

Wie kam es zur Katastrophe?

26. April 1986

- Fehlerhafte Durchführung eines Sicherheitsexperiments
 - Sicheres Herunterfahren des Reaktors bei evtl. Stromausfall
- Zahlreiche Bedienungsfehler und Fehlentscheidungen bei Versuchen, den Reaktor unter Kontrolle zu bekommen
- Konstruktionsbedingte Mängel des RBMK-Reaktors
 - Leistungssteigerung bei Entfernung des Kühlmittels
 - Bremsstäbe mit Graphitköpfen
 - etc.
- Brennstäbe bersten nach langzeitiger Überhitzung
- Zersetzung von Wasser in Wasserstoff und Sauerstoff (Knallgasbildung)
- Explosion mit Verschiebung des 1000-Tonnenschweren Deckplatte
- Lufteintritt führt zu einer zweiten Explosion
- Entzündung des Graphitinventars des Reaktors
- Freisetzung großer Mengen radioaktiven Materials über ca. 10 Tage

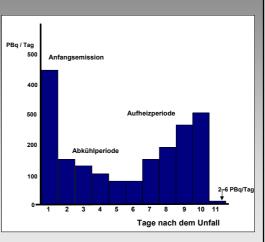
Freisetzung radioaktiver Stoffe

26. April - 5. Mai 1986

1. Tag:

Freisetzung radioaktiven Materials als Folge der Explosion (Edelgase, flüchtige Komponenten, Aerosole)

2. bis 6. Tag

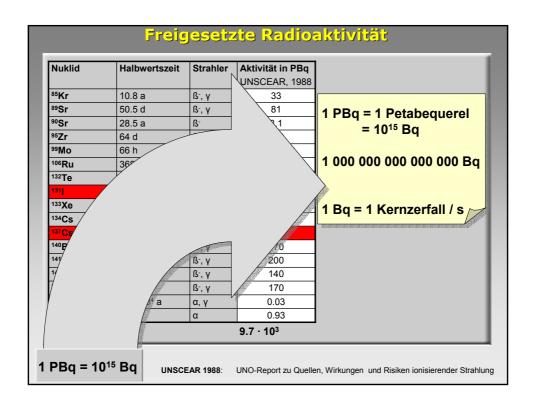

Abnahme durch permanente Löscharbeiten mit Borcarbid, Dolomit, Ton und Blei $\,\rightarrow\,$ Filtrationseffekt

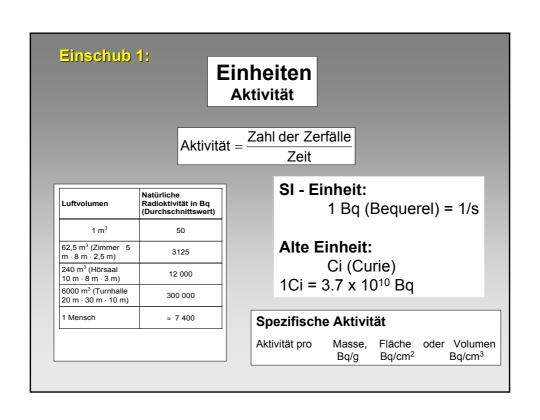
7. bis 10. Tag

Aufheizung des radioaktiven Inventars unter der Abdeckung bis auf 2000°C und Wiederanstieg der Freisetzung

11. Tag

Starker Rückgang der Emission durch chemische Bindung eines Großteils der Spaltprodukte




(Werte ohne Edelgase)

Quelle: UNSCEAR 1988 Report, Annex D

Nuklid	Halbwertszeit	Strahler	Aktivität in PBq		
			UdSSR, 1986	UNSCEAR, 1988	Buzulukov, 1993
³⁵ Kr	10.8 a	ß-, γ	33	33	33
³⁹ Sr	50.5 d	ß-, γ	93	81	81
⁹⁰ Sr	28.5 a	ß-	8.1	8.1	8.0
⁹⁵ Zr	64 d	ß-, γ	160	170	170
9Мо	66 h	ß-	140		210
¹⁰⁶ Ru	368 d	ß-	59	29	30
¹³² Te	76 h	ß-, γ	410	410	1000
131	8 d	ß-, γ	630	1700	1700
¹³³ Xe	5.3 d	ß-, γ	6.300	6.300	6.500
¹³⁴ Cs	2.1 a	ß-, γ	19	44	44
¹³⁷ Cs	30.2 a	ß-, γ	37	85	85
¹⁴⁰ Ba	12.8 d	ß-, γ	270	170	170
¹⁴¹ Ce	32.5 a	ß-, γ	130	200	200
¹⁴⁴ Ce	284.8 d	ß-, γ	89	140	140
²³⁹ Np	2.4 d	ß-, γ	850	170	1.700
²³⁹ Pu	2.4 · 10 ⁴ a	α, γ	0.026	0.03	0.03
²⁴² Cm	163 d	α	0.78	0.93	0.93
Total:			9.3 · 10³	9.7 · 10³	1.25 · 10 ⁴

