

CQP
A practical guide

v.0.2

Draft

Susanne Flach
Freie Universität Berlin

susanne.flach@fu-berlin.de

bit.ly/sflach

23. April 2015

This work is licensed under a
Creative Commons Attribution-NoDerivatives 4.0

International License (CC BY-ND 4.0)

Table of Contents

How to use this tutorial ... 3	
What this tutorial is not ... 3	
Typographic conventions .. 3	
Connecting to cqp@fu ... 4

1	 Basics I: navigation .. 5	
2	 Basics II: managing queries ... 6	
3	 Simple queries: word forms .. 7	
4	 Accessing token annotation ... 8	
5	 Multi-token queries .. 10	
6	 Counting ... 11	
7	 Sorting & randomizing ... 12	
8	 Meta information .. 13	
9	 Settings & displays .. 14	
10	 Exporting & cleaning .. 15	
11	 Solution guide to exercises ... 16	

How to use this tutorial

This tutorial is primarily written for users of cqp@fu, especially for students
in linguistics classes (from semester 2 onwards). FU members can access
cqp@fu with their user accounts. If you do not have access to cqp@fu or wish
to work with CQP on your own machine, see the infobox to the right.

The tutorial assumes no prior knowledge of either corpus linguistics or
CQP syntax, nor does it presuppose particular computer skills or even
technology savvyness. It is suitable even for those who tend to avoid stuff
that smells remotely nerdy. You do not need to know anything in advance—
all that’s required is the willingness and openness to learn a new skill.

The tutorial is split into units (one or two pages each) that have a general
topic with explanations and code examples. I use the units as the basis for
illustrations and in-class activities of about 15–20 minutes. In most cases,
you will use them as revision of in-class activities. The tutorial is also very
useful after attending one of our workshops, but can be used for self-study.

While going through this tutorial, you should sit in front of a terminal
window. Codes and explanations only make sense if you put them into
practice—they feel like gibberish otherwise. I wrote the tutorial as a ‘narrated
cookbook’, which won’t be of much use if you do not practice.

All units contain exercises that are sufficiently general, so they don’t
assume a particular course, theory, or field of analysis (such as morphology,
syntax, semantics, or historical linguistics). There is a solution guide at the
end that provides suggestions; run these codes for additional practice. Some
of the exercises and codes might not always make a lot of sense linguistically,
but they give you a very good idea of what CQP can do. There is nothing that
should stop you from doing your own case studies—keep practicing!

There is also a dense CheatSheet available from my website. Once you
master the principle of CQP, the CheatSheet will be of enormous help. I
initially wrote the CheatSheet for myself and I still consult it occasionally. So
relax—you are not expected to know (or memorize) all this by heart. Keep
the tutorial and the CheatSheet as companions in your endeavours of corpus
linguistics with CQP.

What this tutorial is not
It’s not an introduction to corpus linguistics. There are tons of introductory
books on any number of topics, such as concept of a corpus, issues of corpus
composition, strengths and weaknesses of the corpus-based approach, case
studies, applications, or statistical analyses. There are also dozens of manuals
and video tutorials on specific corpus software.

This tutorial aims to be a student-friendly guide to learn a powerful tool for
corpus exploitation. And although it not about the linguistic and
methodological issues of corpus linguistics, I will occasionally point out to
problems and potential pitfalls in the contexts where they bridge a gap
between conceptual, technical and practical issues. But you’re strongly
advised to consult textbooks, handbooks, and corpus-based research for the
issues at hand.

Typographic conventions
Code to be entered in CQP is in bold	 code	 font, and parts of code that you
need not enter (because it’s already there) in normal	 code	 font. Variables
and concepts are in SMALL CAPS (such as a USERNAME where your own
username appears). Strings of words are given in italics and lemmas and
categories in CAPITAL ITALICS.

Infobox
The primary corpus used in this tutorial
is the BNC-BABY, a four million token
subset of the British National Corpus.
Unless instructed otherwise, use BNC-
BABY for tutorial and exercises.

CWB/CQP can be installed locally,
although this requires expertise that the
standard computer user usually lacks.
For info on the CWB and how to install,
go to http://cwb.sourceforge.net/.

The website also has demo corpora
that could be used with this tutorial, but
it might be worthwhile to obtain and
convert the BNC and BNC-BABY or
other corpora.

The website also has a CQP manual.
So once you are finished with this
practical guide, you find more advanced
functions in the CQP query language
tutorial.

Both the BNC and BNC-Baby are
available from the Oxford Text Archive
(http://ota.ox.ac.uk/) and can be
converted to CQP using the BNC
encoding tool, which is available from
the CWB website. For documentation of
the BNC consult the reference manual:
http://www.natcorp.ox.ac.uk/docs/URG.

Thanks
This tutorial is based on a number of
workshops I held over recent months,
for students and colleagues, which
included users of varied levels of literacy
in corpus linguistics. Thanks for the
helpful feedback—even if you didn’t
realise that your reaction to CQP was in
fact feedback. Thanks to all who wrote
emails of joy and frustration alike.
Feedback is of course still welcome for
future versions and extensions.

Thanks to the developers of CWB for
making it freely available, and to Stefan
Evert & colleagues for the detailed query
language and encoding manuals.

Thanks especially to Berit Johannsen
and Christine Reichhardt for helpful
comments and valuable suggestions on
earlier draft versions of this guide, to
Anatol Stefanowitsch for advice and
encouragement during all stages of the
cqp@fu project, and to our students who
continue to be the best nerdhood
trainees one could wish for.

Connecting to cqp@fu
cqp@fu uses the Corpus Workbench (CWB), of
which CQP (Corpus Query Processor) is part. CWB
has been installed on the FU’s login server. To use
cqp@fu, you need to access the server via an ssh
connection (‘secure shell’) using your ZEDAT
details. Ssh is like a tunnel you crawl through to
use a program on a remote server. cqp@fu can be
used with any device capable of establishing ssh
connections (even with smartphones).

Windows. To connect, download PuTTY from
https://www.zedat.fu-berlin.de/tip4u_03.pdf (the
PDF contains a link to the program) and save it to
a convenient location. PuTTY doesn’t need to be
installed, simply double-click to start. Enter the
information of the server you want to connect to
(Host Name: login.fu-berlin.de, Port 22, Type: SSH
— see tip box for how to save settings more
permanently). Connect with Open. If it’s your first
connection, you will be asked to accept a Host Key.

You will see login	 as:, enter your ZEDAT user
name and hit enter (mine is flach, see screenshot).
You will be asked to enter your password. The
password is not shown when you enter it.

Mac/Linux. Open the program Terminal. This is
pre-installed on Mac/Linux systems. To connect to
the server via ssh, type ssh	 USERNAME@login.fu-‐
berlin.de. Accept the host key during your first
attempt by typing yes when prompted. Enter your
password, which will not be shown as you enter it.

After connecting. Once USERNAME@login:~$ is on
your screen (the ‘prompt’), you are on the server
working in a ‘shell’. (From now on it doesn’t make
a difference whether you work from Windows,
Mac, tablet, or phone.) I refer to this place as the
‘server room’, which is like a virtual office with
shelves (we will export data files to the server room
while working with CQP).

Settings. Before you can work with CQP, you
need to run a script that imports settings and tells
your shell where to find CQP (if you enter cqp
before running the script, you get a command not
found message). You only need to run the script
once (i.e. not every time you connect to cqp@fu).

To run, type sh	 /home/s/structeng/cqp.sh
(note: sh is different to ssh and the space between
sh and the file path is vital). If nothing appears to
have happened, that’s good news!

Activate settings. Entering cqp still gives you an
error message. Log off from the server (exit) and
log back on to activate and load settings. From now
on, typing cqp after connecting will start CQP.

Tips: web access to your user space
You have three options to manage files: if you know standard
unix commands, you can manage files in the ‘server room’. You
can also use WinSCP or scp (if you know what they are).

Most users will prefer to use the FU web interface to access
the user space (‘server room’) for file management. Go to
http://zedat.fu-berlin.de/, and log in to Datenablage.

Tips: PuTTY
If you don’t want to type the host name every time you start
PuTTY, you can save the settings: enter the information and,
before you connect, select Default Settings and then click Save.

You can change the colour scheme in the section Window.
For settings like above, set white for background (Default
Background), black for text (Default Foreground), and a black
cursor (Cursor Colour). Remember to save the colour changes
under Default Settings before you connect.

Connection: cqp@fu on tablets
To work with cqp@fu on tablets, download an ssh app. We
recommend JuiceSSH (Android), Serverauditor (iOS), The SSH
Client or Remote Terminal (Windows). Set up a connection
profile: USER NAME goes in identity or account field; login.fu-
berlin.de in address or host name field. (Connection profiles
also have names; don’t confuse that with identity or account.)

1 Basics I: navigation
This unit covers the basics of starting CQP, loading and
switching corpora, navigation, and basic queries.

1.1 Starting CQP
After connecting to the login server, you’ll see
USERNAME@login~$ and a cursor (which is usually _, ▯, or
▋); this is called the ‘prompt’ (Eingabeaufforderung).
You are in your user space on the server, which can be
thought of as a virtual ‘office’ with files and folders.
CQP runs in its own ‘room’, which is entered from the
server room. To enter the cqp room, type cqp and hit
enter. (To leave CQP and return to the server room,
enter exit. To leave the server, enter exit again.)

