  = ^ 8 D , (121.1)R  8>0  R
it suffices to prove the following general proposition, which will also be helpful in further Exercises:

Propostion 121.1.1 Let A be a non-empty subset of a real vector space F, and let a subset C of F be
defined as

C := ^  8 A. (121.2)8>0
Then C is the smallest cone in F containing A as a subset.

For a solution of Exercise 21, we identify the set D  from the main text with the set A of the aboveR
proposition. Then the proposition will imply that C  (being defined as the smallest cone in FR
containing D  as a subset) is identical  with the set C given by Equation (121.2).R

Of course, the product 8 A of a scalar 8 and a subset A of a real vector space has to be interpreted
in the undserstanding of the respective notational convention (immediatly after Definition A.1 in the
appendix of the main text): It is the set of all vectors 8 a, where a is an element of A. In particular
for 8 = 1, we obtain 8 A = A. So A is a subset of C, and it is left to show that C is a cone, and a
subset of every cone containing A as a subset.

To prove these properties, let C  be an arbitrary cone in F containing A as a subset, x an arbitrary~

element of C, and 8 a strictly positive scalar. It suffices to verify the properties x 0 C  and 8 x 0 C.~

So let a be an element of A, and µ a strictly positive scalar such that x = µ a, the existence of a and



23

µ with these properties being granted by the assumption x 0 C and by the definition of C. Then a is
an element of C , since A is a subset of C , and this implies µ a 0 C , since C  is a cone. Finally, the~        ~        ~   ~

equation 8 x = (8@µ) a leads to 8 x 0 C, since 8 @ µ > 0.

Exercise 22, p. 106

We have to verify the claim that the cone C  (i.e., the smallest cone in F containing D ) is aR        R
potential direction cone of the relation R. In other words, we have to show that the equivalence

y  R y   ] y  ! y  0 C (122.1)1  2   2  1  R
holds for all elements y  and y  of Y. 1  2

So let y  and y  be arbitrary elements of Y, and assume for the proof of the forward implication1  2
that the relation y  R y  holds. Then the vector y  ! y  is an element of D  by the definition of this1  2     2  1     R
set. So this difference is also an element of the cone C  , which contains D  as a subset.R    R

Conversely, if y !y  0 C , let x be an element of D  and 8 a strictly positive scalar such that2 1  R        R
y !y  = 8 x. (The existence of such 8 and x granted by the equation C  = ^ 8 D , which has2 1               R  8>0  R
been established in Exercise 23.) Then the Definition of D  implies the existence of elements y'  andR      1
y'  of Y such that x = y' !y'  and y'  R y' . But for a direction-based relation R, this implies2       2 1  1  2
y  R y , since the assumed properties can be combined to y !y  = 8 (y' !y' ).1  2          2 1   2 1

Exercise 23, p. 106

We have to show that C  is the only potential direction cone of the relation R iff C  = F. A proofR            D
with a uselful side result can be based on the equation

C  1 C  = C , (123.1)~
D  R

which has been introduced in the main text for every cone C  in F as a necessary and sufficient~

condition of being a potential direction cone. With the notation D for the set system of all potential
direction cones, this set system is described by the equation

D = {C  f F: › A f (F\C ): C  = C  c ^ 8 A}. (123.2)~       ~
D    R  8>0 

Proof: For every potential direction cone C , we can take the set A := C \C . Conversely, if A is~         ~
D

a subset of F\C , then  Proposition 121.1 shows that the set ^ 8 A is a cone. It can be left toD          8>0 
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the reader to show that the union of two cones (e.g. C  and ^ 8 A) is a cone and that EquationR  8>0 
(123.1) holds for every element C  of the set system D specified by Equation (123.2).~

Recalling that C  is a subset of C , we see that every subset A of F\C  is disjoint from C . On thisR     D         D    R
background, Equation (123.2) allows the following conclusion: The set C  is the only element of theR
set system D iff the empty set is the only subset A of F\C . Obviously, this condition is equivalentD
with C  = F, since C  is a subset of F.D    D

Exercise 24, p. 106

We have to show that the sets C , which are analysed in the context of p. 106 and in Corollary 3.1R
are identical under the assumption Y = F. To avoid ambiguity of notation, let C  be a potential~

direction cone of the relation R (whose uniqueness in situations with Y = F is shown on p. 106), and
reserve the denotation C  for the cone treated in Corollary 3.1; i.e.,R