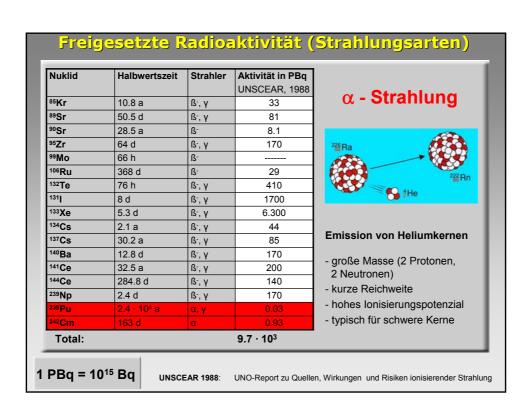
Nuklid	Halbwertszeit	Halbwertszeit Strahler	Aktivität in PBq		
			UdSSR, 1986	UNSCEAR, 1988	Buzulukov, 1993
85Kr	10.8 a	ß-, γ	33	33	33
89Sr	50.5 d	ß-, γ	93	81	81
90Sr	28.5 a	ß-	8.1	8.1	8.0
⁹⁵ Zr	64 d	ß-, γ	160	170	170
⁹⁹ Mo	66 h	ß-	140		210
¹⁰⁶ Ru	368 d	ß-	59	29	30
¹³² Te	76 h	ß-, γ	410	410	1000
131	8 d	ß-, γ	630	1700	1700
¹³³ Xe	5.3 d	ß-, γ	6.300	6.300	6.500
¹³⁴ Cs	2.1 a	ß-, γ	19	44	44
¹³⁷ Cs	30.2 a	ß-, γ	37	85	85
¹⁴⁰ Ba	12.8 d	ß-, γ	270	170	170
¹⁴¹ Ce	32.5 a	ß-, γ	130	200	200
¹⁴⁴ Ce	284.8 d	ß-, γ	89	140	140
²³⁹ Np	2.4 d	ß-, γ	850	170	1.700
²³⁹ Pu	2.4 · 10 ⁴ a	α, γ	0.026	0.03	0.03
²⁴² Cm	163 d	α	0.78	0.93	0.93
Total:			9.3 · 10 ³	9.7 · 10 ³	1.25 · 10 ⁴
PBq = 10	LING	SR 1986: CEAR 1988: ulukov 1993:	Staatliches Minist UNO-Report zu Q	erium für Atomenergie d uellen, Wirkungen und f apers: Dose to the soviet	er Sowjetunion Risiken ionisierender S

Freigesetzte Radioaktivität

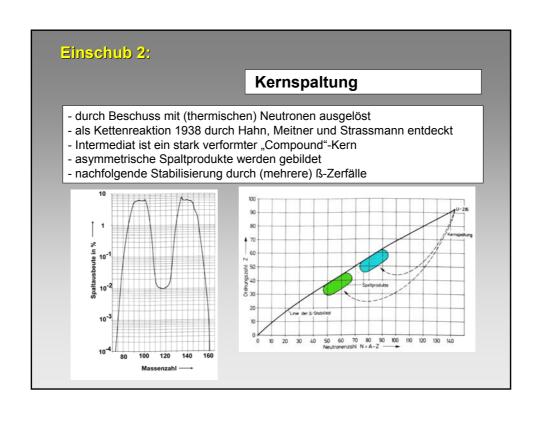
Strahlungsarten (α-, β-, γ-Strahlung)

 $\rightarrow \text{Reichweite, Ionisierungsverm\"{o}gen, Sch\"{a}digungspotenzial}$

Halbwertszeit


→ Zusammenhang zwischen Halbwertszeit und Aktivität

Allgemeine Chemie


→ Einfluss der chemischen Zusammensetzung der emittierten Radionuklide auf das Schädigungspotenzial

Biologisch relevante Chemie

→ emittierte Radionuklide mit biologisch relevanten Verteilungsoder Anreicherungsmechanismen

Nuklid	Halbwertszeit	Strahler	Aktivität in PBq UNSCEAR, 1988	0 Ctroblung
⁸⁵ Kr	10.8 a	ß-, γ	33	β - Strahlung
⁸⁹ Sr	50.5 d	ß-, γ	81	
90Sr	28.5 a	ß⁻	8.1	¹ 聚Cs
⁹⁵ Zr	64 d	ß-, γ	170	55 05
⁹⁹ Mo	66 h	ß⁻		137 Ba
¹⁰⁶ Ru	368 d	ß-	29	
¹³² Te	76 h	ß-, γ	410	• e Beta - Teilchen
131	8 d	ß-, γ	1700	(Elektron)
¹³³ Xe	5.3 d	ß-, γ	6.300	
¹³⁴ Cs	2.1 a	ß-, γ	44	
¹³⁷ Cs	30.2 a	ß-, γ	85	Emission von Beta-Teilchen
¹⁴⁰ Ba	12.8 d	ß-, γ	170	
¹⁴¹ Ce	32.5 a	ß-, γ	200	- Masse eines Elektrons
¹⁴⁴ Ce	284.8 d	ß-, γ	140	- mittlere Reichweite
²³⁹ Np	2.4 d	ß-, γ	170	- niedriges Ionisierungspotenzial
²³⁹ Pu	2.4 · 10⁴ a	α, γ	0.03	- typisch für Spaltprodukte
²⁴² Cm	163 d	α	0.93	- typison fai opaitprodukte
Total:			9.7 · 10³	