1.2 Loading corpora
You will see [no	 corpus]>, which means that the CQP
program is running, but that no corpus has been loaded
yet. To see available corpora, type show	 corpora and
hit enter. To load a corpus, type the name of the corpus
you would like to access ([no	 corpus]>	 BNC-‐BABY).
You must enter the names of corpora in capital letters
as everything in CQP is case-sensitive.

1.3 Switching corpora
You can switch corpora easily by entering the name of
the new corpus. You can access the list of available
corpora anytime with show	 corpora (or simply show).

1.4 Command line view
What you see when you start CQP or load a corpus (i.e.
when you see BNC-‐BABY>_ in your terminal window), is
called the ‘command line view’ (Befehlszeilenansicht).
This simply means that you can enter commands (show
is such a command). I use ‘command line view’ to set
this view off from the ‘concordance line view’ (see §1.6).

1.5 First query
Once a corpus is loaded, you can run a query. All
queries have to be in quotes: if you want to search for
the string fantastic, type "fantastic" and hit enter.

You will see a list of hits for fantastic in your terminal
(the ‘concordance’), and a header with information on
corpus, number of hits, query entered. The keyword is
set off from its left and right context by [[[and]]].

1.6 Concordance line view
If a query has more hits than can be displayed on the
screen, you will see :_ below the list. This is the
‘concordance line view’. It means you can ‘browse’ the
concordance with the arrow keys ↓↑ (line by line) or the
space bar/w (page by page). Leave the concordance line
view by hitting q. This will get you back to the
command line view. To redisplay you previous query
(e.g., if you accidentally left it), type cat	 Last (§2.3).

Tip: saving typing effort I
Unix systems have ‘command completion’: if you start
typing a command and hit TAB, the full command appears
(if it’s unambiguous). If there are several commands that
start like this, hitting the TAB key twice shows options.

Try this with BNC and BNC-BABY: type BN and hit TAB.
You will see BNC and BNC-BABY as available options. If
you type BNC-‐ and hit TAB, the full string BNC-‐BABY will
appear. Then press enter to use (or, here, to load corpus).

Exercises §1
i. Query these strings in BNC-BABY: nice, oscillate, get,

count, and yank. How many matches do you find?
ii. Look at the results by browsing through them. What is

found? What is not found? List your ideas.
iii. If you need a hint, query the above strings in capital

letters and compare the results and number of hits.
iv. For a second hint, query got, counting and nicer.
v. Think about the nature and consequence of this

problem. What would you need to be able to do?

Tip: saving typing effort II
CQP has a ‘query history’: use the arrow keys ↓↑ to access
previous queries while in command line view. Use ← and
DELETE key to modify a query. You can ignore (or delete)
the semicolon ;, but if you keep it, make sure it’s at the end
of your query string (CQP requires ;, but cqp@fu settings
automatically insert it with each query anyway).

Tip: getting error messages
If you get ‘CQP syntax error’, CQP is telling you that it
doesn’t understand what you want. Most of these messages
occur when you forget things like " or when ; isn’t where it
should be, i.e. when you get the syntax wrong.

2 Basics II: managing queries
This unit covers some technical basics of saving, printing,
and exporting queries.

2.1 Naming queries
Every query is temporarily saved in a variable Last —
variables are like drawers in your office. Each new query
overwrites the previous one (which is saved as Last).

You can name queries to save them from being
overwritten: BNC-‐BABY>	 fabulous	 =	 Last (i.e. if you
run a concordance of "fabulous" and like to keep it).
As CQP is case-sensitive, it can only recognize Last if
entered as instructed; X	 =	 Last means ‘save content of
Last into drawer X’. The name given for a query can be
anything, provided it’s not a predefined CQP command
(like show or cat).

2.2 Listing named queries
Similar to the show	 corpora command above, you can
view a list of saved/named queries with show	 named.
(Simply show gives you a list of corpora and named
queries.) The number in square brackets gives the
number of hits. This screenshot shows two queries—
before you read on, think about why two, not three:

Last is identical to the query fabulous (12 hits each) as
the latter was just saved from Last.

2.3 Accessing named queries
If you want to access a named query, or redisplay a
query you left with q, you need to ‘print’ it to the screen
again. Type cat	 Last or cat	 fabulous (cat is the
standard unix command for ‘printing’ and short for
catenate). All named queries are deleted when you exit
CQP; you should save important queries as files (§2.4).

2.4 Exporting queries
You will not need the information in this column in the
initial stages, so you can ignore this for now. But it
involves ‘printing’ queries, so it belongs here.

Since cat	 Last (or cat	 NAMEOFQUERY) prints the
contents of the drawer Last to the screen, you need to
‘redirect’ this output to a text file:

The > is a re-routing operator, telling CQP to redirect
the contents of fabulous to a file called fabulous.txt.
Note that the quotes here are necessary.

2.5 Accessing exported files
If you are working with cqp@fu, the file is saved in your
user space. That’s the ‘room’ you entered when you
accessed the login server and from which you entered
the cqp room.

If you leave the cqp room (BNC-‐BABY>	 exit), you
return to the server room. You can see your saved file
by typing ls or ls	 -‐l. (for list). You should also see the
file CWBclean.pl (see §2.6).

2.6 Cleaning exported files
CWBclean.pl is a script which cleans CQP output. It
also inserts tabs to your concordance, which is very
handy for working in spreadsheet programs (see §10.5).

To use the script, type the following command while
you are in the server room (don’t type ~$; this is just to
indicate that you are not in the cqp room anymore!):
~$	 perl	 CWBclean.pl	 INPUT.txt	 >	 OUTPUT.txt	
ATTENTION: (i) spaces are really important; (ii) the
output file is not enclosed in quotes (different to cat in
CQP); (iii) the output file needs to have different name
than the input file, but can be any name you find useful.

2.7 Downloading files
Download output.txt from http://zedat.fu-berlin.de →
Datenablage. You’ll download a zip file. You can also
delete old, unnecessary files here (your quota is 8GB).

Exercises §2
i. Re-run the queries in the exercise box in §1 and name

the queries to save them temporarily. Use the strings
you query as names for the drawers. (You should get an
error message for one of the items. Any clue why?)

ii. Re-print the contents of some of some queries to
practice.

3 Simple queries: word forms
This unit extends the problems discussed in §1 and
introduces regular expressions to improve queries.

3.1 Regular expressions
One of the problems discussed in §1 above was that
queries such as "fabulous" will only find hits that
match the string between quotes exactly. So "get" will
not match gets, getting, got, or gotten (we ignore capital
letters in strings such as GET or Get for the moment).

A first step towards finding these is to use so-called
regular expressions (regex). Some are like wildcards,
some group characters together, and some repeat stuff.

Let’s look at an example: to find third-person forms of
improve, you need to add s to improve, but make it
optional with ?: BNC-‐BABY>"improves?"—this matches
strings improve and improves, as ? tells CQP that s can
be there, but doesn’t have to. You should get 171 hits (?
goes inside the quotes, behind what’s optional.)

Yet, this does not find improved. One solution is to
remind yourself that the only difference between
improves and improved is d instead of s, so we can add
the d and make that optional, too: "improves?d?".
CQP will now match improve, improves, and improved
—if it doesn’t find s, it will look for d (but of course will
also return tokens where it doesn’t find either). This
should return 312 hits—browse the results!

But we haven’t found improving. One solution is to
add the characters i, n, and g and make these optional,
too: "improves?d?i?n?g?". This still only finds 312
hits; and browsing the results does not yield a token of
improving. Before you read on: look at the query and
make sure you understand why this is the case!

It is, of course, because improving does not contain
<e>, but our query wants one. One solution would be to
make <e> optional, too: "improve?s?d?i?n?g?"—this
will now match improving to give us 362 hits.

3.2 Grouping characters
By now our query is rather clumsy—luckily, regular
expressions can simplify things a lot by grouping
characters together. There are two different types of
grouping: the two letters that give us improves and
improved both occur as alternatives in the same position
in the string, whereas the ing is where the characters
occur in different (i.e. subsequent) positions—so these
two groups require different grouping strategies.

The first case, s and d, can be grouped with [], which
groups a class of characters; ing can be grouped with (),
which groups a sequence. Try "improve?[sd]?(ing)?"
and make sure you understand the principle and why it
gives you the same result as "improve?s?d?i?n?g?".
This should also give you 362 hits. Note that the
groupings still require the operator ?.

3.3 Wildcards
There is a match-all wildcard, the period .. It matches
any character in the position you put it in. See what the
following does to your query, if you swap the grouped
class [sd] with .: "improve?.?(ing)?".

Well, instead of asking for an optional s or d in this
position, you want any character (not just s and d),
which is also optional. It is almost the same query—but
it finds two more hits (both of which are improver).
Make sure you understand why.

3.4 Combining regular expressions
Being able to use regular expressions in CQP gives you
an extremely powerful range of options and there are
almost always several ways to achieve a desired result.
Compare "improve(s|d)?" and "improve[sd]?"—
they return the same set of results. Can you see why?

Well, we said that () groups sequences, while []
groups alternatives. (s|d) still matches a sequence, but
by using the OR operator |, it matches a ‘sequence’ of
one character, which here is either s OR d.

3.5 Repetition operators
There are two very handy operators, * and +. They are
not wildcards like . (online applications often use * as a
wildcard, so don’t confuse them!). Instead, they tell
CQP how many instances of the preceding character or
group you want repeated: + repeats it 1 or more times, *
repeats it 0 or more times.

