

Selectivity Profile of 1-Allylergopeptines at Different 5-HT Receptors and α₁ Adrenoceptors

Sven Jähnichen¹, Erika Glusa², Heinz H. Pertz¹

¹Institute of Pharmacy, Free University of Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany ²Center for Vascular Biology and Medicine, Friedrich-Schiller-Universisty Jena, Nordhäuser Str. 78, 99089 Erfurt, Germany

Introduction

Ergotamine and dihydroergotamine (DHE) are used in migraine therapy for over 50 years. It has been shown that both compounds possess high affinity for $\alpha\text{-}adrenoceptors$, dopamine receptors and nearly all subtypes of 5-HT receptors with low or missing selectivity among the different subtypes [1]. The efficacy of ergotamine and DHE in migraine therapy has been associated with the potent partial agonism of both at cerebral 5-HT_{1B/1D} receptors. However, other vascular receptors, such as α_{1B} adrenoceptors and 5-HT_{2B} receptors, may also be involved in migraine headache [2,3].

The aim of the present study was to show, whether the pharmacological properties of ergotamine and DHE at different 5-HT receptors and α_1 adrenoceptor subtypes might be influenced, if their structure was modified by introduction of an allyl group at the indole nitrogen.

Methods

Agonist and antagonist effects of ergotamine, DHE, 1-allylergotamine and 1-allyl-DHE were studied in ring preparations of rat thoracic aorta (RA: α_{1D}), guinea-pig iliac artery (GPIA: 5-HT $_{1B}$), rat tail artery (RTA: 5-HT $_{2A}$), and porcine pulmonary artery (PPA: 5-HT $_{2B}$) [4-6]. The effects of the compounds were further studied in prostatic portions of rat vas deferens (RVD: α_{1A} , non-cumulative CRCs) and in strips of guinea-pig spleen (GPS: α_{1B}) as previously described [7,8].

Effects at α₁ adrenoceptors

1. 1-Allylergotamine and 1-allyl-DHE were silent antagonists exhibiting moderate affinities at α_{1A} , α_{1B} and α_{1D} adrenoceptors and low discrimination between the three subtypes (Fig. 1-3).

Fig. 1: Inhibition of NA-induced contractions in RVD.

Fig. 2: Inhibition of NA-induced contractions in RA by 1-allyl-DHE.

Fig. 3: Schild-Plots at α_{1B} adrenoceptors in GPS (left) and at α_{1D} adrenoceptors in RA (right).

Effects at 5-HT_{1B} receptors

- In contrast to ergotamine and DHE, the allyl-substituted derivatives showed no agonist activity at concentrations up to 1 µM.
- 2. Antagonist affinities (pK_B) for 1-allyl-substituted compounds were approximately 30-fold lower than the partial agonist affinities (pK_P) Fig. 4: Inhibition contractions in GPIA.

Fig. 4: Inhibition of 5-HT induced contractions in GPIA.

References

- [1] Tfelt-Hansen P. et al. (2000); Brain 123: 9-18.
- [2] Schmuck K. et al. (1996); Eur. J. Neurosci. 8: 959-967.
- [3] Willems E.W. et al. (2001); Cephalalgia 21: 110-119.[4] Pertz H.H. (1993); Naunyn-Schmiedeberg's Arch. Pharmacol 348: 558-565.
- [5] Schöning C. et al. (2001); J. Anim. Sci. 79: 2202-2009.

Effects at 5-HT₂ receptors

- 1. 1-Allyl-substitution reduced the intrinsic activities of ergotamine and DHE at 5-HT_{2A} receptors in rat tail artery. The affinities at 5-HT_{2A} receptors were moderately reduced (Fig. 5).
- At 5-HT_{2B} receptors in porcine pulmonary arteries both, 1allylergotamine and 1-allyl-DHE, were silent but insurmountable antagonists showing subnanomolar affinities (Fig. 6).

Fig. 5: Contractions in RTA.

Fig. 6: Inhibition of relaxation to 5-HT in precontracted PPA.

