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1. The elliptic genus
[ ]

1. From indices to U(1)-equivariant loop space indices

[Hirzebruch78]
Xy(M) = >2(=1)yPhP9(M)

= S yP>(-1)9dim HI(M,A\PT*)
P q

= Sty = [ TSy ener)
P M P

- /Td(l\/l)ch(/\yT*)
M
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1. From indices to U(1)-equivariant loop space indices

[Hirzebruch78] by splitting principle ¢(T) = rD[ (1+ x):
M) = Y(-liewa(uy
- gypij(—l)qdim HI(M, APT*)
= ST - /| T(M) 5 y? (T)
= /M Td(M)ch(A,T*) = H X X.’
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1. The elliptic genus
[ ]

1. From indices to U(1)-equivariant loop space indices

D
[Hirzebruch78] by splitting principle ¢(T) = [ (1 + x;):
j=1
" D .
M) = [ TamenT) = [ Tk
M M j=1

Let LM = CO(St, M),

g.:a topological generator of U(1); LMY= M < £ M (constant loops),

soforpe M: T,(LM)=L(T,M)=T,Ma&N, N = q"T,M,
n€Z\{0}

where q" T,M = T,M: the eigenspace of g, with eigenvalue ¢", n € Z,

X:

D _yx. 0O _ .
1 g 14+q" 1+q"y1e®
xy(q,ﬁ/\/l) = /M I1 {XJ ltyee_xji 11 +q"ye -;ci;/nefo} (_y)C(O)}

=
Jj=1 n=1 L1-q"e "

_ / Td(M) ch(E,,)
M

]Eq,y:(_}’)_D/szT* ® Q[A}’q”T* ®Ay_1q"T®Sq"T* ®5q"T]
=
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1. The elliptic genus
[ ]

Definition of the elliptic genus

Theorem [Alvarez/Killingback/Mangano/Windey87,
Hirzebruch88,Witten88,Krichever90,Borisov/Libgober00]

The elliptic genus
Em(r,z) = /Td(M)Ch(Emy)
M

(1,2€C, Im(7)>0, q=e?"'", y=e?77)

of a Calabi-Yau D-fold M is a weak Jacobi form of weight 0 and index %,

iD _cz®
thatis, Ey(r,z)=e 22cria gM(giZ, =) = aP"2yPrEy(T,z + m+ n7)
b

for all j d) €SLy(Z), m,nez,

and for all a, B8 € Q, 7 — Epn(7, ar + 3) is bounded on the upper half plane.

Em(T, z) only depends on the cobordism class of M.
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1. The elliptic genus
[ ]

Definition of the elliptic genus

Theorem [Alvarez/Killingback/Mangano/Windey87,
Hirzebruch88,Witten88,Krichever90,Borisov/Libgober00]

The elliptic genus
Em(r,z) = /Td(M)ch(E%y)
M

(1,2€C, Im(7)>0, q=€7i7, y=e?7iz)

of a Calabi-Yau D-fold M is a weak Jacobi form of weight 0 and index %,

Eu(r,z=0) = x(M),
Eu(r,z=1) = (-1)P2a(M)+ 0O(q),
PtEm(r,z =) = (=1)P*x(Om) + O(q)-

Em(T, z) only depends on the cobordism class of M.
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1. The elliptic genus
L ]

Chiral de Rham complex

Definition [Malikov/Schechtman/Vaintrob99]

where ¢/ « 2/, pj < 8J,z/)f<—>dz pj <

1

For open U C M with local holomorphic coordinates z*,
Qh(U) := Fock space for the fields ¢/, p;, ¥/, p;, j € {1,.
(D coples of a bc — - system)

This yields a sheaf of vertex algebras over M.

D

L,z

D},

0
a(dz))
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1. The elliptic genus
L ]

Chiral de Rham complex

Definition [Malikov/Schechtman/Vaintrob99]

where ¢/ « 2/, pj < aJ,q/)f<—>dz pj <
This yields a sheaf of vertex algebras over M.

1

For open U C M with local holomorphic coordinates z*,
Qh(U) := Fock space for the fields ¢/, p;, ¥/, p;, j € {1,.
(D coples of a bc — - system)

D

R

D},

0
a(dz))"

There are globally well-defined fields on M,

H*(M, Qsh).

Theorem [Malikov/Schechtman/Vaintrob99;Borisov/Libgober00]

fiteRi—~ = :pj8¢j: — :pjawf:, J= :pjzl)j:, Q=— :wjpj:, G = :pjaqu:,

which induce a topological N = 2 superconformal vertex algebra on

The elliptic genus Em(, 2) is the bigraded Euler characteristic of Q.
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1. The elliptic genus
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... and topologically half twisted sigma model

Result [Kapustin05]
There is a fine resolution (Qﬂ,”DOI, dpor) of QSh, such that

SM(Tv Z) :STI‘H*(Q;Z’DO/) (yJO_D/2qLE)OP) .