If this seems superfluous to you, run the following
examples to check whether you understand why they
are not identical: "improves*" returns 171 hits, but
"improves+" only 17 (look at what they return!).

3.6 Case-insensitive matches
Our queries above did not match strings with capital
letters. We could include these, but luckily CQP already
has an operator: adding %c to your query outside the
quotes will ignore case. Thus, "improve[sd]?"	 %c will
also find Improves or IMPROVED. Run the queries with
and without %c and browse through the results to
appreciate the difference and importance of %c!

Exercises §3
i. Find all forms of SNOW, RAIN, SLEEP, HOUSE, and

ROUND. Start with basic forms, browse your results to
determine what your query finds (but what it
doesn’t!). Then improve & simplify the query.

ii. Search for all forms of SNOW and RAIN in one query.
iii. Formulate a query for realize. What do you notice?
iv. Find all forms of NICE, OLD, and FIT.
v. Find all forms for GET.

vi. Find strings that (a) begin with un- (e.g. unfriendly),
(b) end in -ment (e.g. movement), and (c) begin with
un- AND end in -ment (e.g. unemployment).

4 Accessing token annotation
This unit expands simple CQP queries to the more
powerful “CQP principle” and shows how to access token-
level annotation (e.g. lemmas or part-of-speech tags).

4.1 The CQP principle
Up to now, we enclosed our queries in quotes, "STRING".
This accesses the string exactly as it appears in a corpus
text. We have very powerful options once we use and
combine regular expressions. For many purposes, this is
sufficient, and in some cases, i.e. in plain text or
unannotated corpora, this is the only way.

However, many corpora come with rich token-level
linguistic annotation, such as part-of-speech or lemma
information. Such annotation identifies a string like
<improves> as 3rd-person singular present tense of
IMPROVE with the pos tag VVZ (in the BNC). The
information can be accessed, but we need a different
notation to tell CQP which information we want.

The key to the “CQP principle” is to understand that
CQP converts "STRING" to its standard CQP notation
(this happens in the background). This ‘real’ notation
requires that every token definition is in square
brackets, stating precisely which level of annotation
CQP has to go to in order to find what we want.

So "STRING" is actually short for [word="STRING"],
which tells CQP to accesses the word-level (which is the
string as it occurs in the text). If we want the lemma-
level of a token, we have to use [lemma="LEMMA"] (there
is no shorthand for the lemma or any other level).

The true power of this notation becomes obvious once
you realize that the expression inside the square
brackets contains conditions for matching tokens and
that these conditions can be combined in almost
unlimited complexity. Let’s look at an example.

4.2 Finding verbs
One of the exercises in §3 asked you to find word forms
of ROUND. You were also asked to list properties about
the hits that your query found (and what it didn’t). One
thing you should have noticed is that while you can
formulate queries to find all forms of ROUND, i.e. round,
rounds, rounded, and rounding (and those with capital
letters), you actually have no way of separating the verb
round(s) from round(s) as noun, or rounded as a past
verb from rounded as an adjective.

You probably queried "rounds?(ed)?(ing)?"%c (or
similar), which CQP converted to its ‘real’ notation, i.e.
[word="rounds?(ed)?(ing)?"%c]. Now, suppose you
only wanted to find ROUND as a verb, you have to
instruct CQP to restrict the query to find only verbs.
You have to expand the notation to contain another
condition, i.e. an instruction to match only instances
that also satisfy that condition (here: verbs). You add
conditions on a token by using the AND operator &:
[word="rounds?(ed)?(ing)?"%c	 &	 class="VERB"]

4.3 Using part-of-speech information
There is no real limit on the number of conditions you
can put into the brackets (at least I have not come
across one in my daily business with CQP). Seriously,
don’t underestimate the power of this property! To
illustrate, let’s search for adverb uses of ROUND. This is a
little easier for now, as we don’t have to worry about
inflectional forms at the moment.

We saw above that conditions can be formulated on
the word and class-levels; part-of-speech is on the pos-
level. To search for adverb uses of ROUND, you need the
string round in the word-condition and the tag for
adverbs in the pos-condition (‘AV0’ in the BNC):
[word="round"%c	 &	 pos="AV0"]. Another option
would be the class-level; adverbs have ‘ADV’ as a value
here: [word="round"%c	 &	 class="ADV"].

The difference between pos and class is that pos is
more detailed than class. This is not really relevant for
adverbs, but it has some major advantages in the case of
nouns and verbs, because 4 noun tags are subsumed
under class="SUBST", and 25 verb tags are included in
class="VERB". Take a look at the list of tags for the
BNC. Make sure you understand the principle!	

The advantage in CQP is that you can combine these
levels to refine your queries by including or excluding
aspects you want (or don’t want). Suppose you wanted
verbal rounded, but only past tense, not past participles,
you could set restrictions as follows:
[word="rounded"	 &	 class="VERB"	 &	 pos!="VVN"]	

(You could formulate your query to match verb pos tags
except VVN, but that’s a fair bit of typing even with
regular expressions, as you need to exclude VVN.)

The != operator means IS NOT, so the above query
instructs CQP to ‘find all (lower-case) instances of
rounded, which are verbs, but are not past participles’
(VVD is the tag for ‘past tense’ and VVN for ‘paste
participle’ in the BNC). So while [word="rounded"	 &	
pos="VVD"] is shorter for this purpose, != illustrates
the power of the CQP principle and its []-annotation of
formulating conditions on tokens.

 CAUTION!

Part-of-speech information almost always comes from
automatic taggers, meaning that a computer program
annotated the data based on algorithms and probabilities.

While some taggers claim to be up to 97% accurate—
though many corpus linguists doubt this—it still means
that about 1 in 30 words is erroneously tagged. Be aware
of this and treat tagging with healthy scepticism.

You should make it a habit to critically review initial
search results: What is found? What is not found? What
should have been found? It should not scare you to repeat,
reformulate, and refine queries several times (and use
different strategies) before you export and analyse data.

Treat this as part of the learning experience: you’ll
actually learn a lot about the nature of your data and the
fascinating complexity of language. We’ve all been there
(and still are!).

4.4 Accessing lemma information
So far we met the word, pos, and class annotation
levels, with the latter two referring to the same level, just
with different focus on detail.

 One of the most widespread types of annotation is the
lemma of a token, i.e. the corpus forms is, was, were, or
been, are variants of the abstract lemma BE.

Thus, if you want to avoid the tedious typing of the
word-level string with regular expressions, it is often
desirable and useful to resort to lemma information (if
available). The usual disclaimers apply: lemmatization is
added automatically, too, and may not always be correct
(though rarely so), so keep this in mind.

In most corpora, the name for the lemma level is
lemma. In the CQP versions of the BNC(-BABY), lemma
is hw, for head word (for irrelevant technical reasons).

4.5 Excursion: CQP data model
It helps to understand what CQP does if you know the
underlying data model. The corpus files that go into
CQP look like this (vertical format; BROWN corpus):

The levels of annotation are arranged in columns: the
corpus text word in the first, pos in the second, lemma
or hw in the third, and class in the fourth (though the
order is irrelevant). So when you instruct CQP to find
[word="said"	 %c	 &	 pos="VVD"], it will look for and
return all instances of said in the text where the pos-
column also contains VVD (rather than JJ for said as an
adjective). Similarly, if you query [class="SUBST"], it
will return all noun tokens in the corpus, because their
class-column contains SUBST, regardless of what is in
the other columns (from the screenshot above it would
return Fulton, County, Grand, Jury, and Friday).

4.6 CQP principle revisited
Let’s summarize the CQP principle: you state a query in
square brackets, in which you formulate (combinations
of) conditions that tell CQP which tokens you want
returned. The pattern is: [attribute="VALUE"	 &	 …].

The ‘levels’ of annotation are the attributes, which
have values. Attributes are CQP syntax (largely identical
across corpora), but the values are corpus-specific (and
can vary considerably across corpora). The colours in
the box (right) illustrate the difference. You can use
regular expressions on values, but not on attributes.

 Know your corpus!
Searching for part-of-speech information requires
knowledge both of the annotation scheme of a corpus and
how it is represented in the corpus’ CQP version. There
are several tagsets out there and knowing which tagset is
used on which corpus is essential (see CheatSheet for the
tagsets used in cqp@fu, i.e. compare PENN vs. CLAWS).

The CQP syntax is, for the most part, identical between
corpora, such as the column and level names or the type
of operators you can use (the major difference you have
met so far is that lemma is hw in the BNC). But the values
to be inserted between quotes can be very different.

Knowing your corpus is absolutely vital in CQP (as it
would be in any other system, for that matter). You can
usually access additional information by typing info	
CORPUSNAME in CQP. Most info files contain the names and
availability of attributes and their values.

Tip: displaying annotation in concordances
Token-level annotation (column values) can be displayed
in concordances. This can be very useful if you would like
to see how a particular word is tagged, either if you’re
wondering what part-of-speech a word is, or, more on the
technical side, if you need a reminder of the tagset (‘values
of attributes’) used on your current corpus.

To display token annotation, use show—you know the
command from show	 corpora / show	 named. To display
pos tags, type show	 +pos, if you want class, type show	
+class (no brownie points for guessing how to show
lemma or hw!). This will print the information in the
concordance next time you run it (or use cat	 Last), set
off by a slash: for the it prints the/AT0. To turn off, type
show	 –pos. You can combine on and off commands in
one line: show	 +pos	 +class	 -‐hw.

