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1. From indices to U(1)-equivariant loop space indices

[Hirzebruch78]

by splitting principle c(T ) =
D∏

j=1
(1 + xj ):

χy (M) :=
∑
p,q

(−1)qyphp,q(M)

=
∑
p

yp
∑
q

(−1)q dim Hq(M,ΛpT ∗)

=
∑
p

ypχ(ΛpT ∗) =

∫
M

Td(M)
∑
p

yp ch(ΛpT ∗)

=

∫
M

Td(M) ch(ΛyT
∗)

=

∫
M

D∏
j=1

xj
1+ye

−xj

1−e
−xj

Let LM = C 0(S1,M),
q∗:a topological generator ofU(1);LMU(1)=M ↪→LM (constant loops),
so for p ∈ M: Tp(LM) = L(TpM) = TpM ⊕N, N =

⊕
n∈Z\{0}

qnTpM,

where qnTpM ∼= TpM: the eigenspace of q∗with eigenvalue qn,n ∈ Z,

χy (q,LM) :=

∫
M

D∏
j=1

{
xj

1+ye
−xj

1−e
−xj

∞∏
n=1

[
1+qnye

−xj

1−qne
−xj
· 1+qny−1e

xj

1−qne
xj

]
(−y)ζ(0)

}
=

∫
M

Td(M) ch(Eq,y )

Eq,y =(−y)−D/2ΛyT∗⊗
∞N

n=1
[ΛyqnT∗⊗Λy−1qnT⊗SqnT∗⊗SqnT ]
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Definition of the elliptic genus

Theorem [Alvarez/Killingback/Mangano/Windey87,
Hirzebruch88,Witten88,Krichever90,Borisov/Libgober00]

The elliptic genus

EM(τ, z) :=

∫
M

Td(M) ch(Eq,−y )

(τ, z∈C, Im(τ)>0, q=e2πiτ , y=e2πiz )

of a Calabi-Yau D-fold M is a weak Jacobi form of weight 0 and index D
2 ,

that is, EM (τ , z) = e−2πi D
2

cz2

cτ+d EM ( aτ+b
cτ+d

, z
cτ+d

) = qDn/2yDnEM (τ , z + m + nτ)

for all

„
a b
c d

«
∈ SL2(Z), m, n ∈ Z,

and for all α, β ∈ Q, τ 7→ EM (τ, ατ + β) is bounded on the upper half plane.

EM(τ, z) only depends on the cobordism class of M.
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of a Calabi-Yau D-fold M is a weak Jacobi form of weight 0 and index D
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EM (τ, z = 0) = χ(M),

EM (τ, z = 1
2

) = (−1)D/2σ(M) +O(q),

qD/4EM (τ, z = τ+1
2

) = (−1)D/2χ(OM ) +O(q).
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Chiral de Rham complex

Definition [Malikov/Schechtman/Vaintrob99]
For open U ⊂ M with local holomorphic coordinates z1, . . . , zD :
Ωch

M (U) := Fock space for the fields φj , pj , ψ
j , ρj , j ∈ {1, . . . ,D},

(D copies of a bc − βγ-system)
where φj ↔ z j , pj ↔ ∂

∂z j , ψj ↔ dz j , ρj ↔ ∂
∂(dz j )

.

This yields a sheaf of vertex algebras over M.

Theorem [Malikov/Schechtman/Vaintrob99;Borisov/Libgober00]
There are globally well-defined fields on M,

Ltop = − :pj∂φ
j:− :ρj∂ψ

j:, J = :ρjψ
j:,Q = − :ψjpj:, G = :ρj∂φ

j:,

which induce a topological N = 2 superconformal vertex algebra on
H∗(M,Ωch

M ).
The elliptic genus EM(τ, z) is the bigraded Euler characteristic of Ωch

M .
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. . . and topologically half twisted sigma model

Result [Kapustin05]

There is a fine resolution (Ωch,Dol
M , dDol ) of Ωch

M , such that

EM(τ, z) =sTr
H∗(Ωch,Dol

M )

(
yJ0−D/2qLtop

0

)
.

H∗(Ωch,Dol
M ) ∼= lim

vol→∞
(HBRST

NS ), the large volume limit of the

BRST-cohomology of Witten’s half-twisted σ-model on M.

Conclusion

EM(τ, z) = sTrHR

(
yJ0qL0−D/8qL0−D/8

)
= ECFT (τ, z),

HR : Ramond sector of any superconformal field theory associated to M,

J0, L0, L0: zero modes of the U(1)-current and Virasoro fields in the SCA.
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2. The elliptic genus of K3

For every K3 surface M (i.e. M is a Calabi-Yau 2-fold, h1,0 = 0):

EK3(τ, z) = 8
(
ϑ2(τ,z)
ϑ2(τ,0)

)2
+ 8

(
ϑ3(τ,z)
ϑ3(τ,0)

)2
+ 8

(
ϑ4(τ,z)
ϑ4(τ,0)

)2
.

For every N = (2, 2) SCFT at central charges c = c = 6 with
space-time SUSY and integral U(1) charges:
its CFT elliptic genus either vanishes, or it agrees with EK3(τ, z);
the theory has N = (4, 4) SUSY.

Definition (K3 theory)
An N = (2, 2) SCFT at c = c = 6 with space-time SUSY,
integral U(1) charges and CFT elliptic genus EK3(τ, z).