Nuklid	Halbwertszeit	Strahler	Aktivität in PBq UNSCEAR, 1988	v Ctroblung
⁸⁵ Kr	10.8 a	ß-, γ	33	γ - Strahlung
⁸⁹ Sr	50.5 d	ß-, γ	81	
90Sr	28.5 a	ß⁻	8.1	13ZmBa
⁹⁵ Zr	64 d	ß-, γ	170	запра запра
⁹⁹ Mo	66 h	ß-		137 Ba
¹⁰⁶ Ru	368 d	ß-	29	Swa.
¹³² Te	76 h	ß-, γ	410	Gammaquant (Photon)
131	8 d	ß-, γ	1700	1000
¹³³ Xe	5.3 d	ß-, γ	6.300	
¹³⁴ Cs	2.1 a	ß-, γ	44	Emission von γ-Quanten
¹³⁷ Cs	30.2 a	ß-, γ	85	alalitus is a signatic ab a Ctuablicia i
¹⁴⁰ Ba	12.8 d	ß-, γ	170	- elektromagnetische Strahlung
¹⁴¹ Ce	32.5 a	ß-, γ	200	- große Reichweite
¹⁴⁴ Ce	284.8 d	ß-, γ	140	- niedriges Ionisierungspotenzial
²³⁹ Np	2.4 d	ß-, γ	170	- häufige Begleitstrahlung von
²³⁹ Pu	2.4 · 10 ⁴ a	α, γ	0.03	α- und β-Zerfällen
²⁴² Cm	163 d	α	0.93	- sehr gut messbare Strahlung
Total:			9.7 · 10 ³	

Einschub 3:

Die Reichweite radioaktiver Strahlung

Die Reichweite radioaktiver Strahlung ist vom Strahlungstyp abhängig

 $\alpha\text{-Strahlung}$ besteht aus großen Teilchen

ß-Strahlung besteht aus kleinen Teilchen

γ-Strahlung besteht aus Photonen (elektromagnetische Strahlung)

Die Reichweite radioaktiver Strahlung ist energieabhängig

Reichweite von α -Teilchen

Energie in	rgie in Reichweite in			
MeV	Luft	Muskelgewebe	Aluminium	
1	0.32 cm	4 μm	2 µm	
4	2.5 cm	31 µm	16 µm	
6	4.6 cm	56 µm	30 µm	
8	7.4 cm	91 µm	48 µm	
10	10.6 cm	130 µm	67 µm	

Einschub 3:

Die Reichweite radioaktiver Strahlung

Reichweite von ß-Teilchen

Energie in	Reichweite in		
MeV	Luft	Muskelgewebe	Aluminium
0.01	3 mm	2.5 µm	9 µm
0.5	1.2 m	1.87 mm	0.6 mm
1	3.06 m	4.75 mm	1.5 mm
10	39 m	60 mm	19 mm

Reichweite von γ-Strahlung (Beachte! Halbwertsschichten, nicht Reichweite)

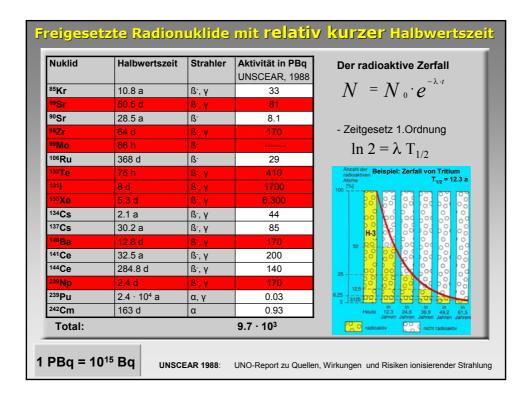
(Bodonie: Haibwertesenienten, ment Reienweite)					
Energie in	Halbwertsschichten in				
MeV	Wasser	Beton	Blei		
0.01	4.15 cm	1.75 cm	0.1 mm		
0.5	7.2 cm	3.4 cm	0.4 cm		
1	9.8 cm	4.6 cm	0.9 cm		
10	31 cm	12.9 cm	1.2 cm		