Exercise §4
i. In the exercises in §3, you searched for word forms of

SNOW, RAIN, and SLEEP. Now determine the number of
uses as nouns vs. verbs in BNC-BABY.

ii. For ROUND, determine the word-class distribution by
the class attribute. Use the strategy suggested in the
tips box above to determine class values for round.

iii. The BNC has so-called ‘ambiguity tags’. These occur
where the tagger was unsure of the part-of-speech; i.e.
whether a token is adverb or preposition, noun or
verb, etc. Many tokens thus can have pos tags like
AVP-‐PRP, NN1-‐AJ0, or VVD-‐VVN (unsure which verb).
This is a serious problem when working with the
BNC. How can you query all adverb, all verb uses, all
noun uses of round by pos, including tokens the
tagger could not decide on?

iv. How many tokens in the BNC-BABY have ambiguity
tags? How much (in per cent) of the corpus is that?

[attribute1="VALUE"	 &	 attribute2="VA.(UE)?"]	

CQP syntax corpus-specific data
no regular expressions regular expressions possible
usually identical across corpora variable across corpora

5 Multi-token queries
This unit covers searching for patterns of more than one
token, i.e. multi-word units of fixed and variable length.

5.1 Multiple tokens: principle
If the CQP principle is one square bracket for one token
definition ([TOKEN]), then querying a sequence of tokens
is easy: you’ll need one square bracket for each of the
tokens in a string ([TOKEN1]	 [TOKEN2]). To search for the
house, you define a pattern for the and one for house.

The handy thing is that each token can get its own
definition independent of the other. Also, the shorthand
notation with quotes ("STRING") can be combined with
the square bracket notation. Let’s learn to appreciate
this flexibility!

5.2 Bigrams & n-grams
N-grams are strings of n orthographic words (strings
separated by spaces). A bigram is 2, a trigram is 3, etc.

You can search for a bigram like the house(s) as
"the"%c	 	 [hw="house"]; and for trigrams like the blue
house, the query "the"	 "blue"	 "house" will actually
already do the trick (case-sensitive string). You
probably already see the huge number of options by
formulating precise conditions on each of the tokens.

A simple example: suppose you want to retrieve car(s)
in noun phrases headed by the or a(n) and modified by
an adjective (DET ADJ NOUN), you can try:

"the|an?"%c	 	 [class="ADJ"]	 	 [hw="car"%c].

5.3 Flexible n-grams
What if you don’t know (or want to impose a priori) the
length of your string? What if you want to identify noun
phrases with one or more modifying adjectives in a
single query? Think about this for a second—you
actually already know the operators to do this!

You can use repetition operators. If the adjective in
your pattern can occur once or more, you can use the
once or more operator + (see §3). You put it outside the
square brackets (so it applies to the entire []):
"the|an?"%c	 	 [class="ADJ"]+	 	 [hw="car"%c]

(Think about what the operators ? and * instead of + do
to your query, then run the queries to check.)

There is another useful expression, which allows you
to specify the extent of repetitions: if you want NPs with
a variable, but limited number of adverbs or adjectives,
say a minimum of 2, but a maximum of 4 such tokens,
you can use "the"%c	 	 []{2,4}	 	 [class="SUBST"].
(Note, though, that many results are not at all the NPs
we expected! See exercise box for discussion.)

This ‘range’ expression {MIN,MAX} means ‘match x
repeated MIN to MAX times'. If you use {1,}, this
matches one or more tokens (identical to +), {,2} says
to match ‘up to two’, and {3} means ‘exactly three’. You
can use {} inside quotes, too, to specify the range of
repeated characters, classes or sequences.

Tip: spaces
You can, but don’t have to use spaces in your queries. CQP
ignores them, as long as they don’t occur when matching
values. So "the"%c is the same as "the"	 %c and [hw="house"]
is the same as [hw	 =	 "house"]. Spaces can make your query
easier to read (which is why I am using them).

The important exception is that you can’t use spaces for
whatever goes between quotes, i.e. you can’t use them on
values: [hw="	 house	 "] will return 0 matches. Can you
think of why?

It’s because CQP will try to match the space in this case,
i.e. search for a lemma/hw that has spaces around it. (And
there aren’t such lemmas, primarily for technical reasons—
in other words, CQP versions cannot match spaces in text.)

Exercises §5
i. Search for X-and-X coordination. What types do you

find if you query them very schematically, i.e. with very
few conditions? Browse through the results: which hits
seem to be particularly interesting cases that would
merit further investigation? And why do others seem to
be less interesting?

ii. The query "the"%c	 	 []{2,4}	 	 [class="SUBST"] in
5.3 returns too many hits that are not instances of what
we wanted (e.g. the more luxurious the luncheon): our
query has a low precision rate. Make sure you
understand why. Then reformulate your query, and do
so by filling the middle slot [] with a condition that
matches only adverbs or adjectives.

iii. Find verbs with the prefix re-. What appears to be the
problem? Try to improve it with the {} operator.

iv. Most idioms in English are surprisingly flexible, lexically
and morphologically. Formulate queries that match as
many instances as possible for speak one’s mind, there is
something X about Y, and sit through. Start with very
schematic queries, i.e. use very general (or no)
restricting conditions for the slots that you suspect to
vary. Then browse through the results to check what is
found (and what is not) and determine where and how
you can refine your queries to achieve better results.

v. Proverbs are usually considered to be the most rigidly
fixed multi-word expressions, but they also tend to be
rather infrequent. Think of examples and query them
(like kick the bucket, barking up the wrong tree etc.)

Tip: escaping characters
What happens if you want to find ?, i.e. a real question
mark? Or a real period? There is obviously a major problem
because if you query "?", CQP returns an error message
(‘illegal regular expression’); if you query ".", it returns all
one-letter tokens (including, but not limited to,
punctuation). Both shouldn’t surprise you now that you’re
familiar with regular expressions and what they do.

So what you need is to tell CQP that you don’t want the
regular expression function of these symbols. You have to
‘escape’ their technical use. You do this with the backslash
directly preceding the symbol: "\?" will find real ?s. Now
it’s easy to match real periods, brackets, or asterisks without
using pos or class.

6 Counting
This unit introduces the command to count hits by a
number of values.

6.1 Counting one-grams
We know how many hits a query has from the
information provided in the header. But counting in
CQP is so much more powerful. While the header itself
returns how many matches where found for the entire
query, it does not give information on the distribution
of these hits between word forms, lemmas, or pos tags.

Let’s look at RAIN from the exercises in §3 and see how
the uses are distributed between nouns and verbs. You
could query [hw="rain"	 &	 class="VERB"], then note
down the number of matches and re-run the same for
SUBST. This is tedious, though. And in some cases you
might not be aware of the different classes a word is
tagged with. Plus, if you tried to do the same by pos
tags, you’d have to do this for four noun tags and 25
verb tags (even if you used regular expressions for pos
tags!) to find out that RAIN is tagged 3 times as past
tense (VVD), out of 338 hits. How do I know?

Remember from the error message in the exercise in
§2 that count is a command in CQP that expects being
followed by something else than =? It expects two things
at least: (i) the name of the query you want to count
things in, and (ii) the name of the attribute you want to
count by. So to count the distribution by class for your
query of RAIN, type count	 Last	 by	 class. The output
should tell you that the lemma RAIN is tagged 238 times
as a noun and 100 times as a verb. Similarly, count	
Last	 by	 pos lists the distribution of the pos tags.

Now: what will count	 Last	 by	 word do and what is
the difference to count	 Last	 by	 word	 %c? Think for a
second, then run both commands to check your
suspicion. What happened? The former counts the
frequencies of the exact strings (e.g., 237 for rain and 9
for Rain), while %c ignores case and adds the two
figures (to give 237+9=246 for case-insensitive rain).

6.2 Counting n-grams
If you have a multi-token pattern, the basic version
count	 Last	 by	 word will count the types of the full
pattern. Let’s look at ADV-and-ADV coordination: query
[class="ADV"]	 "and"%c	 [class="ADV"], then run
count	 Last	 by	 word.

The phrase up and down is the most frequent (90 hits),
followed by in and out and now and then. (The
frequency list is longer than can be displayed, so browse
with arrows/spacebar, exit with q). %c will combine/add
string counts. This is not immediately obvious here as
one of the first strings where this shows is quite far
down. (It’s somewhat indicative of the British
fascination for the Australian soap Home and Away—
see how case-sensitivity can occasionally be revealing!).
Remember: it always pays to browse before conclude.

6.3 Counting by specific positions
What if you wanted to know which adverb occurs most
frequently in the first position in ADV-and-ADV?
Remember how count needs two arguments (required),
i.e. the drawer and the attribute to count by? count
further allows optional arguments: the position in the
match to count by. So you can tell count that you want
to count by position: count	 Last	 by	 word	 on	 match
— up is still the most frequent (133).

By default, match selects the first position in a match.
It’s short for count	 Last	 by	 word	 on	 match[0]
(because most computer programs start counting at 0).
Think what count	 Last	 by	 word	 on	 match[1] will
do with X-and-X? Run to check your suspicion.

Of course, it will return a frequency list of only a few
lines: as many orthographic variants and occurs in (and,
And, AND, etc.). If you set %c after word, your
frequency list only has one line. So if match[1] selects
the second position, match[2] selects the third, etc.

The cool thing is: there is matchend, too. It counts
from the end of your search pattern. This is more
helpful than you may think at first: suppose you have a
multi-word pattern of variable length (because some
tokens in your query are optional), but want to know
which words occur most frequently in the last position.
There is no way to do this with match, because
match[2] would simply look for and count the third
tokens in every hit (regardless of whether that hit has
three or four words). So here it helps to use
matchend[0], which selects the last token in a hit.