H* Q5P = Ilim (HEBST), the large volume limit of the
ol —

BRST—cohomoIc‘;gy cc)?Witten's half-twisted o-model on M.

Conclusion
Em(r,z) = sTrae(yq = Ecrr(T,2),

Hr: Ramond sector of any superconformal field theory associated to M,
Jo, Lo, Lo: zero modes of the U(1)-current and Virasoro fields in the SCA.

LO—D/8(—7L0—D/8)
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2. The elliptic genus of K3
[ ]

2. The elliptic genus of K3

For every K3 surface M (i.e. M is a Calabi-Yau 2-fold, h*:? = 0):

Ealr2) =8 (23) +8 (23) +8 (5428)"

For every N = (2,2) SCFT at central charges ¢ = ¢ = 6 with
space-time SUSY and integral U(1) charges:

its CFT elliptic genus either vanishes, or it agrees with Exs(T, z);
the theory has N = (4,4) SUSY.

Definition (K3 THEORY)
An N = (2,2) SCFT at ¢ = € = 6 with space-time SUSY,
integral U(1) charges and CFT elliptic genus Eks(T, z).
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2. The elliptic genus of K3
L ]

Decomposition into irreducible N = 4 characters

3 types of N = 4 irreps He with xe(T,2) = sTry, (yJOq’-O*l/“);
e vacuum Hp with xo(7,0) = =2
e massless matter H . m. with x . m (7,0) = 1

e massive matter Hy, (h € Rso), x4(7,2) = ¢"X(7,2), xn(7,0) =0

Ansatzz Hrp = HoQ@Ho @ 20 Hm.m. @ Hm.m.
® (Bocnen [frHn @ Ho ® foHo @ Ha))
2 (@0<m€N [gmHm ® ﬂm.m. DEnHmm. ® ﬁm})
& ®o<h,EeR kh,ZHh Q@ Hy
where all f, fn, gm, &m» kh,ﬂ are non-negative integers.

Ek3(1,2z) = —2x0(7,2) + 20X m.m.(7, zo)o—i— 2e(1)x(T, 2),
- 2e(r) = 3. (gn—20)4"

Conjecture [Eguchi/Ooguri/TachikawalO] For all n, g, — 2f, gives
the dimension of a non-trivial representation of the Mathieu group Ma,.
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2. The elliptic genus of K3
[ ]

Mathieu Moonshine Phenomenon

Theorem [Gannonl2]

using results of Cheng, Duncan, Gaberdiel,
Hohenegger, Persson, Ronellenfitsch, Volpato

There exists a representation R, of Mo, for every n € N, s.th.
o0
R:=(-2)Ho ® 20 Hmm & EPR»®H,

n=1
has the twisted elliptic K3-genera as its graded characters.
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[ ]

Mathieu Moonshine Phenomenon

Theorem [Gannonl2]

using results of Cheng, Duncan, Gaberdiel,
Hohenegger, Persson, Ronellenfitsch, Volpato

There exists a representation R, of Mo, for every n € N, s.th.
o0
R:=(-2)Ho ® 20 Hmm & EPR»®H,

n=1
has the twisted elliptic K3-genera as its graded characters.

WHY?

Is there an underlying structure of a vertex algebra?

HOW?
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2. The elliptic genus of K3
[ ]

Mathieu Moonshine Phenomenon

Theorem [Gannonl2]  using results of Cheng, Duncan, Gaberdiel,
Hohenegger, Persson, Ronellenfitsch, Volpato

There exists a representation R, of Mo, for every n € N, s.th.
o0
R = (*2)HO ® 20 Hm.m. @ @Rn ® Hn

n=1
has the twisted elliptic K3-genera as its graded characters.

Theorem [Mukai88]
If G is a symmetry group of a K3 surface M,

that is, G fixes the two-forms that de-
fine the hyperkahler structure of M,

then G is isomorphic to a subgroup of the Mathieu group Moy,
and |G| <960 < 244.823.040 = | Maq].
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2. The elliptic genus of K3
[ ]

Mathieu Moonshine Phenomenon

Theorem [Gannonl2]  using results of Cheng, Duncan, Gaberdiel,
Hohenegger, Persson, Ronellenfitsch, Volpato

There exists a representation R, of Mo, for every n € N, s.th.
o0
R = (*2)HO ® 20 Hm.m. @ @Rn ® Hn

n=1
has the twisted elliptic K3-genera as its graded characters.

