Compact subspaces of moduli spaces of bundles over class VII surfaces
Towards the classification of class VII surfaces

Andrei Teleman

Institut de Mathématiques, Aix-Marseille Université

VBAC Berlin, September 4, 2014
Table of Contents

1. **Class VII surfaces**

2. **Moduli spaces of holomorphic bundles on Gauduchon surfaces**

3. **A moduli space of instantons on class VII surfaces**

4. **Existence of a cycle on class VII surfaces with small second Betti number**
Table of Contents

1. Class VII surfaces

2. Moduli spaces of holomorphic bundles on Gauduchon surfaces

3. A moduli space of instantons on class VII surfaces

4. Existence of a cycle on class VII surfaces with small second Betti number
Class VII surfaces

Class VII surfaces with $b_2 = 0$ are classified. We are interested in minimal class VII surfaces with $b_2 > 0$. Let $X \in \text{VII}_{b_2>0}^{\text{min}}$.

Definition 0.1

$$\text{VII} := \{X \text{ complex surface} \mid b_1(X) = 1, \ k\text{od}(X) = -\infty\}.$$

- Class VII surfaces with $b_2 = 0$ are classified. We are interested in minimal class VII surfaces with $b_2 > 0$. Let $X \in \text{VII}_{b_2>0}^{\text{min}}$.
Definition 0.1

\[\text{VII} := \{ \text{X complex surface} \mid b_1(\text{X}) = 1, \kappa(\text{X}) = -\infty \}. \]

- Class VII surfaces with \(b_2 = 0 \) are classified. We are interested in minimal class VII surfaces with \(b_2 > 0 \). Let \(\text{X} \in \text{VII}_{\text{min}}^{b_2>0} \).
- \(\text{X} \) has \(b_2(\text{X}) \) rational curves \(\Rightarrow \text{X} \) is a Kato surface (it belongs to the list of known surfaces) [Dloussky-Oeljeklaus-Toma].
Definition 0.1

\[\text{VII} := \{ X \text{ complex surface} \mid b_1(X) = 1, \kappa(X) = -\infty \}. \]

- Class VII surfaces with \(b_2 = 0 \) are classified. We are interested in minimal class VII surfaces with \(b_2 > 0 \). Let \(X \in \text{VII}_{b_2>0}^{\text{min}} \).
- \(X \) has \(b_2(X) \) rational curves \(\Rightarrow X \) is a Kato surface (it belongs to the list of known surfaces) [Dloussky-Oeljeklaus-Toma].
- \(X \) contains a cycle of curves \(\Rightarrow X \) is the degeneration of a family of blown up primary Hopf surfaces [Nakamura].
Class VII surfaces

Definition 0.1

\[\text{VII} := \{ X \text{ complex surface} \mid b_1(X) = 1, \, \kod(X) = -\infty \} \].

- Class VII surfaces with \(b_2 = 0 \) are classified. We are interested in minimal class VII surfaces with \(b_2 > 0 \). Let \(X \in \text{VII}^{b_2 > 0}_{\text{min}} \).
- \(X \) has \(b_2(X) \) rational curves \(\Rightarrow X \) is a Kato surface (it belongs to the list of known surfaces) [Dloussky-Oeljeklaus-Toma].
- \(X \) contains a cycle of curves \(\Rightarrow X \) is the degeneration of a family of blown up primary Hopf surfaces [Nakamura].
- Let \(X \supset D > 0 \) be an effective divisor with \(\omega_D \simeq \mathcal{O}_D \). Then \(D \) contains a cycle of curves. Recall: \(\omega_D := \mathcal{K}_D(D) \).
Definition 0.1

\[\text{VII} := \{ X \text{ complex surface} \mid b_1(X) = 1, \, \text{cod}(X) = -\infty \}. \]

- Class VII surfaces with \(b_2 = 0 \) are classified. We are interested in minimal class VII surfaces with \(b_2 > 0 \). Let \(X \in \text{VII}_{\min}^{b_2>0} \)
- \(X \) has \(b_2(X) \) rational curves \(\Rightarrow \) \(X \) is a Kato surface (it belongs to the list of known surfaces) [Dloussky-Oeljeklaus-Toma].
- \(X \) contains a cycle of curves \(\Rightarrow \) \(X \) is the degeneration of a family of blown up primary Hopf surfaces [Nakamura].
- Let \(X \supset D > 0 \) be an effective divisor with \(\omega_D \sim \mathcal{O}_D \). Then \(D \) contains a cycle of curves. Recall: \(\omega_D := \mathcal{K}_D(D) \).
- **Goal:** Prove that any \(X \in \text{VII}_{\min}^{b_2>0} \) contains such a divisor. This would complete the classification up to deform. equivalence.
Table of Contents