C  := {x 0 F: 0 R x}. (124.1)R
Now let x be an arbitrary element of F, and we will verify the equivalence

x!0 0 C   ] x 0 C . (124.2)~
R

For the forward implication, the assumption x-0 0 C  immediately implies 0 R x, since C  is a~       ~

potential direction cone. So x 0 C  is granted by Equation (124.1). Conversely, for x 0 C ,R          R
Equation (124.1) gives 0 R x, and x!0 follows, since C  is a potential direction cone.~

Exercise 25, p. 107

Let C  be a potential direction cone of a direction based relation R on a non-empty subset Y of a~

real vector space F. We have to show that the cone C  is pointed (i.e., 0 0 C ) iff the relation R is~      ~

reflexive.
Under the assumption 0 0 C , we have y!y 0 C  for every element y of the set Y, and this implies~      ~

y R y, since C  is assumed to be a potential direction cone. But if y R y holds for every y 0 Y, then~

the relation R is reflexive.
Conversely, the assumption of a reflexive relation R implies y R y for every element y of Y, which

implies y!y 0 C  for the direction cone C .~     ~
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Exercise 26, p. 108

To verify the equivalence of Assertions (1) and (3) of Corollary 3.2, we will first present an easy
proof of the implication (3) Y (1). So assume that the direction cone C  of a direction-based relationR
R on a convex set Y is convex, and let y , y , y  and y  be elements of Y such that the equation0  1  2  3

y  + " (y !y ) = y  + 8 (y !y ) (126.1)1   3 1   0   2 0
holds for suitable real numbers " 0 ]0, 1[ and 8 > 0. To verify the implication concluding Assertion
(1), we have to derive the relation y  R y  from the premissa the relations y  R y  and y  R y  hold.0  2      0  1  0  3
Now this premissa implies that the vectors y !y  and y -y  are elements of the direction cone C .1 0  3 0       R
Furthermore, Equation (126.1) can be rewritten as

8 (y !y ) = " (y !y ) + (1!") (y !y ). (126.2)2 0    3 0    1 0
Since the right hand side of this equation is a convex linear combination of elements of the convex
set C , the vector 8 (y !y ) is also an element of this set, and this implies y !y  0 C , since C  isR     2 0            2 0  R   R
a cone. But then y  R y  follows from the property defining a direction cone.0  2

To verify the implication (1)Y(3), assume that Assertion (1) holds, let x  and x  be arbitrary1  2
elements of the direction cone C , " a scalar with 0 < " < 1. We have to verify x 0 C  for the vectorR                 R
x defined as

x := " x  + (1!") x . (126.3)2   1
In a first step, we will prove the existence of a scalar 8 > 0 and of elements y  of Y such thatij
y  R yi2, and x  = 8 (y !y ). Equation (121.1) implies the existence of strictly positive scalarsi1    i   i2 i1
8  and 8  and of elements x'  and x'  of D  such that x  = 8  x' . The derivation of a scalar 8 and1  2    1  2  R   i  i i
elements y  of Y depends on the order of 8  and 8 .ij        1  2
 - For 8  # 8 , define 8 := 8 , $ := 8 /8 , and let y, y , y  and y  be elements of Y such that1  2     2    1 2     12  21  22

x'  = y !y, x'  = y !y , y R y , and y  R y , the existence of elements of Y with these1  12  2  22 21    12   21  22
properties being granted by the definition of the set D . Then the definitionR

y  := $ y +(1!$) y , (126.4)11     12
gives another element of Y (recall the assumed convexity of this set) such that

y !y  = $ (y !y). (126.5)12 11   12
This equation has two consequences. First, y  R y  follows from y R y , since R is direction-11  12     12
based, and $ > 0. Furthermore, the assumptions, definitions and results can be combined in the
equations
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x  = 8  x'  = 8 @$ (y !y) = 8 (y !y ), (126.6)1  1 1  2  12    12 11
and

x  = 8  x'  = 8 (y !y ). (126.7)2  2 2   22 21
 - For 8  > 8 , we use a symmetric approach. Define 8 := 8 , $ := 8 /8 , and let y , y , y and y1  2          1    2 1    11  12    22

be elements of Y with the properties x'  = y !y , x'  = y !y, y  R y  and y R y . After the1  12 11  2  22  11  12    22
definiton

y  := $ y +(1!$) y , (126.8)21     22
we can repeat the above arguments to verify the properties x  = 8 (y !y ) and y  R y .i   i2 12   i1  i2