6.4 Counting beyond patterns
Now the really cool thing is that the numbers in square
brackets for match can be set to select and count items
beyond the query. match[-‐1] will count the tokens one
position to the left of a pattern (as [0] is the beginning
of a pattern). By the same logic, matchend[1] counts
one position to the right of a pattern (as matchend[0] is
the end of a pattern). match[-‐2] counts two positions
to the left etc.; match[NUMBER] works like an anchor or
reference point for CQP to know where to look.

Exercises §6
i. Make verb frequency lists (word-form and lemma/hw).

Browse the list and look at the first 25 verbs or so. What
types do you find? Does it make sense to group them?
How? Take a look at the BNC pos tag set and then make
different frequency lists for verb types you find useful.

ii. Make a frequency list of adverbs (query by class).
What’s the most frequent? If you are surprised (even if
not), create a frequency list without the first two items
on your initial list.

iii. In your ADV-and-ADV query, what’s the most frequent
item to the left and right of the pattern?

iv. In the sequence the X car, what’s the most frequent
adjective modifying car? Is this also the most frequent
string between the and car?

7 Sorting & randomizing
This unit covers useful functions for working with
concordances, i.e. sorting, randomizing and sampling.

7.1 Corpus positions
By default, the concordance list is presented with the
hits in corpus order. That’s what the number on the far
left means: the only hit for oscillate in BNC-BABY
occurs as the 2,763,551st token in the database (as if all
sentences in the corpus were written in one long string,
ordered here by file name). In this unit, we’ll look at
some of the functions CQP provides for sorting and
randomizing, pointing out issues along the way.

7.2 Sorting queries
There is a command called sort and its syntax is
identical to that of count (§6): you need arguments to
say what you want to sort, by what, on which position.

Let’s illustrate this with an example: suppose you
wanted to study the behaviour of the suffix -ity. We use
a strategy to exclude the very frequent term city, and
query [word=".{2,}ity"%c]. You could use count to
determine the distribution by types. But say you wanted
to browse through actual concordances, you need to
sort the results to do that (as the output is in the order
the matches occur in the corpus). Know the command?

If you use sort	 Last	 by	 word—what happens? The
bulk of the hits comprise Authority, then Christianity,
then Community, and so on. Notice what happens and
why? CQP first sorts by capital letters if you don’t use
%c on word (it doesn’t do this for sorting by hw because
lemmas usually don’t contain capital letters). See the
exercise box for an example of multi-word tokens.

What will sort	 Last	 by	 word	 desc do, if desc
means ‘descending’? It will list your results [Z–A].

7.3 Sorting context
The more useful and more frequent application of sort
is that of sorting the context of your search pattern,
because that’s really where you need context, i.e. to
investigate a word’s phraseologies.

Let’s illustrate this: query "interested" and sort by
context on the right (you should immediately notice the
high frequency of the preposition in at R1). Since the
syntax is identical to count, you should be able to
formulate the command.

Run sort	 Last	 by	 word	 %c	 on	 match[1]. If you
only have a single token, match[1] and matchend[1]
are identical (i.e. you only have one anchor which is
beginning and end of match at the same time). Note: %c
may be desirable, even if you only queried a case-
sensitive string, here interested. Why? Because %c will
apply case-insensitivity to match[1] and will sort
capital letters first.

7.4 Randomizing
Randomizing is a very important issue in corpus
linguistics, for a number of reasons. While the text files
in most corpora are randomly named, they are usually
not randomly ordered, but grouped by genre (the
BROWN family of corpora, for instance, has the press
category first, then religion, then skills, trades, hobbies,
and so on). So unless you are going to use all tokens of a
query, you will need to randomize (or sample a random
subset). But even if you only want to get a first glance,
always bear in mind that results at the top of a list may
not be representative for the phenomenon.
sort can also randomize (i.e. sorting in random

order): instead of instructing it to sort by an attribute,
tell CQP to randomize with sort	 Last	 randomize
(you’ll see that the numbers that indicate corpus
positions now appear mixed). You can undo this and
return to the corpus ordering with sort	 Last.

7.5 Sampling
It is often useful (or required) to look at a subsample of
your query, say if it is too frequent to look at all of them.
If you randomized your query, you can take the first 30,
50, 200 tokens (depending on what you’re after). But
you can also let CQP draw a random subsample for you
with reduce.
reduce is the command, and you can sample either a

fixed number of hits or reduce the query to a percentage
share of the original result: reduce	 A	 to	 200 reduces
the query A to 200 hits, whereas reduce	 A	 to	 15%
samples 15% of the original query A.

I didn’t use Last in this case. This is because reduce
only keeps the sampled data—and you can’t get back
the original. So it’s advisable to ‘copy’ a query to a new
drawer. If you want to reduce a query A, you should
copy it to B before reducing (using B	 =	 A, see §2.1).

7.6 Excursion
You don’t necessarily have to sample and randomize in
CQP before exporting, as this job can also be handled in
spreadsheet programs (§XX). But randomizing can be
useful even for browsing through a few concordances.

CQP’s sorting capabilities are far superior to sorting
options in spreadsheet programs at this level of
complexity. If you want to export the sorting in your
concordance, sort to your liking and then export with
cat	 Last and the re-direct operator (see §2.4, §10).

Exercises §7
i. sort	 Last	 by	 word	 %c	 on	 matchend[2]	 desc	 reverse —

try and decipher this command. What could it mean?
What will it do? Run the command for any query, e.g.
"interested". What did it do?

ii. How many hits does a 1% sample of the article the have?

8 Meta information
This unit introduces to accessing information on the text
level, such as genre, register, or mode.

8.1 General
We dealt with access to token-level annotation up to
now. But almost all corpora also come with metadata on
the text level, i.e. information that applies to all tokens
in a file or longer stretches of text within a file. Such
metadata, for instance, can tell you whether a text
contains language from the spoken or written medium
(if that distinction is made in a corpus), or from a press
or fiction subsection, or if it’s academic text from the
natural or the social sciences, or if it was written or
uttered by men or women, and so on.

CQP calls this type of metadata structural attributes
(as opposed to positional attributes for the token-level
annotation like pos or class). This section will
introduce you to the principle of how to access this
information in CQP, not what it means conceptually.
Corpora vary in the amount and detail of metadata, so
you need to consult the official documentation. To see
what’s available in CQP, show	 cd (‘context descriptor’)
or info	 CORPUSNAME provide overviews.

8.2 Query principle
As with accessing token-level annotation, CQP also
distinguishes CQP syntax and corpus-specific data,
although it is more complicated, because corpora vary
considerably on the names of structural attributes.

Say you want only tokens of shit from the spoken part
of a corpus. What you need to know is the attribute
name for spoken data (one of which in the BNC is
text_mode, also see text_text_type!), and the syntax
CQP uses to match the values of that attribute. Try this:
[word="shit"%c]	 ::	 match.text_mode="spoken"	

You add your restriction on metadata by adding two
colons :: to the query (again, spaces are not required),
followed by match. and the name of the attribute
(text_mode). These then equal one of the values of
text_mode (spoken or written). As the values, spoken
and written, are corpus-specific, they have to be
enclosed in quotes "VALUE", a principle parallel to the
access to token-level annotation above.

8.3 Using regular expressions
As with conditions on tokens, you can use regular
expressions on values, but not on attributes. To
illustrate: if you want to compare uses of significant in
academic texts from humanities vs. natural sciences:
"significant"::match.text_genre="W:ac:(hum|nat).*"

 This looks for text that is written (W), academic (ac),
either humanities/arts (hum) OR natural sciences (nat).
Note: the colons inside the quotes are not CQP syntax
here—it’s how the builders of the BNC happened to
name the values; see CheatSheet for attribute-value list.

8.4 Combining values
You can combine metadata. If you want to restrict by
two different attributes, this is the only way (if you
restrict on the same attribute, as written vs. spoken in
text_mode, you can use regular expressions; see §8.3).

After the semicolon, you need match. for every piece
of metadata; combine them with the operators & (AND)
or | (OR). To find tokens that are either spoken or from
written-to-be-spoken (which is written):
::match.text_text_type="written-‐to-‐be-‐spoken"	
|	 match.text_mode="spoken". Note that & returns 0
matches here—why? Because it looks for tokens that are
from written and spoken mode at the same time (that’s
impossible, as text is classified either spoken or written).

8.5 Group
The group command works on any query result list. But
it groups by text-level annotation, so it belongs here.

Say you want to know quickly how many times THE
[word="the"%c] occurs in spoken vs. written texts, run
the query, then display the distribution by the values of
text_mode with group	 Last	 match	 text_mode. Also
try group	 Last	 match	 text_text_type.

Know your corpus!
Always consult the corpus documentation! Don’t assume
you know what’s behind the names of metadata. Would
you know just like that what the difference is between
spoken_demographic and spoken_context? Or between
text_context, text_domain, and text_medium? Most of
the time you will not reach this level of detail, but if you
do, make sure you know what the data source is. Plus, it’s
important that you know what text went into the corpus
to assess whether the corpus is suitable to your question.

Note that quoted speech (e.g., in fiction or press), is not
classified spoken. If the text is classified as W:SOMETHING,
it is classified as written (because that’s what W: texts are)
— regardless of whether it contains transcriptions of (real
or artificial) spoken language.