1. Class VII surfaces

2. Moduli spaces of holomorphic bundles on Gauduchon surfaces

3. A moduli space of instantons on class VII surfaces

4. Existence of a cycle on class VII surfaces with small second Betti number
Let (X, g) be a complex surface endowed with a Gauduchon metric. The Gauduchon condition for surfaces: $\partial \bar{\partial} \omega_g = 0$.

$$\deg_g(L) := \int_X c_1(L, h) \wedge \omega_g, \quad \deg_g(F) := \deg_g(\det(F)).$$

$\deg_g : \text{Pic}(X) \to \mathbb{R}$ is a morphism of Abelian Lie Groups.
Let \((X, g)\) be a complex surface endowed with a *Gauduchon metric*. The Gauduchon condition for surfaces: \(\partial \bar{\partial} \omega_g = 0\).

\[\deg_g(L) := \int_X c_1(L, h) \wedge \omega_g, \quad \deg_g(F) := \deg_g(\det(F)). \]

\(\deg_g : \text{Pic}(X) \to \mathbb{R}\) is a morphism of Abelian Lie Groups.

- A holomorphic rank 2 bundle \(E\) on \(X\) is called
 - **stable**, if for every line bundle \(L\) and non-trivial morphism \(L \to E\) one has \(\deg(L) < \frac{1}{2} \deg_g(\det(E))\).
 - **polystable**, if is either stable or isomorphic to a direct sum \(L \oplus M\) of line bundles with \(\deg_g(L) = \deg_g(M)\).
1

- Let \((X, g)\) be a complex surface endowed with a *Gauduchon metric*. The Gauduchon condition for surfaces: \(\partial \bar{\partial} \omega_g = 0\).

\[
\text{deg}_g(\mathcal{L}) := \int_X c_1(\mathcal{L}, h) \wedge \omega_g, \quad \text{deg}_g(\mathcal{F}) := \text{deg}_g(\det(\mathcal{F})).
\]

\(\text{deg}_g: \text{Pic}(X) \to \mathbb{R}\) is a morphism of Abelian Lie Groups.

- A holomorphic rank 2 bundle \(\mathcal{E}\) on \(X\) is called
 - *stable*, if for every line bundle \(\mathcal{L}\) and non-trivial morphism \(\mathcal{L} \to \mathcal{E}\) one has \(\text{deg}(\mathcal{L}) < \frac{1}{2} \text{deg}_g(\det(\mathcal{E}))\).
 - *polystable*, if is either stable or isomorphic to a direct sum \(\mathcal{L} \oplus \mathcal{M}\) of line bundles with \(\text{deg}_g(\mathcal{L}) = \text{deg}_g(\mathcal{M})\).

- Let \(E\) be a \(C^\infty\) 2-bundle on \(X\), \(\mathcal{D}\) hol. struct. on \(D := \det(E)\),

\[
\mathcal{M}_{\mathcal{D}}^{\text{st}}(E), \quad \mathcal{M}_{\mathcal{D}}^{\text{polyst}}(E)
\]

the moduli spaces of stable, polystable hol. structures \(\mathcal{E}\) on \(E\) inducing \(\mathcal{D}\) on \(\det(E)\), modulo \(\text{Aut}_D(E) = G^C := \Gamma(X, \text{SL}(E))\).
Remarks:

- If $b_1(X)$ is odd then $\text{Pic}^0(X)$ is non-compact and deg_g is not a topological invariant.

Example: For a class VII surface one has

$$\text{Pic}^0(X) \cong \mathbb{C}^*, \quad \text{deg}_g(\mathcal{L}_\zeta) = C_g \log |\zeta|.$$
Remarks:

- If $b_1(X)$ is odd then $\text{Pic}^0(X)$ is non-compact and \deg_g is not a topological invariant.

