Selectivity Profile of 1-Allylergopeptines at Different 5-HT Receptors and α₁ Adrenoceptors Sven Jähnichen¹, Erika Glusa², Heinz H. Pertz¹ ¹Institute of Pharmacy, Free University of Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany ²Center for Vascular Biology and Medicine, Friedrich-Schiller-Universisty Jena, Nordhäuser Str. 78, 99089 Erfurt, Germany ## Introduction Ergotamine and dihydroergotamine (DHE) are used in migraine therapy for over 50 years. It has been shown that both compounds possess high affinity for $\alpha\text{-}adrenoceptors$, dopamine receptors and nearly all subtypes of 5-HT receptors with low or missing selectivity among the different subtypes [1]. The efficacy of ergotamine and DHE in migraine therapy has been associated with the potent partial agonism of both at cerebral 5-HT_{1B/1D} receptors. However, other vascular receptors, such as α_{1B} adrenoceptors and 5-HT_{2B} receptors, may also be involved in migraine headache [2,3]. The aim of the present study was to show, whether the pharmacological properties of ergotamine and DHE at different 5-HT receptors and α_1 adrenoceptor subtypes might be influenced, if their structure was modified by introduction of an allyl group at the indole nitrogen. ### **Methods** Agonist and antagonist effects of ergotamine, DHE, 1-allylergotamine and 1-allyl-DHE were studied in ring preparations of rat thoracic aorta (RA: α_{1D}), guinea-pig iliac artery (GPIA: 5-HT $_{1B}$), rat tail artery (RTA: 5-HT $_{2A}$), and porcine pulmonary artery (PPA: 5-HT $_{2B}$) [4-6]. The effects of the compounds were further studied in prostatic portions of rat vas deferens (RVD: α_{1A} , non-cumulative CRCs) and in strips of guinea-pig spleen (GPS: α_{1B}) as previously described [7,8]. # Effects at α₁ adrenoceptors 1. 1-Allylergotamine and 1-allyl-DHE were silent antagonists exhibiting moderate affinities at α_{1A} , α_{1B} and α_{1D} adrenoceptors and low discrimination between the three subtypes (Fig. 1-3). Fig. 1: Inhibition of NA-induced contractions in RVD. Fig. 2: Inhibition of NA-induced contractions in RA by 1-allyl-DHE. **Fig. 3**: Schild-Plots at α_{1B} adrenoceptors in GPS (left) and at α_{1D} adrenoceptors in RA (right). # Effects at 5-HT_{1B} receptors - In contrast to ergotamine and DHE, the allyl-substituted derivatives showed no agonist activity at concentrations up to 1 µM. - 2. Antagonist affinities (pK_B) for 1-allyl-substituted compounds were approximately 30-fold lower than the partial agonist affinities (pK_P) Fig. 4: Inhibition contractions in GPIA. **Fig. 4**: Inhibition of 5-HT induced contractions in GPIA. #### References - [1] Tfelt-Hansen P. et al. (2000); Brain 123: 9-18. - [2] Schmuck K. et al. (1996); Eur. J. Neurosci. 8: 959-967. - [3] Willems E.W. et al. (2001); Cephalalgia 21: 110-119.[4] Pertz H.H. (1993); Naunyn-Schmiedeberg's Arch. Pharmacol 348: 558-565. - [5] Schöning C. et al. (2001); J. Anim. Sci. 79: 2202-2009. # Effects at 5-HT₂ receptors - 1. 1-Allyl-substitution reduced the intrinsic activities of ergotamine and DHE at 5-HT_{2A} receptors in rat tail artery. The affinities at 5-HT_{2A} receptors were moderately reduced (Fig. 5). - At 5-HT_{2B} receptors in porcine pulmonary arteries both, 1allylergotamine and 1-allyl-DHE, were silent but insurmountable antagonists showing subnanomolar affinities (Fig. 6). Fig. 5: Contractions in RTA. Fig. 6: Inhibition of relaxation to 5-HT in precontracted PPA. Tab. 1: Agonist and antagonist affinities | 1-Allylergotamine | | | | Ergotamine | | | | | |-------------------|--|---|--|---|--|--|--|--| | conc.
(µM) | n | E _{max}
(%) | affinity (pK_B, pK_P) | conc.