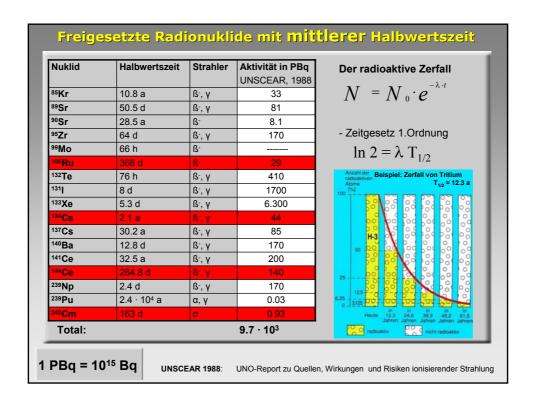
Freigesetzte Radioaktivität

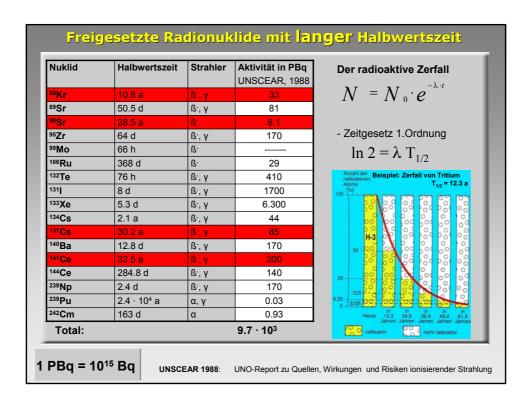
Strahlungsarten (α -, β -, γ -Strahlung)

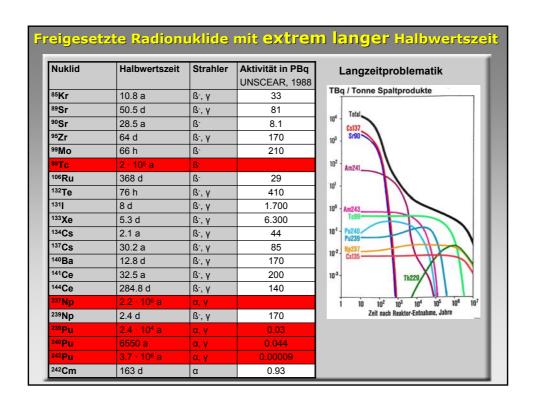
→ Reichweite, Ionisierungsvermögen, Schädigungspotenzial

Halbwertszeit

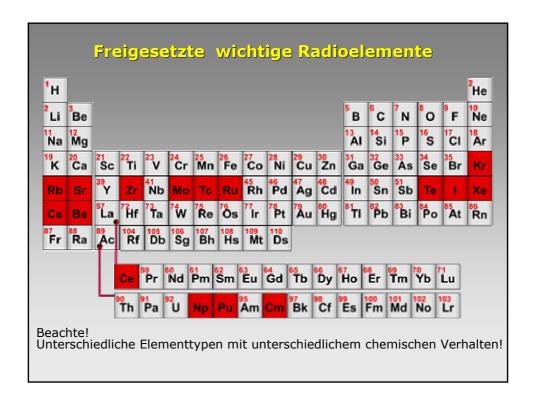

→ Zusammenhang zwischen Halbwertszeit und Aktivität

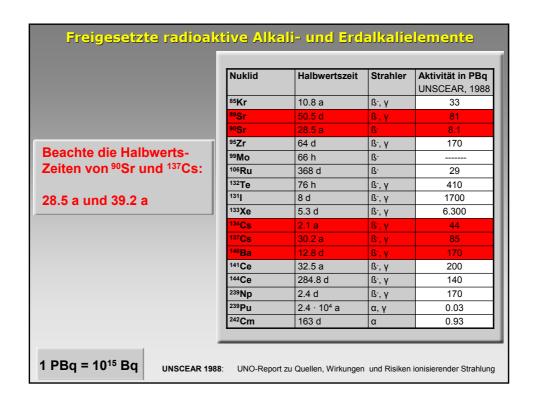

Allgemeine Chemie


→ Einfluss der chemischen Zusammensetzung der emittierten Radionuklide auf das Schädigungspotenzial


Biologisch relevante Chemie

→ emittierte Radionuklide mit biologisch relevanten Verteilungsoder Anreicherungsmechanismen





Freigeseizie Radioaktivität Strahlungsarten (α-, β-, γ-Strahlung) → Reichweite, Ionisierungsvermögen, Schädigungspotenzial Halbwertszeit → Zusammenhang zwischen Halbwertszeit und Aktivität Allgemeine Chemie → Einfluss der chemischen Zusammensetzung der emittierten Radionuklide auf das Schädigungspotenzial Biologisch relevante Chemie → emittierte Radionuklide mit biologisch relevanten Verteilungsoder Anreicherungsmechanismen