Example: For a class VII surface one has

$$\text{Pic}^0(X) \cong \mathbb{C}^*, \quad \deg_g(L_\zeta) = C_g \log |\zeta|.$$

- $\mathcal{M}_{st}^D(E)$ has a natural complex space structure obtained using classical deformation theory or complex gauge theory.
Remarks:

- If $b_1(X)$ is odd then $\text{Pic}^0(X)$ is non-compact and \deg_g is not a topological invariant.

Example: For a class VII surface one has

$$\text{Pic}^0(X) \cong \mathbb{C}^*, \quad \deg_g(L_\zeta) = C_g \log |\zeta|.$$

- $\mathcal{M}_{\text{st}}^D(E)$ has a natural complex space structure obtained using classical deformation theory or complex gauge theory.

- The **Kobayashi-Hitchin correspondence:** Let a be the Chern connection of the pair $(\mathcal{D}, \det(h))$. We have isomorphisms

$$\mathcal{M}_{\text{p}^{\text{st}}_D}(E) \xrightarrow{\sim \text{KH}} \mathcal{M}_{a_{\text{ASD}}}(E), \quad \mathcal{M}_{\text{st}D}(E) \xrightarrow{\sim \text{KH}^*} \mathcal{M}_{a_{\text{ASD}}}(E)^*$$

The points of the reduction space $\mathcal{R} = \mathcal{M}_{\text{p}^{\text{st}}_D}(E) \setminus \mathcal{M}_{\text{st}D}(E)$ have two interpretations: split polystable 2-bundles and reducible instantons.
From now on we assume

- about X: $b_1(X) = 1$ and $p_g(X) = 0$ ($b_+(X) = 0$).
- about E: $c_1(E) \notin 2H^2(X, \mathbb{Z})$.

Under these assumptions \mathcal{R} is a finite disjoint union of circles.

In general $\mathcal{M}^{\text{pst}}_{\mathcal{D}}(E)$ is not a complex space around \mathcal{R}. The topological structure of the moduli space $\mathcal{M}^{\text{pst}}_{\mathcal{D}}(E)$ around a circle R of regular reductions is simple: A cone bundle over R with fibre: cone (in the topological sense) over \mathbb{P}^{d-1}_C. Here

$$d = 4c_2(E) - c_1^2(E)$$

is the expected complex dimension of the moduli space.
3

- From now on we assume
 - about X: $b_1(X) = 1$ and $p_g(X) = 0$ ($b_+(X) = 0$).
 - about E: $c_1(E) \notin 2H^2(X, \mathbb{Z})$.

Under these assumptions \mathcal{R} is a finite disjoint union of circles.

- In general $\mathcal{M}^{p_{\text{st}}}_{D}(E)$ is not a complex space around \mathcal{R}.

The topological structure of the moduli space $\mathcal{M}^{p_{\text{st}}}_{D}(E)$ around a circle R of regular reductions is simple: A cone bundle over R with fibre: cone (in the topological sense) over \mathbb{P}_C^{d-1}. Here

$$d = 4c_2(E) - c_1^2(E)$$

is the expected complex dimension of the moduli space.

- **Example:** For $d = 1$: $\mathcal{M}^{p_{\text{st}}}_{D}(E)$ has the structure of a Riemann surface with boundary R around a circle R of reductions.
On non-algebraic surfaces: the appearance of *non-filtrable bundles* complicates the description of a moduli space $\mathcal{M}^{\text{pst}}_{D}(E)$. A rank 2 holomorphic bundle \mathcal{E} on X is called *filtrable* if there exists a sheaf mono-morphism

$$0 \to \mathcal{L} \to \mathcal{E}$$

where \mathcal{L} is a line bundle.
On non-algebraic surfaces: the appearance of \textit{non-filtrable bundles} complicates the description of a moduli space $\mathcal{M}_{p^*}^{\text{pst}}(E)$. A rank 2 holomorphic bundle \mathcal{E} on X is called \textit{filtrable} if there exists a sheaf mono-morphism

\[0 \to \mathcal{L} \to \mathcal{E} \]

where \mathcal{L} is a line bundle.