Tab. 1: Agonist and antagonist affinities

1-Allylergotamine				Ergotamine				
conc. (µM)	n	E _{max} (%)	affinity (pK_B, pK_P)	conc. (µM)	n	E _{max} (%)	affinity (pK_B, pK_P)	affinity ratio ^e
1	4	0	6.90 ± 0.09	0.03	3	0	8.17 ± 0.01^{c}	0.05
0.3 - 10	12	0	6.48 ± 0.05^{d}	0.03 - 1	12	0	7.51 ± 0.06^{d}	0.09
0.3 - 10	12	0	6.36 ± 0.06^{d}		6	14±5	7.51 ± 0.14	0.07
0.1 - 0.3	6	0	$7.55 \pm 0.25^{\circ}$	0.003	4	29±5	8.97 ± 0.06	0.04
	5	21±3	7.85 ± 0.05			52± 4 ^a	8.36 ± 0.11^a	0.31
0.01	6	0	9.11 ± 0.18 ^c			73 ^b	8.17 ± 0.07^{b}	8.3
	(µM) 1 0.3 - 10 0.3 - 10 0.1 - 0.3	conc. (μM) 1 4 0.3 - 10 12 0.3 - 10 12 0.1 - 0.3 6 5	conc. (μΜ) n E _{max} (%) 1 4 0 0.3 - 10 12 0 0.3 - 10 12 0 0 - 10 12 0 0 - 21±3 0 0	$\begin{array}{c cccc} & n & E_{max} & affinity \\ (\mu M) & (\%) & (6,9) & (6,9) \\ 1 & 4 & 0 & 6.90 \pm 0.09 \\ 0.3 \cdot 10 & 12 & 0 & 6.48 \pm 0.05^{d} \\ 0.3 \cdot 10 & 12 & 0 & 6.36 \pm 0.06^{d} \\ 0.1 \cdot 0.3 & 6 & 0 & 7.55 \pm 0.25^{c} \\ 5 & 21 \pm 3 & 7.85 \pm 0.05 \\ \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

	1-Aliyidinydroergotamine				Dinydroergotamine				
	conc.	n	E _{max}	affinity	conc.	n	E _{max}	affinity	affinity
	(μM)		(%)	(pK_B, pK_P)	(μM)		(%)	(pK_B, pK_P)	ratio ^e
RVD (α_{1A})	1	4	0	7.22 ± 0.08^{c}	0.03	3	0	$8.03 \pm 0.13^{\circ}$	0.15
GPS (α _{1B})	0.3 - 10	12	0	6.33 ± 0.09^{d}	0.3 - 10	12	0	7.65 ± 0.05^{d}	0.05
RA (α_{1D})	0.3 - 10	12	0	6.60 ± 0.04^{d}		6	2±1	7.87 ± 0.15	0.05
GPIA (5-HT _{1B})	0.1 - 0.3	6	0	$7.13 \pm 0.16^{\circ}$	0.003	4	25±3	8.61 ± 0.09	0.03
RTA (5-HT _{2A})	0.1	5	0	7.65 ± 0.05^{c}		5	38±6	8.23 ± 0.13	0.26
PPA (5-HT _{2B})	0.01	6	0	$9.30 \pm 0.07^{\circ}$			70 ^b	7.70 ± 0.11^{b}	40

^a Data from [5]; ^b Data from [6]; ^c Insurmountable antagonism; ^d From Schild regression analysis (slope not significantly different from unity); ^e ratio of affinities (K_B or K_P) between unsubstituted and 1-allyl-substituted ergopeptines.

Fig. 7: Comparison of the affinities (pK_B or pK_P) for ergotamine, DHE, 1-allylergotamine and 1-allyl-DHE at different α₁ adrenergic, 5-HT₁ and 5-HT₂ receptor subtypes.

Conclusions

- Introduction of an allyl substituent at the indole nitrogen in ergopeptines causes decreased affinities at rodent 5-HT_{1B} receptors and at α₁ adrenoceptor subtypes but increases affinities at porcine 5-HT_{2B} receptors (Fig. 7).
- 1-Allylergotamine and 1-allyldihydroergotamine are selective but insurmountable antagonists exhibiting subnanomolar affinities at porcine 5-HT_{2B} receptor.
- Due to their potent 5-HT_{2B} receptor antagonism, 1-allylergopeptines might be effective drugs in migraine prophylaxis.
- [6] Glusa E. and Pertz H.H. (2000); Br. J. Pharmacol. 130: 692-698.
- [7] Eltze M. and Boer R. (1992); Eur. J. Pharmacol. 224: 125-136.
- [8] Eltze M. (1994); Eur. J. Pharmacol. 260: 211-220.

Acknowledgements. The authors are indebted to Dr. W. Schunack for generous support of the studies and to Dr. M. Flieger for the generous gifts of drugs.