[QUERY]::match.ATTRIBUTE1="VA.+"	 &	 match.ATTRIBUTE2="VA.+"	

CQP syntax corpus-specific data
no regular expressions regular expressions possible
usually identical across corpora variable across corpora

Exercises §8
i. The following restrictions for the string "lovely"%c

do not return the same number of hits. Ideas why?
::match.u_sex="(male|female)"	
::match.u_sex=".*"; try to solve with group.

ii. Look at the CheatSheet for structural attributes. Find
all tokens for PLAY by males & females. Make sure you
see why u and text attributes influence the result.

iii. Think about what the distribution of THE in BNC-
BABY for written (183,444) vs. spoken (27,704) means.
Does it make sense that THE is 7 times more frequent
in written language? Why not? Can you find out why?
And what you should do to compare the difference?

9 Settings & displays
This unit covers the technical principles about displaying
options and changing settings with set.

9.1 Context
The standard cqp@fu settings for left and right context
is 30 characters left and right of the keyword. If you
need more context, use the command set	 Context
plus the type and length of context you wish to set.

Characters. The default argument of set	 Context is
the number of characters. If you want 90 characters on
either side of the keyword, use set	 Context	 90. If you
want different numbers of characters on either side, use
set	 LeftContext	 20 for 20 characters to the left, and
set	 RightContext	 50 for 50 characters to the right.

Words. If you want ten words on either side, use set	
Context	 10	 words. Note that for CQP a ‘word’ is
anything between spaces, so girl friend is two words.

Sentences. You can also use metadata of the file
structure. Most corpora mark sentence boundaries (see
the screenshot of the file that went into CQP in §4,
where there is an <s> before the first word; this is a
sentence tag). To display the entire sentence of your hit,
use set	 Context	 1	 s, regardless of the length of the
sentence. set	 Context	 3	 s returns the sentence with
the keyword plus two sentences on either side.

Paragraphs & co. Some corpora have additional
structural annotation like <p> for paragraphs, so you
can use them to display the entire paragraph where your
item occurs in. Some historical corpora have <lb> (for
‘line break’), e.g. in SHAKESPEARE, so you can set the
context as set	 Context	 3	 lb to have two lines above
and below the search item.

9.2 Display metadata in output
One of the most useful things about set is that you can
display metadata in concordances. What you should
always do, for instance, because you need a reference
when citing corpus examples in your work, is the name
of the text file where your example occurs. But it’s
extremely useful with other data, too.

The pattern is set	 PrintStructures	 'ATTRIBUTE'
stating which structure(s) you want printed. To display
the name of the text file (which is often text_id), use:
set	 PrintStructures	 'text_id'. To combine
corpus file name and sentence id, call both, separated by
a comma: set	 PrintStructures	 'text_id,	 s_n'.

So if you want text mode displayed in your output, set
it as set	 PrintStructures	 'text_mode'. Now every
subsequent query prints out the values written or
spoken. Note: every new call of set	 PrintStructures
sets exactly the specified settings (it ‘deletes’ previous
settings). So the call we just made with text_mode
overruled the settings we did with text_id. If you need
all of them: set	 PrintStructures	 'text_id,	 s_n,	
text_mode'. All settings are cleared on exiting CQP.

9.3 Restricting pattern by context
Suppose you want to check whether your school-book
rule of Do not use would in if-sentences! is accurate for
real English, you would not want to specify the number
of tokens between if and would. But if you query:
[word="if"%c]	 []+	 [word="would"%c], you get
results that are really long—because CQP looks for if
and then returns everything until it hits would
somewhere (for some hits, this means jumping sentence
boundaries or entire paragraphs). To restrict the query
for searches within sentences (s, or lb, or p etc.):
[word="if"%c]	 []+	 [word="would"%c]	 within	 s	

This will still give you large stretches of text (and not all
are counterexamples to the school rule), but it has the
advantage that you can restrict the context without
settling on a range (as you also would with {min,max}).

Exercises §9
i. To get a feel for the difference between text_mode and

text_text_type, switch to the BNC, set the attributes
to be displayed, then search for lovely. As all hits are
displayed in corpus order, the values for these
attributes are identical for the first few hits, randomize
the output (sort	 Last	 randomize). Browse.

ii. Do the same for text_mode and text_genre, to give
you a feeling for how values are represented (see §8).

Tips: more on structural attributes
Some structural attributes really only make sense to be
used in displays, than in queries with ::. This is especially
the case for attributes whose values have too many levels
to be grouped or queried by sensibly. For example, the
values of text_id have the names of the files. Since there
are more than 4,000 files in the full BNC, it would not
really make sense to group tokens by corpus files. On the
other hand, it makes a lot of sense to display values of
text_id so you know where your example comes from.
(Though it can occasionally make sense to look for tokens
only in files that start in A or to know how many tokens a
file holds.) It depends on what you need the output for.

Tips: different corpora, different attributes
When switching between corpora, some settings may
carry over, other might not. Generally, what is identical
across corpora will carry over, so the set	 Context
settings will (because it’s CQP syntax). The obvious
‘copying’ of settings for PrintStructures occurs if two
corpora have the same attributes (regardless of whether
they differ in the respective values). So if you have set
text_id and s_n for BNC-BABY, switching to the BNC
will ‘copy’ this. Switching to BROWN copies text_id and
ignores s_n (because BROWN doesn’t have s_n).

To know what’s available for a corpus, use show	 cd or
read the more detailed info file (info	 CORPUSNAME). For
example, the year in historical corpora is coded as
text_year in CLMET, but as letter_date in PPCEEC.
Many historical corpora also have time periods, which is
source_subperiod in CED and text_period in CLMET.
It will take a little practice to get displayed what you want,
but it’s worth it—and it always follows the CQP principle.

10 Exporting & cleaning
This unit covers the export of data as files and how to
clean the output for the import in spreadsheet software.

10.1 Export output as files
Remember from §2 that you can save the output of a
CQP query in a file. Just as you print the last or a saved
query with cat	 NAMEOFQUERY, you can use that same
command, but you need to specify the output channel.
By default, the output channel is the screen, so if you
can tell CQP you want it redirected somewhere else, you
use the ‘redirect’ operator >. So to save a query to a file
called myQuery.txt, print and redirect the contents as
follows: cat	 Last	 >	 "myQuery.txt".

Note that the quotes here are essential, but what you
put inside the quotes as the name of the file is entirely
up to you (although it should be something sensible and
it should also contain a file extension such as .txt).
Nothing seems to have happened, which is a good sign
(if something did happen, it’s probably a CQP syntax
error message that you got the syntax wrong).

Where does the file end up? Well, remember how you
work in the CQP room that you accessed from the
server room, which I introduced as a virtual office with
shelves and folders? That’s where the file ended up. It’s
been written to your server room (or user space). You
can also see the file if you login to the webinterface
(Datenablage) on the ZEDAT website.

10.2 Cleaning output
The output of queries looks rather messy. But what you
want to work with during manual annotation and
analysis is tab-separated data, so that keywords and
metadata occur in their own columns.

For this purpose, I wrote a script that cleans the data.
While this step is not essential, it will make things
easier. The clean-up script is called CWBclean.pl—and
it was copied to your virtual office in the server room
when you ran the settings script before your very first
contact with CQP. It’s a perl script that can be executed
in your user space (after you leave CQP with exit).

To run (don’t type ~$, it indicates the server room):
~$	 perl	 CWBclean.pl	 INPUT.txt	 >	 OUTPUT.txt	

Where the inputfile is to the left and the name of the
outputfile is to the right (using the ‘redirect’ operator >,
meaning you write the result of the command to a file).
You need to use a different name for the output file. If
you have lovely.txt as input, use, e.g. lovely_clean.txt for
the outputfile. Also note: different to the export within
CQP, you do not use quotes around filenames here.

10.3 Download
You download your file in a zip folder from
Datenablage on the ZEDAT website (the folder will be
named with your user name). Unzip the folder (called
‘Extrahieren’ in Windows).

10.4 Software: text editors
If you want to open and work with .txt files, you should
always use a real text editor—MS Word, Apple Pages, or
OfficeWriter are word processors, not text editors.
Notepad (on Windows) or TextEdit (on Mac) are
closer, but not close enough for many purposes. We
recommend Notepad++ (Windows) and TextWrangler
(Mac), both of which are free software.

10.5 Software: spreadsheet
Spreadsheet software (Tabellenkalkulationsprogramme)
are used for most types of manual annotation and
simple data analyses. We recommend OpenOffice or
LibreOffice, though Excel can be used.

LibreOffice. Open an empty spreadsheet document
(Datei > Neu > Tabellendokument). Then go Insert >
Table from file (Einfügen > Tabelle aus Datei). A
dialogue pops up. Navigate to the file you want to open.
Select the (unzipped) file. A new dialogue window pops
up: pay attention to Field separator (Trennoptionen).
Tick Tab (Tabulator) and make sure the field for text
separator is empty (Texttrenner)! Delete “ or ‘ if it
contains either of the two. Click OK.

OpenOffice now puts all info neatly in different
columns. In the example below it has text_id in one, s_n
in the next, text_mode in the third, left context in the
fourth, the keyword in the fifth, and so on.

Excel. Excel deals very badly with encoding and other
issues. So to avoid the major problems, open the .txt file
in a text editor first, select and copy all text (STRG+A,
then STRG+C), open an Excel document and paste the
text (STRG+V). You see what I mean by ‘dealing badly
with encoding’ when you notice funny symbols.