	Nuklid	Halbwertszeit	Strahler	Aktivität in PBq UNSCEAR, 1988
	⁸⁵ Kr	10.8 a	ß-, γ	33
	89Sr	50.5 d	ß-, γ	81
	90Sr	28.5 a	ß-	8.1
	⁹⁵ Zr	64 d	ß-, γ	170
Summe der Edelgase:	⁹⁹ Mo	66 h	ß⁻	
Cammic der Edergase.	¹⁰⁶ Ru	368 d	ß-	29
0 F 403 DD ::	¹³² Te	76 h	ß-, γ	410
6.5 · 10 ³ PBq	131	8 d	ß-, γ	1700
	¹³³ Xe	5.3 d	ß-, γ	6.300
	¹³⁴ Cs	2.1 a	ß-, γ	44
	¹³⁷ Cs	30.2 a	ß-, γ	85
	¹⁴⁰ Ba	12.8 d	ß-, γ	170
	¹⁴¹ Ce	32.5 a	ß-, γ	200
	¹⁴⁴ Ce	284.8 d	ß-, γ	140
	²³⁹ Np	2.4 d	ß-, γ	170
	²³⁹ Pu	2.4 · 10 ⁴ a	α, γ	0.03
	²⁴² Cm	163 d	α	0.93

Freigesetzte Radioaktivität

Strahlungsarten (α-, β-, γ-Strahlung)

 $\rightarrow \text{Reichweite, Ionisierungsverm\"{o}gen, Sch\"{a}digungspotenzial}$

Halbwertszeit

→ Zusammenhang zwischen Halbwertszeit und Aktivität

Allgemeine Chemie

→ Einfluss der chemischen Zusammensetzung der emittierten Radionuklide auf das Schädigungspotenzial

Biologisch relevante Chemie

→ emittierte Radionuklide mit biologisch relevanten Verteilungsoder Anreicherungsmechanismen

Freigesetzte biologisch relevante Radionuklide

131|:

- Sehr effektive Anreicherung in der Schilddrüse

^{134,137}Cs:

- Bioverteilung zusammen mit K+-lonen

⁹⁰Sr:

- Bioverteilung zusammen mit Ca²⁺-Ionen
- Einbau in das Knochengerüst

Nuklid	Halbwertszeit	Strahler	Aktivität in PBq
			UNSCEAR, 1988
85Kr	10.8 a	ß-, γ	33
89Sr	50.5 d	ß-, γ	81
⁹⁰ Sr	28.5 a	ß⁻	8.1
⁹⁵ Zr	64 d	ß-, γ	170
⁹⁹ Mo	66 h	ß-	
¹⁰⁶ Ru	368 d	ß⁻	29
¹³² Te	76 h	ß-, γ	410
131	8 d	ß-, γ	1700
¹³³ Xe	5.3 d	ß-, γ	6.300
¹³⁴ Cs	2.1 a	ß-, γ	44
¹³⁷ Cs	30.2 a	ß-, γ	85
¹⁴⁰ Ba	12.8 d	ß-, γ	170
¹⁴¹ Ce	32.5 a	ß-, γ	200
¹⁴⁴ Ce	284.8 d	ß-, γ	140
²³⁹ Np	2.4 d	ß-, γ	170
²³⁹ Pu	2.4 · 10⁴ a	α, γ	0.03
²⁴² Cm	163 d	α	0.93

Erste Maßnahmen

Löscharbeiten

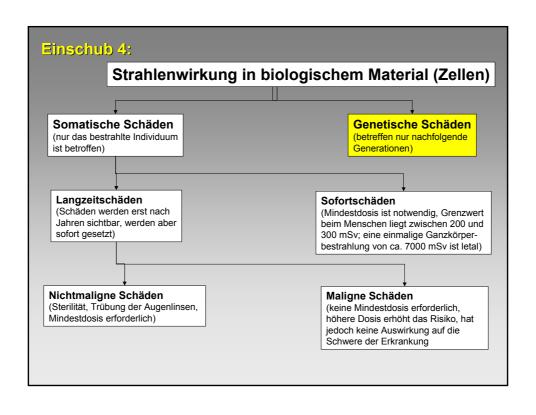
- → zunächst an den konventionellen Feuern durch Werksfeuerwehr
- → Probleme durch Ausbreitung stark kontaminierten Wassers
- → später Lösch- und Abdeckarbeiten am Reaktor durch Helikopter
- → durch extreme Strahlungsfelder enorme Schädigung der Löschmannschaften (ca. 600 Personen)