Katrin Wendland The elliptic genus in conformal field theory 6/12



Introduction 1. The elliptic genus 2. The elliptic genus of K3 3. Symmetry surfing 4. Conclusions

Decomposition into irreducible N = 4 characters

3 types of N = 4 irreps H• with χ•(τ, z) = sTrH•
(
yJ0qL0−1/4

)
:

• vacuum H0 with χ0(τ, 0) = −2

• massless matter Hm.m. with χm.m.(τ, 0) = 1

• massive matter Hh (h ∈ R>0), χh(τ, z) = qhχ̃(τ, z), χh(τ, 0) = 0

Ansatz: HR = H0 ⊗H0 ⊕ 20 Hm.m. ⊗Hm.m.

⊕
`L

0<n∈N
ˆ
fnHn ⊗H0 ⊕ fnH0 ⊗Hn

˜´
⊕
`L

0<m∈N
ˆ
gmHm ⊗Hm.m. ⊕ gmHm.m. ⊗Hm

˜´
⊕
L

0<h,h∈R kh,hHh ⊗Hh

where all fn, f n, gm, gm, kh,h are non-negative integers.

=⇒
EK3(τ, z) = −2χ0(τ, z) + 20χm.m.(τ, z) + 2e(τ)χ̃(τ, z),

2e(τ) =
∞∑

n=1
(gn − 2fn)qn

Conjecture [Eguchi/Ooguri/Tachikawa10] For all n, gn − 2fn gives
the dimension of a non-trivial representation of the Mathieu group M24.
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Mathieu Moonshine Phenomenon

Theorem [Gannon12] using results of Cheng, Duncan, Gaberdiel,
Hohenegger, Persson, Ronellenfitsch, Volpato

There exists a representation Rn of M24 for every n ∈ N, s.th.

R := (−2)H0 ⊕ 20 Hm.m. ⊕
∞⊕

n=1

Rn ⊗Hn

has the twisted elliptic K3-genera as its graded characters.

Theorem [Mukai88]
If G is a symmetry group of a K3 surface M,

that is, G fixes the two-forms that de-
fine the hyperkähler structure of M,

then G is isomorphic to a subgroup of the Mathieu group M24,
and |G | ≤ 960� 244.823.040 = |M24|.

[Gaberdiel/Hohenegger/Volpato11]
M24 cannot act as symmetry group of a K3 theory.
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3. Symmetry surfing

Observation [Taormina/W10-13]
The map HR � HBRST

R,∞ depends on the choice of a geometric
interpretation; so: restrict to geometric symmetry groups.

Conjecture [Taormina/W10-13]
In every geometric interpretation,

HBRST
R,∞

∼= (−2)H0 ⊕ Rm.m. ⊗Hm.m. ⊕
∞⊕

n=1

Rn ⊗Hn = R

as a representation of the geometric symmetry group G ⊂ M24;
the rhs collects the symmetries from distinct points of the moduli
space.

We call this procedure symmetry surfing.

Katrin Wendland The elliptic genus in conformal field theory 9/12
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Symmetries of Z2-orbifold CFTs on K3

G : geometric symmetry group of a Z2-orbifold CFT
with geometric interpretation on X = T̃/Z2, T = C2/Λ

using [Fujiki88]
=⇒

G = (Z2)4 o GT ⊂ (Z2)4 o GL4(F2)
[Jordan1870]∼= (Z2)4 o A8,
F4

2
∼= 1

2 Λ/Λ, GT ⊂ SO(3)

• GT ⊂ (GT )k , one of three maximal finite groups
(GT )1 = A4, (GT )2 = S3, (GT )0 = Z2

2

• there exists a smooth deformation, preserving the symmetry
G , from Λ into Λk with

Λ1 = spanZ {(1,0,0,0), (0,1,0,0), (0,0,1,0), 1
2

(1,1,1,1)} ,
Λ2 = spanZ {(1,0,0,0), 1

2
(−1,
√

3,0,0), (0,0,1,0), 1
2

(0,0,−1,
√

3)} ,
Λ0 = spanZ {(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1)} .
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Symmetry surfing the moduli space of Kummer K3s

Result [Taormina/W11&12]
For the Z2-orbifold CFTs on K3 with geometric interpretation on

some X = T̃/Z2 with T = C2/Λ, the joint action of all symmetry
groups yields the maximal subgroup Aff(F4

2) = (Z2)4oA8 ⊂ M24.
Note: Z4

2 o A8 is not a subgroup of M23.

Recall:
HBRST

R,∞
∼= (−2)H0 ⊕ Rm.m. ⊗Hm.m. ⊕

∞⊕
n=1
Rn ⊗Hn = R

Result [Taormina/W13]
R1 can be constructed as a 90-dim. space of states common to
all K3-theories that are Z2-orbifolds of toroidal theories.
As common representation space of all geometric symmetry
groups of Kummer K3s, R1 carries an action of Z4

2 o A8 induced
from R1

∼= 45⊕ 45 with irreps 45, 45 of M24.

Katrin Wendland The elliptic genus in conformal field theory 11/12
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4. Conclusions: A simpler open (?) conjecture

Recall:

EK3(τ, z) =

∫
K3

Td(K3)ch(Eq,−y )

= −2χ0(τ, z) + 20χm.m.(τ, z) +
∞∑

n=1

(gn − 2fn)χn(τ, z)

Conjecture [W13]
There are polynomials pn for every n ∈ N, such that

Eq,−y = −OK3χ0(τ, z)− Tχm.m.(τ, z) +
∞∑

n=1

pn(T )χn(τ, z),

where dim(Rn) = gn − 2fn =
∫

K3 Td(K3)pn(T )= χ(pn(T )) for
all n ∈ N.
Moreover, pn(T ) � Rn carries a natural action of every geomet-
ric symmetry group G ⊂ M24 of K3.
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The End

Thank you
for your attention!
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