10.6 Filters
The row directly above rows with corpus data should
definitely always be a header describing the information
the column holds (e.g. TEXT_ID, MODE, KEYWORD,
etc.). To insert, select the first row with corpus data,
then Insert/Einfügen > Row/Zeile. Select the header row,
set a filter and explore (Data > Filter > Auto filter).

11 Solution guide to exercises

11.1 Unit 1
i. "nice" (1,465), "oscillate" (1), "get" (6,888),
"count" (220), and "yank" (0). Note that message “0
matches” means that there are no matches of that string
(this is something different to “CQP syntax error” that
you get if you forget the closing quotes, for example).
ii. You’ll find hits for the words exactly as they appear
in the corpus text. Thus, what you do not find in (i) are
inflected forms (e.g., gets or nicer) or strings that have
capital letters (such as Get help!).
iii./iv. E.g. "Fantastic" returns 3 hits and "GET" 6.
iv. You would need to formulate your query such that
it ignores case (small and capital letters). To find
inflected forms, you would need a solution to query
word forms or lemmas—CQP would not be of much
use if you had to query "get", "Get", "GEt", "GET",
and so on (not to mention all of the inflectional forms
and small and capital letters!). That is, simply, you’d
need either wildcards or, if your corpus has linguistic
annotation, you’d need to know how to access that
information (but see §3 & §4).

11.2 Unit 2
i. First, run a query for a form. Then save that query
with nice	 =	 Last for querying "nice" before you run
the next query (as new queries override the contents in
your temporary drawer Last). Note that CQP does not
‘check’ whether the name for your query actually makes
sense (so you could save the "get" query as
oscillate). If you used the strings as names for saving
queries, you should have received an error message
while trying to save the hits for count (count	 =	 Last).
The error message says, among other things,
unexpected	 '='—CQP did not expect =. Why?
Because count is a command in CQP, like show, and
commands have their own argument structure, i.e.
count expects the name of a drawer with contents to be
counted (see §6 for counting concordances).

11.3 Unit 3
i. These are all only suggestions. There are usually
multiple ways to achieve the desired result, sometimes
with slight differences. "snows?(ed)?(ing)?" (145;
120 without %c), "rains?(ed)?(ing)?" (314/342).
ii. "(snow|rain)s?(ed)?(ing)?"%c (487),
"(snow|rain)(s|ed|ing)?"%c also works. An
alternative, with more typing and slightly more clumsy:
"(snows?(ed)?(ing)?|rains?(ed)?(ing)?)"%c. In
the more compact first query, you put all that varies in
() varies between forms, in the second you have
compact, but full queries on either side of the OR
operator |.
iii. The issue is orthography (<s> vs. <z>). Just
because realise tends to be the preferred British variant

and the BNC contains British English, doesn’t mean
you should assume there are no <z>-variants in the
BNC. Both "reali[sz]e" and "reali(s|z)e" fix this
(here: 252 case-sensitive hits). Note that you do not
need ? here as s or z are not optional (but it won’t make
a difference if you use it).
iv. These will find nice, nicer, nicest: "nice[rs]?t?",
"nicer?(st)?", "nicer?s?t?"—1,633 if you used %c,
and 1,500 if not. The first query may seem a little
strange, because it groups two characters together that
occur in different forms of NICE, i.e. r and s (nicer and
nicest), but they can be grouped here because they occur
in that position, i.e. as the fifth character in their
respective cases and [rs] is in the fifth place.

Queries for old, older and oldest include
"old(er)?(est)?"%c or "olde?[rs]?t?"%c. They
have slightly different outputs (2,491 vs. 2,506), because
the latter also finds olde and olds.

v. "g[eo]t[ts]?(en|ing)?"%c, 18,191 hits. This
will work, too: "(get|gets|getting|got|gotten)"%c
but it is worth grasping the principle of the first.

vi. (a) "un.+"%c. If you use * instead of +, this will
also match UNO, uns, une etc. (you find only these if
you query "un."%c. (b) ".*ment"%c or ".+ment"%c. If
you want the plural forms of -ment words too, include s
as optional: ".+ments?"%c.

(c) "un.*ments?"%c— the majority of hits are indeed
unemployment, but there is, e.g. under-achievement,
undernourishment, and understatement. So see how *
and + also match the hyphen -.

11.4 Unit 4
i. You can query each word with values for verbs and
nouns, respectively. Doing it this way is easier than
using pos information, since you want all noun or verb
tags (and there are a lot of verb tags). But see the next
exercise for a different strategy. (Also see §6 for the
count command.)
[hw="snow"	 &	 class="VERB"]	
[hw="snow"	 &	 class="SUBST"]
ii. If there are 1,920 hits for [hw="round"], but only
175 of them are nouns and only 53 verbs, you could use
show	 +class to display class information in the
concordance (then run the [hw="round"] query again
or use cat	 Last if it was your last query). Values for
class so identified and queried are ADV (936 hits), PREP
(669), and ADJ (94). (To switch off, type show	 –class,
re-show your ‘clean’ concordance with cat	 Last).
iii. The solution is actually fairly simple (and it saves
you the trouble of going through all 25 verb pos tags):
you can use regular expressions on pos tags, too
(because you use them on values). To find all verb uses
of round, including those with ambiguity tags, query
[hw="round"	 &	 pos="V.+"]: this means ‘find all
instances of the lemma round that have a pos tag
starting in V (this includes tags with more than three-

letters). The uses of adverbs and nouns are identical,
just with A and N, respectively.
iv. Since ambiguity tags contain a hyphen -‐, and if
you want all of the tokens that have a tag with a hyphen,
you can formulate a pattern that matches a hyphen
surrounded by 3 characters on either side, i.e.
[pos=".+-‐.+"] or [pos=".{3}-‐.{3}"] (you will meet
the {} expression in the next unit). This translates to ‘in
the pos-column, find any character, which is repeated
more than once {three times} until you hit a hyphen,
followed by any character which is repeated more than
once {three} times. This will give you 144,916 tokens in
the BNC-BABY where the tagger was unsure—that’s
3.6% of all non-punctuation tokens!

But how do you know that’s 3.6%? Well, if you want
that figure, you would need to know how many hits
there are in total, and the way to find that is to think
that you want every token, i.e. that you do not specify
any condition in []. If you query [], this give you
4,644,834 tokens. Now that’s actually ‘only’ 3.1%
(144916/4644834=0.0312). But querying [] actually also
matches every instance of punctuation in the BNC-
BABY. So to measure the ratio of ambiguity tags to total
word tokens more realistically is to compare it to the
number of word tokens in the BNC-BABY.

The way to find this out is to exclude punctuation in
your ‘match-all’ query, i.e. formulate an IS NOT
condition. Look up the class tag for punctuation
(which is STOP) and run [class!="STOP"] to find
only word tokens. This gives you 4,024,537 hits—and
4024537/4644834=0.036, i.e. 3.6%. This should really
tell you to always use regular expressions on pos tags in
the BNC.

11.5 Unit 5
i. To query X-and-X coordination, you could simply
use []"and"%c	 []. To find ‘cases that merit further
investigation’ is actually not easy to spot at all—but
think about it: , and 1992, base and the, or rated and is
don’t really seem to be all that revealing. Note how such
‘uninteresting’ cases have different word classes on
either side of and. So, possibly, more interesting types
are to be found if the items on either side are of the
same word class. Find ADJ-and-ADJ or ADV-and-ADV-
coordination (or any other class to practice):
[class="ADV"]	 "and"%c	 [class="ADV"], browse the
results and think about how many of these types could
merit further investigation (think along the lines of
‘non-random’ coordination or juxtaposition).
ii. "the"%c	 [class="(ADV|ADJ)"]{2,4}	 [class="SUBST"]
iii. [word="re.+"%c] also gives you read, real, or rest,
i.e. words that start with re-, but where re- is not a
prefix. One, but problematic, solution is to think that
re- prefixes are probably followed by more than two
characters, so [word="re.{3,}"%c] may solve this. To
include (the actually very infrequent) redo, you could

combine this with an OR condition:
[word="re(.{3,}|do)"%c]. This is still far from
perfect, but it’s a very good illustration of why you must
look at what’s found and think about what’s not (but
what should’ve), and how you need to refine your query
continually to strike the best balance between PRECISION
(how much of what’s found is an instance) and RECALL
(how much of what’s an instance is actually found).
iv. For typical proverbs, BNC-BABY is usually too
small a corpus, and there are no hits for kick the bucket,
and only two for barking up the wrong tree (and it
would be surprising if you found a sizable amount for
your own examples of proverbs). One solution is to
switch to a larger corpus (BNC).

kick the bucket: there are only 13 instances of kick the
bucket—and if you investigate the results, it turns out
that some are ‘literal’ uses and some others are meta
uses, i.e. that people talk about its meaning. One further
instance can be retrieved if you query for an adjective
(or a match-all token) before bucket, which, again, is a
meta use, not really an instance.

barking up the wrong tree: if you start simply with bark
(either with the ‘as-is’ string, the ing-form, or the head
word/lemma), you will have a hard time going through
the concordances until you find actual instances of the
idiom (there are 1,239 hits for hw bark in BNC, both
noun and verb hits). If you start to expand your query
the entire string, this will obviously only give you
invariant instances ([hw="bark"]	 "up"%c	 "the"%c	
"wrong"%c	 "tree"%c). But, if you suspect that the slot
occupied by barking is variable, you can query
[hw="bark"]	 "up"%c to alleviate some of the
problems. As it turns out, there seems to be no real
variability in the barking slot. But what else is
interesting? Two things, at least: first, the sequence
barking up seems to only occur in instances of the
proverb, and that, second, the string the wrong tree
shows some interesting variability (yet another wrong
tree, the right tree), but that it is generally in the form of
the idiom’s schema.