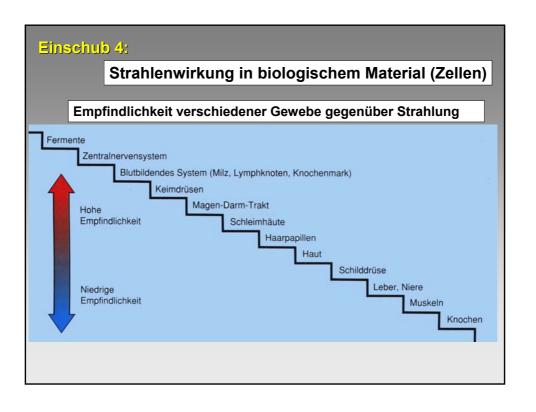
Evakuierungsmaßnahmen

- → Abriegelung des Kraftwerkes in mehreren konzentrischen Kreisen noch in der Unfallnacht
- → Evakuierung der Bevölkerung in drei Etappen
- → Evakuierung der 50 000 Bewohner der Stadt Pripjat am 27. April mit 1200 Bussen innerhalb von 3 Stunden
- → Evakuierung einer 30-km Zone war am 5. Mai abgeschlossen

Abdeck- und Aufräumarbeiten

- → Beseitigung bzw. Abdeckung extremer Kontaminationen auf dem Kraftwerksgelände durch ca. 600.000 "Liquidatoren"
- → Errichtung einer Schutzhülle aus Stahlbeton ("Sarkophag")


Erste Maßnahmen



Schutzhülle ("Sarkophag") aus Stahlbeton nach 7-monatiger Bauzeit fertiggestellt

ernobyl_video.rm

Filmclip von ChernobylInternInform (Kiew)

Einschub 4:

Einheiten

Effektive Dosis / Äquivalentdosis

Eine Schädigung biologischen Materials (Zellen, Gewebe) tritt nur dann auf, wenn die Strahlung vom Gewebe absorbiert wird (Wechselwirkungen Strahlung - Materie)

Je größer die Absorption ist, desto größer ist die Wirkung

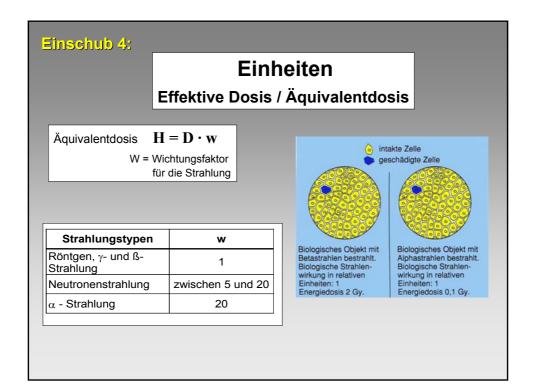
Dicht ionisierende Strahlung hat größere Wirkung als schwach ionisierende $(\alpha > n > \beta, \gamma,$ Röntgenstrahlung)

Energiedosis gibt nur die Energieübertragung wieder, nicht deren Wirkung

Äquivalentdosis $\mathbf{H} = \mathbf{D} \cdot \mathbf{w}$

W = Wichtungsfaktor für die Strahlung

SI - Einheit:


1 Sv (Sievert)

1 Sv = 1 J/kg

Alte Einheit:

1 rem

1 Sv = 100 rem

Strahleneffekte einer einmaligen Bestrahlung beim Menschen (ungefähre Werte)

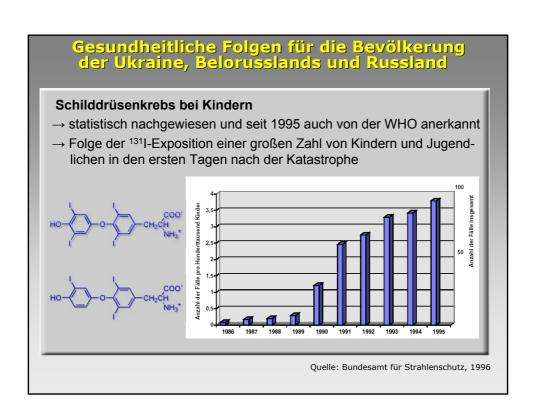
Ganzkörperbestrahlung

< 0.25 Sv	Keine klinisch erfassbaren Schädigungen
0.25 Sv	Verringerung der weißen Blutzellen
0.5 Sv	Fortschreitende Zerstörung der leukozythenbildenden Organe
	(Abnahme der Widerstandsfähigkeit gegen Infektionen)
1 Sv	Deutliche Veränderungen im Blutbild
5 Sv	Zerstörung des Gastroindestinal-Traktes (50% letal)
10 Sv	Zerstörung des neurologischen Systems (100% letal)

Bestrahlung der Hand

2 Gy	Keine gesicherten Effekte
4 Gy	Hautschädigung
6 Gy	Hautrötung, Pigmentierung
8.5 Gy	Irreversible Hautschäden
50 Gy	Herausbildung nichtheilenden Hautkrebses

Beachte! Der Grenzwert im deutschen Strahlenschutzrecht für beruflich strahlenexponierte Personen beträgt 0.020 Sv/Jahr