(µM) | n | E _{max}
(%) | affinity (pK_B, pK_P) | affinity
ratio ^e | | 1 | 4 | 0 | 6.90 ± 0.09 | 0.03 | 3 | 0 | 8.17 ± 0.01^{c} | 0.05 | | 0.3 - 10 | 12 | 0 | 6.48 ± 0.05^{d} | 0.03 - 1 | 12 | 0 | 7.51 ± 0.06^{d} | 0.09 | | 0.3 - 10 | 12 | 0 | 6.36 ± 0.06^{d} | | 6 | 14±5 | 7.51 ± 0.14 | 0.07 | | 0.1 - 0.3 | 6 | 0 | $7.55 \pm 0.25^{\circ}$ | 0.003 | 4 | 29±5 | 8.97 ± 0.06 | 0.04 | | | 5 | 21±3 | 7.85 ± 0.05 | | | 52± 4 ^a | 8.36 ± 0.11^a | 0.31 | | 0.01 | 6 | 0 | 9.11 ± 0.18 ^c | | | 73 ^b | 8.17 ± 0.07^{b} | 8.3 | | | (µM)
1
0.3 - 10
0.3 - 10
0.1 - 0.3 | conc. (μM) 1 4 0.3 - 10 12 0.3 - 10 12 0.1 - 0.3 6 5 | conc. (μΜ) n E _{max} (%) 1 4 0 0.3 - 10 12 0 0.3 - 10 12 0 0 - 10 12 0 0 - 21±3 0 0 | $\begin{array}{c cccc} & n & E_{max} & affinity \\ (\mu M) & (\%) & (6,9) & (6,9) \\ 1 & 4 & 0 & 6.90 \pm 0.09 \\ 0.3 \cdot 10 & 12 & 0 & 6.48 \pm 0.05^{d} \\ 0.3 \cdot 10 & 12 & 0 & 6.36 \pm 0.06^{d} \\ 0.1 \cdot 0.3 & 6 & 0 & 7.55 \pm 0.25^{c} \\ 5 & 21 \pm 3 & 7.85 \pm 0.05 \\ \end{array}$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | 1-Aliyidinydroergotamine | | | | Dinydroergotamine | | | | | |----------------------------|--------------------------|----|------------------|-------------------------|-------------------|----|------------------|-------------------------|--------------------| | | conc. | n | E _{max} | affinity | conc. | n | E _{max} | affinity | affinity | | | (μM) | | (%) | (pK_B, pK_P) | (μM) | | (%) | (pK_B, pK_P) | ratio ^e | | RVD (α_{1A}) | 1 | 4 | 0 | 7.22 ± 0.08^{c} | 0.03 | 3 | 0 | $8.03 \pm 0.13^{\circ}$ | 0.15 | | GPS (α _{1B}) | 0.3 - 10 | 12 | 0 | 6.33 ± 0.09^{d} | 0.3 - 10 | 12 | 0 | 7.65 ± 0.05^{d} | 0.05 | | RA (α_{1D}) | 0.3 - 10 | 12 | 0 | 6.60 ± 0.04^{d} | | 6 | 2±1 | 7.87 ± 0.15 | 0.05 | | GPIA (5-HT _{1B}) | 0.1 - 0.3 | 6 | 0 | $7.13 \pm 0.16^{\circ}$ | 0.003 | 4 | 25±3 | 8.61 ± 0.09 | 0.03 | | RTA (5-HT _{2A}) | 0.1 | 5 | 0 | 7.65 ± 0.05^{c} | | 5 | 38±6 | 8.23 ± 0.13 | 0.26 | | PPA (5-HT _{2B}) | 0.01 | 6 | 0 | $9.30 \pm 0.07^{\circ}$ | | | 70 ^b | 7.70 ± 0.11^{b} | 40 | | | | | | | | | | | | ^a Data from [5]; ^b Data from [6]; ^c Insurmountable antagonism; ^d From Schild regression analysis (slope not significantly different from unity); ^e ratio of affinities (K_B or K_P) between unsubstituted and 1-allyl-substituted ergopeptines. **Fig. 7**: Comparison of the affinities (pK_B or pK_P) for ergotamine, DHE, 1-allylergotamine and 1-allyl-DHE at different α₁ adrenergic, 5-HT₁ and 5-HT₂ receptor subtypes. #### **Conclusions** - Introduction of an allyl substituent at the indole nitrogen in ergopeptines causes decreased affinities at rodent 5-HT_{1B} receptors and at α₁ adrenoceptor subtypes but increases affinities at porcine 5-HT_{2B} receptors (Fig. 7). - 1-Allylergotamine and 1-allyldihydroergotamine are selective but insurmountable antagonists exhibiting subnanomolar affinities at porcine 5-HT_{2B} receptor. - Due to their potent 5-HT_{2B} receptor antagonism, 1-allylergopeptines might be effective drugs in migraine prophylaxis. - [6] Glusa E. and Pertz H.H. (2000); Br. J. Pharmacol. 130: 692-698. - [7] Eltze M. and Boer R. (1992); Eur. J. Pharmacol. 224: 125-136. - [8] Eltze M. (1994); Eur. J. Pharmacol. 260: 211-220. **Acknowledgements.** The authors are indebted to Dr. W. Schunack for generous support of the studies and to Dr. M. Flieger for the generous gifts of drugs.