11.6 Unit 6
i. [class="VERB"]—806,574 verbs; count	 Last	 by	
word	 %c to create case-insensitive word-form frequency
list and count	 Last	 by	 hw to create lemma list (these
commands might take a few seconds, the program is
counting and summing up a lot of tokens!). The lemma
list is slightly more revealing for a quick glance of 20 to
25 verbs, but what’s obvious is that forms of the
auxiliaries BE, HAVE, DO and the modal verbs (WILL,
CAN, COULD) are very frequent classes of verbs, with
some of the so-called ‘lexical verbs’ (SAY, GET, GO)—
although some of the lexical verbs are arguably also
often used as auxiliaries (especially GO). So if you were
to come up with three major classes, auxiliaries, modals,
and lexical verbs could be a plausible grouping.

Incidentally, they also tend to have their own types of
pos tags: all forms of BE have pos tags that start in VB
(VBI for infinitive be, VBG for being, etc.), the tags for
HAVE tags start in VH, and those for DO in VD. Modals
have their own tag (VM0). All remaining verbs have
tags starting in VV (VVI, VVG, etc.). So you could
make frequency lists (then use count) by querying them
[pos="V(B|H|D).+"] for auxiliaries, [pos="VM0.+"]
for modals, or [pos="VV.+"] for lexical verbs.

Note that this works for the BNC and the BNC-BABY.
The tagset is CLAWS. If you worked on BROWN or
CLMET, you’d have to take the different tagset into
account: the PENN tagset does not have as many fine-
grained distinctions in the verbal area (which I initially
thought of as being a major drawback). But CQP can fix
the problem with its powerful query syntax: if you
wanted to differentiate between the auxiliaries BE, HAVE,
and DO, and lexical verbs such as SEE, GIVE, and GET,
which all have tags starting in VB (modals have their
own tag, MD): for a frequency list of auxiliaries, you can
query the VB-tags and include a condition on lemmas:
[pos="VB.+"	 &	 lemma="(be|have|do)"], for lexical
verbs, i.e. not BE, HAVE, or DO, exclude auxiliaries:
[pos="VB.+"	 &	 lemma!="(be|have|do)"]
ii. [class="ADV"] — count	 Last	 by	 hw. The most
frequent item is not (not and n’t if you counted by
word). This might be slightly surprising, but is due to
the fact that while not is pos tagged as XX0, its class
value is ADV, same as for adverbs (which have AV0 as a
pos tag). To exclude not from a frequency list of
adverbs, you can query [class="ADV"	 &	 hw!="not"],
or [class="ADV"	 &	 pos!="XX0"], then count again.
Take-home message: know you corpus, know the tagset!
(And by now hopefully appreciate CQP’s combinatorial
powers on formulating conditions and the control you
actually have over it!)
iii. [class="ADV"]	 "and"%c	 [class="ADV"]—
count	 Last	 by	 word	 %c	 on	 match[-‐1], so the
comma is the most frequent item to the left; count	
Last	 by	 word	 %c	 on	 matchend[1], where the period
is the most frequent item to the right. Now think about
what this could mean more generally about the
distribution of ADV-and-ADV-coordination.
iv. "the"%c	 [class="ADJ"]	 [word="car"%c] to
find instances of the ADJ car; count	 Last	 by	 hw	 on	
match[1]—good is most frequently modifying car. To
check the most frequent string that comes between the
and car, remind yourself that this does not necessarily
have to be an adjective (even if you cannot think what
else could come in a prototypical NP), so the strategy is
to impose no condition on the second token: "the"%c	
[]	 [word="car"%c], then count	 Last	 by	 word	 %c	
on	 match[1]—and the most frequent string here is
police, quite obviously from the compound police car.
And this is very generally an issue with English data in
particular—finding noun phrases in their entirety can

be a pain and the distinction between compounds and
ADJ-NOUN sequences is always a problem, not just
because taggers are unreliable.

11.7 Unit 7
i. sort	 Last	 by	 word	 %c	 on	 matchend[2]	 desc	
reverse — this sorts by word on R2, i.e. the second
token in the right context in descending order, in
reverse order. So for "interested" this first lists the
tokens that have punctuation at R2, the sorting
principle becomes obvious a few lines further down,
where you have in community, him very, . Very, in any,
… in money, in you, …, in it, . Let, …, in concerts, until
the last line which does not have punctuation in R2, is
in a. Notice how it’s sorted in descending order (Z–A)
by the last letter (‘reverse’) of R2 (community, very, any,
you, in it, concerts, a). This may seem absolutely
useless—but you realise the power of what CQP
commands can really do (and who knows what you can
use it for one day!).
ii. Query "the"%c (211,148), reduce	 Last	 to	 1%.
To establish the number of hits, cat	 Last or show	
named will give you the 1% sample as 2,111 tokens.

11.8 Unit 8
i. "lovely"%c::match.u_sex="(male|female)"
returns 400, while "lovely"%c::match.u_sex=".*":
returns 436 hits. Now this indicates that there must be
hits that are neither classified as coming from males or
females (since the .* between quotes matches more
than male of female). So if you group the query (the one
you restricted with the regular expression) by the
attribute u_sex (group	 Last	 match	 u_sex), you find
your ‘missing’ 36 hits classified as unknown. Check with
the list of structural attributes in the CheatSheet: u_sex
can have the values, male, female, unknown and ---,
meaning that the data holds utterances by speakers
whose sex is unknown, could not be determined, or
where speakers chose not to state it.
ii. The BNC has a spoken and a written part, and
u_sex refers to utterances in the spoken component,
while text_author_sex refers to written text. (u
attributes are spoken part only, with text attributes it's
a bit more difficult; they refer to texts from both written
and spoken part). So to find all hits for PLAY from both
males and females in the entire BNC-BABY, query
[hw="play"]::match.u_sex="(male|female)"	 |	

match.text_author_sex="(female|male)"—this
will of course give you all noun and verb uses and if you
wanted to specify that, you could do so of course in the
token query.
iii. Surely it is not really plausible to assume that THE
is so much more frequent in the written part than in the
spoken part, although some differences are to be
expected. The issue is, of course, that you may have
different amounts of text in the different components so

that the comparison of raw frequencies is useless. So if
you have more written texts, chances are, of course, that
items are also more frequent there. So you would either
have to know how many tokens there are in the
different components or know how many tokens in the
different components are not the to make any kind of
comparison.

Knowing the total number of tokens in a (sub-)corpus
allows you to calculate a relative frequency (generally
given as per-million-words; knowing the total number
of tokens not identical to your search word allows you
to create contingency tables (see §XX).

To find out the total of words per subcorpus, you can
query [], i.e. match all tokens, and then group by
text_mode: group	 Last	 match	 text_mode, so that
gives you 3,434,900 tokens for the written and 1,209,934
for the spoken part. So the relative frequency of THE
per-million words comes out as follows:

(183,444 x 1,000,000) / 3,434,900 = 53,405.9 per
million words for the written component and

(27,704 x 1,000,000) / 1,209,934 = 22,897.1 pmw for
the spoken component. So THE indeed seems much
more frequent in the written language. It depends on
the interpretation of the reasons to assess whether (and
how) this is linguistically meaningful.

You also often see relative frequencies calculated per
10,000 words, so you can substitute that in the formula.
The formula to calculate is Fword * BASELINE divided by
Fcorpus, where Fcorpus is the total amount of tokens in the
corpus (here: all tokens, including punctuation tokens).
For our example, this would be 534.1 and 228.9,
respectively.

A different way to represent frequency distributions is
in a so-called contingency table, which is the basis of
many statistical tests. You fill the table with the
numbers of, e.g., the variable LEXICAL ITEM (rows, ¬
means ‘is not’) cross-tabulated with the variable TEXT
MODE (colums):

 WRITTEN SPOKEN Total
THE 183,444 27,704 211,148
¬THE 3,251,456 1182230 4,433,686
Total 3,434,900 1,209,934 4,644,834

Both strategies of normalization make it possible to
compare frequencies across corpora of different sizes.
Consult textbooks on corpus statistics for background,
explanations, and examples.

11.9 Unit 9
i. Load the BNC, set the metadata text_mode and
text_text_type to be displayed in the concordance: set	
PrintStructures	 'text_mode,	 text_text_type', query
lovely and sort	 Last	 randomize to randomize the list.
You should see that text_mode is more coarse-grained
than text_text_type; the latter is a bit more of a

continuum. Consult the corpus documentation for the
BNC for what the continuum is.

You can group to get a summary of distribution:
group	 Last	 match	 text_mode or group	 Last	 match	
text_text_type.

Note that the more PrintStructures you display, the
messier the output gets. This will be taken care of by the
cleaning script that you can run before downloading the
data file (§10).
ii. Try out a few things to get a feel for the technology
and the representation of values: for example, set	
PrintStructures	 'text_mode,	 text_domain' or
set	 PrintStructures	 'text_domain', then cat	
Last or run a new query for lovely (or any other item).

Group the attributes to see a summary of distribution:
group	 Last	 match	 text_domain or group	 Last	
match	 text_mode etc.