Opfer und gesundheitliche Folgen

Löschmannschaften der ersten Tage

- → durch extreme Strahlungsfelder enorme Schädigung der beteiligten ca. 600 Personen
- → mehr als 200 davon mussten mit akuter Strahlenkrankheit klinisch behandelt werden (Strahlendosen zwischen 1 und 13 Sv)
- → 31 dieser Helfer starben nach kurzer Zeit

"Liquidatoren"

- → Personenkreis von ca. 600.000 Helfern
- → dosimetrisch nur unzureichend überwacht und nicht vollständig in Nachsorgeprogrammen erfasst
- → geschätzte Belastung dieses Personenkreises ca. 100 mSv (bis zu 500 mSv und mehr)
- → nach russischen, belorussischen und ukrainischen Regierungsangaben sollen bislang ca. 25.000 Liquidatoren verstorben sein
- → viele der Liquidatoren leiden unter Krankheiten wie Krebs, Entzündungen des Magen-Darm-Traktes, Herz-Kreislauf-Leiden und psychischen Problemen
- → Zusammenhang mit der erlittenen Strahlenexposition ist **nicht** sicher

Gesundheitliche Folgen für die Bevölkerung der Ukraine, Belorusslands und Russland

Leukämie bei Kindern und Erwachsenen

→ statistisch nicht gesichert, obwohl von einigen Distrikten (Gomel, Belorus) angegeben

Krebserkrankungen bei Erwachsenen

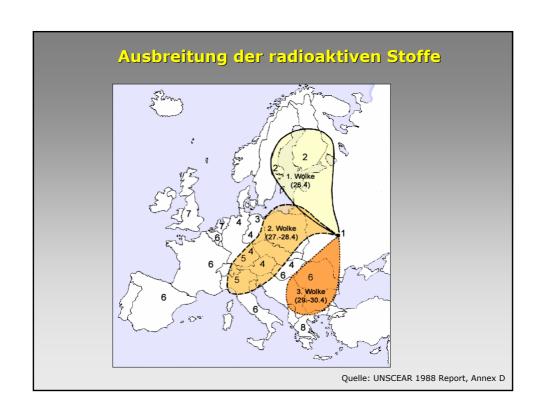
→ statistisch (noch) nicht gesichert, werden aber für die Zukunft befürchtet (Latenzzeit)

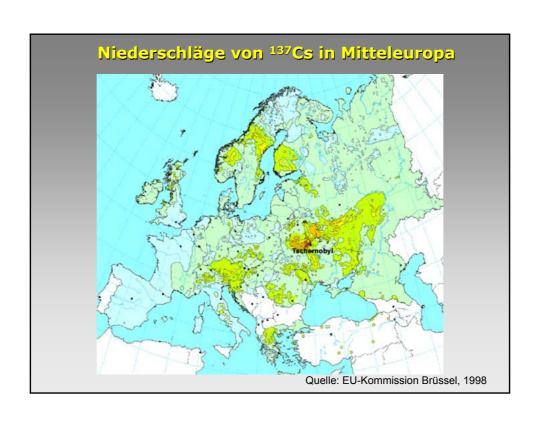
Sonstige Erkrankungen bei Erwachsenen und Kindern

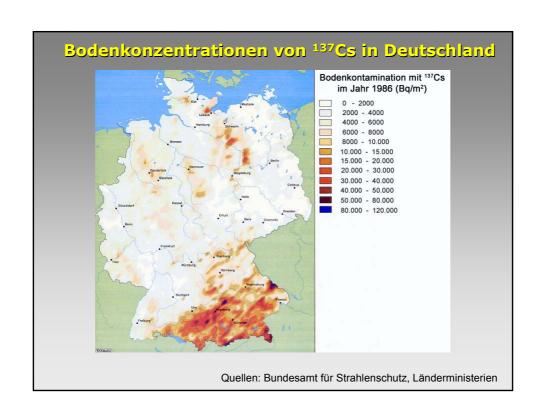
→ werden in vielen Quellen diskutiert, sind aber vielfach umstritten und der Zusammenhang mit der Strahlenexposition ist schwer zu führen

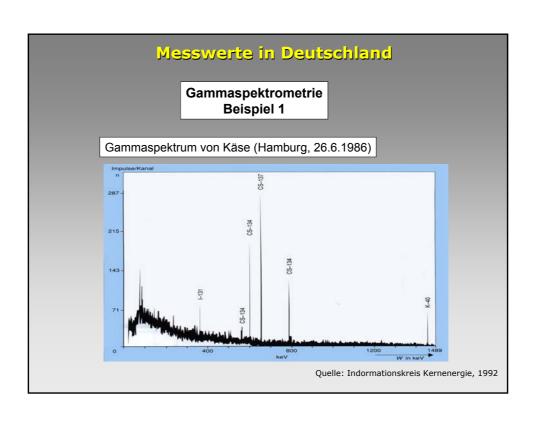
Psychologische und soziale Folgen

- → Umsiedlung von insgesamt mehr als 350.000 Menschen
- → zeitliche Korrelation mit der Auflösung der UdSSR und sozialen Verwerfungen in den Nachfolgestaaten