Having established the existence of a scalar 8 > 0 and elements y  with these properties, we defineij
further vectors as suggested in Footnote 20 of the main text.:

y  := 0.25 (y  + y  + y  + y ), (126.9)0   11  12  21  22
y  := y  + 0.25 (y !y ), (126.10)1  0   12 11
y  := y  + 0.25 (y !y ), (126.11)3  0   22 21

and
y  := y  + " (y !y ). (126.12)2  1   3 1

Certainly, these vectors are elements of Y due to the convexity of this set. Furthermore, the
definitions imply

y !y  = 0.25 (y !y ) (126.13)1 0   12 11
and

y !y  = 0.25 (y !y ), (126.14)3 0   22 21
and these equations allow to derive y  R y  and y  R y  from y  R y  resp. y  R y , since the0  1  0  3  11  12  21  22
relation R is direction-based. So the assumed validity of Assertion (1) leads to y  R y , and this is0  2
equivalent with y !y  0 C , since C  is the direction cone of the relation R. But then x 0 C  follows2 0  R   R             R
from the cone property of C  and the subsequente contionuation of Equation (126.3):R

x = " x  + (1!") x .2   1
= "@8 (y !y ) + (1!")@8 (y !y )22 21    12 11
= 8 ("@4 (y !y ) + (1!")@4 (y !y ))3 0    1 0
= 48 (y  + " (y !y ) -y )1   3 1  0
= 48 (y !y ). (126.15)2 0

Note that the transitions to the third line and to the last one are based on the definitions of the
vectors y , y  and y .1  2  2



!
8 8 ! 8 0

8 0
! @ !

R
8 !

27

Exercise 27, p. 109

We may use Corollary 2.2 and transfer the roles of the relation R and the cone C  of that corollaryR
to the relation R  and the cone C  of the present situation.~    ~

Exercise 28, p. 109

In the situation assumed on p. 109 of the main text, the direction cone C  of the relation R is alsoR
the direction cone of the relation R' (see Exercise 27). For situations, where the smallest affine
subspace of F containing Y is a proper subset of F, we have to show that some element of F cannot
be represented as a difference of two elements of C .R

So let R be a direction-based relation on a non-empty subset Y of a real vector space F.
Furthermore, let X* be the smallest affine subspace of F including the set Y as a subset, assume that
and let X be a linear subspace of F resulting from a suitable translation of X*. In other words, X is a
linear subspace of F such that the equation

X = {x + x : x 0 X*} (128.1}t
holds for a suitable translation vector x  0 F. So let x  be a given element of F with this property. Wet     t
claim that the direction cone C  of the relation R is a subset of X. If this claim can be verified, thenR
all differences of elements of C  must be elements of X, since X is a linear subspace.  Hence, forR

1

x 0 F\X*, the vector x + x  cannot be represented as a difference of two elements of C , sincet           R
x + x  ó X follows from x 0 F\X* by Equation (128.1).t

To prove the inclusion C  f X, let x be an arbitrary element of C , and we will show that x is alsoR          R
an element of X. So let y  and y  be elements of Y, and 8 a scalar such that1  2



28

x = 8 (y  ! y ). (128.2)2  1
(For the existence of y , y  and 8 with these properties, note that Equation (121.1) implies the1  2
existence of a scalar 8 and an element x' of the set D  such that x = 8 x'. Furthermore, the existenceR
of elements y  and y  of Y with x' = y  ! y  follows from the definition of D  on p. 105.)1  2      2  1      R

Now observe that the vectors y  and y  - being elements of Y - must also be contained in X*, since1  2
X* is assumed to include Y as a subset. So the vectors y  + x   and y  + x  are elements of  X by1  t   2  t
Equation (128.1). But then X - being a linear subspace of F - must also contain the vector
8 ((y  + x ) ! (y  + x )), which is equal to x by Equation (128.2).2  t   1  t

In fact, the inclusion C  f X could also be taken from Lemma A.6.(3). Note, however, that bothR
sets are defined in Lemma A.6 in a way differing formally from their introduction in the context of
p. 109. Although the equivalence of the definitions can be derived from 'well known' properties of
linear and affine subspaces, a version of this proof, which is comprehensible for beginners in the area
of general real vector spaces, would be rather tedious.
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