Theorem [Mukai88]
If G is a symmetry group of a K3 surface M,

that is, G fixes the two-forms that de-
fine the hyperkahler structure of M,

then G is isomorphic to a subgroup of the Mathieu group Moy,
and |G| <960 < 244.823.040 = | Maq].

[Gaberdiel/Hohenegger/Volpatol1]
M4 cannot act as symmetry group of a K3 theory.
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3. Symmetry surfing
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3. Symmetry surfing

Observation [Taormina/W10-13]
The map Hrg — HE,ET depends on the choice of a geometric
interpretation; SO: restrict to geometric symmetry groups.
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3. Symmetry surfing

Observation [Taormina/W10-13]
The map Hrg — H,’%“g-’- depends on the choice of a geometric
interpretation; SO: restrict to geometric symmetry groups.

Conjecture [Taormina/W10-13]
In every geometric interpretation,

o
Hgf?og-r = (*2)7-‘0 @ Rm‘m. ® 7_[m.m, S @Rn & Hn =R
n=1
as a representation of the geometric symmetry group G C Moy,
the rhs collects the symmetries from distinct points of the moduli
space.

We call this procedure SYMMETRY SURFING.
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3. Symmetry surfing
[ ]

Symmetries of Zj-orbifold CFTs on K3

G: geometric symmetry group of a Zp-orbifold CFT___
with geometric interpretation on X = T/Zy, T = C?/A

using [Fujiki88
g [Fujiki88]

[Jordan1870]
G = (Z2)4 X GT C (Z2)4 X GL4(IF2) = (Zz)4 X Ag,
3 = iIA/A, GT € SO(3)
e Gt C (G7)x, one of three maximal finite groups
(Gr)1 = A4, (Gr)2=S3, (Gr)o = Z5
e there exists a smooth deformation, preserving the symmetry
G, from A into A, with

A1 = spang {(1,0,0,0), (0,1,0,0), (0,0,1,0), 3(1,1,1,1)},
N2 = spang{(1,0,00), 1(~1,v3,00), (0,0,1,0), 1(0,0,-1,v3)},
No = spang {(1,00,0),(0,1,00), (0,0,1,0), (0,0,0,1)} .
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3. Symmetry surfing
L ]

Symmetry surfing the moduli space of Kummer K3s

Result [Taormina/W11&12]

For the Zg-ﬂ?i/fold CFTs on K3 with geometric interpretation on

some X = T /Zy with T = C?/A, the joint action of all symmetry

groups yields the maximal subgroup Aff(F%) = (Z2)*xAg C Maa.
Note: Zg X Ag is not a subgroup of Mps.
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3. Symmetry surfing
L ]

Symmetry surfing the moduli space of Kummer K3s

Result [Taormina/W11&12]

For the ZQ-E[E)i/fOkII CFTs on K3 with geometric interpretation on

some X = T /Zy with T = C?/A, the joint action of all symmetry

groups yields the maximal subgroup Aff(F%) = (Z2)*xAg C Maa.
Note: Z4 X Ag is not a subgroup of Mps.

Recall: .
Hael 2 (=2)Ho & Rmnm @ Hmm & @R ®H,=TR

n=1

Result [Taormina/W13]

R1 can be constructed as a 90-dim. space of states common to
all K3-theories that are Zs-orbifolds of toroidal theories.

As common representation space of all geometric symmetry
groups of Kummer K3s, R1 carries an action of Zg X Ag induced
from R1 =2 45 & 45 with irreps 45, 45 of Maa.
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4. Conclusions
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4. Conclusions: A simpler open (?) conjecture

Recall:
Sa(rz) = [ TAK)eh(E,,)
K3
= _2X0(7'a Z) + 20Xm.m.(7'a Z) + Z (gn — 2fn)Xn(T> z)

n=1
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4. Conclusions
[ ]

4. Conclusions: A simpler open (?) conjecture

Recall:
Eks(r,z) = /Td(K3)ch(Eq7y)
K3

= —2x0(7, 2) + 20X m.m.(7, 2) + Z (gn — 2f0)Xn(T, 2)
n=1

Conjecture [W13]
There are polynomials p, for every n € N, such that

Eq,fy = _OK?)XO(Ta Z) TXm m. T Z) + an Xn(T Z)
n=1
where dim(R,) = g, — 2fo = [3 TA(K3)pa(T)= x(pa(T)) for
all ne N.
Moreover, p,(T) — R, carries a natural action of every geomet-
ric symmetry group G C Mp4 of K3.
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THE END

THANK YOU
FOR YOUR ATTENTION!
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