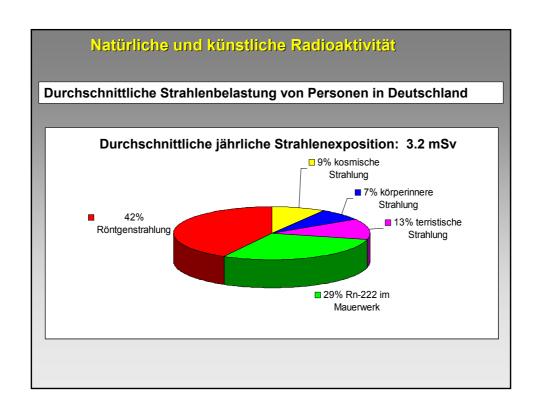

Weitere Folgen für die betroffenen Gebiete der Ukraine, Belorusslands und Russland


Ökologische Schäden

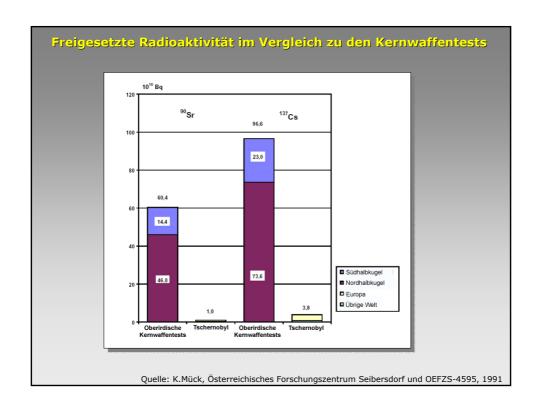

- → Absterben des Waldes in unmittelbarer Umgebung des Reaktors und von Weidevieh als Folge der extremen Primärstrahlung nach der Katastrophe
- \rightarrow Kontamination größerer Flächen mit 137 Cs (Ackerland, besonders aber Waldflächen)
- → Eintrag von ¹³⁷Cs in Gewässer, Fische und Sedimente


Ökonomische Schäden

- → Ukraine: 5 7 Prozent des Haushalts werden jährlich für die Folgen des Reaktorunfalls ausgegeben
- → Belorus: 22.3 % des Haushalts im Jahr 1991, 6.1 % im Jahr 2003 (insgesamt bisher 13 Milliarden US Dollar)
- → Die Schäden für die lokale Bevölkerung sind dramatisch und kaum quantifizierbar


Was bedeutet das für die Strahlenbelastung der Bevölkerung ?

Jahr	Externe Strahlenexposition mSv/a	Interne Strahlenexposition mSv/a	Gesamte Strahlenexposition mSv/a
1986	ca. 0.07 ^{a)}	ca. 0.04 ^{a)}	ca. 0.11
1987	ca. 0.03	ca. 0.04 ^{a)}	ca. 0.07
1988	ca. 0.025	ca. 0.015	ca. 0.04
1989	ca. 0.02	ca. 0.01	ca. 0.03
1990	ca. 0.02	< 0.01	ca. 0.025
1991 - 1993	< 0.02	< 0.01	ca. 0.02
1994	< 0.02	< 0.01	< 0.02
1995 - 1999	< 0.015	< 0.001	< 0.02
2000 - 2001	< 0.01	0.001	< 0.015


^{a)} Im Berchtesgadener Raum um etwa den Faktor 4 höher

Quellen: Bundesamt für Strahlenschutz, 2003

Nuklid	Halbwertszeit	Strahler	Aktivität in PBq	
			Tschernobyl	Kernwaffentests
85Kr	10.8 a	ß-, γ	33	
89Sr	50.5 d	ß-, γ	81	100.000
90Sr	28.5 a	ß-	8.1	622
⁹⁵ Zr	64 d	ß-, γ	170	150.000
¹⁰⁶ Ru	368 d	ß-	29	12.000
¹³² Te	76 h	ß-, γ	410	
131	8 d	ß-, γ	1.700	680.000
¹³³ Xe	5.3 d	ß-, γ	6300	
¹³⁴ Cs	2.1 a	ß-, γ	44	
¹³⁷ Cs	30.2 a	ß-, γ	85	950
¹⁴⁰ Ba	12.8 d	ß-, γ	170	760.000
¹⁴¹ Ce	32.5 a	ß-, γ	200	160.000
¹⁴⁴ Ce	284.8	ß-, γ	140	33.000
²³⁹ Np	2.4 d	ß-, γ	170	
²³⁹ Pu	2.4 · 10 ⁴ a	α, γ	0.03	6.5
²⁴² Cm	163 d	α	0.93	
Total:		1.25 · 10 ⁴	185 · 10 ⁴	