A filtrable bundle \mathcal{E} fits in a short exact sequence

\[0 \to \mathcal{M} \to \mathcal{E} \to \mathcal{N} \otimes \mathcal{I}_Z \to 0 , \]

for line bundles \mathcal{M}, \mathcal{N} and a 0-dimensional l.c.i. $Z \subset X$.
On non-algebraic surfaces: the appearance of non-filtrable bundles complicates the description of a moduli space $\mathcal{M}_{\text{ps}t}^D(E)$. A rank 2 holomorphic bundle \mathcal{E} on X is called filtrable if there exists a sheaf mono-morphism

$$0 \to \mathcal{L} \to \mathcal{E}$$

where \mathcal{L} is a line bundle.

A filtrable bundle \mathcal{E} fits in a short exact sequence

$$0 \to \mathcal{M} \to \mathcal{E} \to \mathcal{N} \otimes \mathcal{I}_Z \to 0,$$

for line bundles \mathcal{M}, \mathcal{N} and a 0-dimensional l.c.i. $Z \subset X$.

A non-filtrable bundle is stable with respect to any Gauduchon metric. There exists no classification method for non-filtrable bundles.
Table of Contents

1. Class VII surfaces
2. Moduli spaces of holomorphic bundles on Gauduchon surfaces
3. A moduli space of instantons on class VII surfaces
4. Existence of a cycle on class VII surfaces with small second Betti number
Let now X be a class VII surface and (E, h) a differentiable rank 2-bundle on X with

$$c_2(E) = 0, \quad \det(E) = K_X \quad (\text{the underlying } \mathcal{C}^\infty \text{ bundle of } \mathcal{K}_X),$$

and let a be the Chern connection of $(\mathcal{K}_X, \det(h))$.
Let now X be a class VII surface and (E, h) a differentiable rank 2-bundle on X with

$$c_2(E) = 0, \, \det(E) = K_X \text{ (the underlying } C^\infty \text{ bundle of } K_X),$$

and let a be the Chern connection of $(K_X, \det(h))$.

Our fundamental object: the moduli space

$$\mathcal{M} := \mathcal{M}_{K}^{\text{pst}}(E) \overset{KH}{\leftarrow} \mathcal{M}_{a}^{\text{ASD}}(E).$$

and its open subspace $\mathcal{M}^{\text{st}} := \mathcal{M}^{\text{st}}_{K}(E)$ of stable bundles, which is a complex space of dimension $b := b_2(X)$.
Let now \(X \) be a class VII surface and \((E, h)\) a differentiable rank 2-bundle on \(X \) with
\[
c_2(E) = 0, \quad \det(E) = K_X \quad \text{(the underlying } C^\infty \text{ bundle of } K_X),
\]
and let \(a \) be the Chern connection of \((K_X, \det(h))\).

Our fundamental object: the moduli space
\[
\mathcal{M} := \mathcal{M}^{\text{pst}}_K(E) \overset{\sim}{\longleftarrow} \mathcal{M}^{\text{ASD}}_a(E).
\]

and its open subspace \(\mathcal{M}^{\text{st}} := \mathcal{M}^{\text{st}}_K(E) \) of stable bundles, which is a complex space of dimension \(b := b_2(X) \).

Using bundles to prove existence of curves: prove that the same filtrable bundle can be written as an extension in two different ways. This yields a non-trivial (and non-isomorphic) morphism of line bundles, whose vanishing locus will be a curve.
Compactness: \(\mathcal{M} \) is compact (– and Buchdahl). This is proved using a the KH correspondence and a combination of gauge theoretical and complex geometric arguments.
Compactness: \(\mathcal{M} \) is compact (and Buchdahl). This is proved using the KH correspondence and a combination of gauge theoretical and complex geometric arguments.

For \(b := b_2(X) \leq 3 \) the statement follows from Donaldson-Uhlenbeck compactness theorem for instantons: in this range the lower strata of the Uhlenbeck compactification are empty for topological reasons.
• **Compactness:** \mathcal{M} is compact (– and Buchdahl). This is proved using a the KH correspondence and a combination of gauge theoretical and complex geometric arguments.

• For $b := b_2(X) \leq 3$ the statement follows from Donaldson-Uhlenbeck compactness theorem for instantons: in this range the lower strata of the Uhlenbeck compactification are empty for topological reasons.

• For the following properties we suppose for simplicity that X is minimal, $\deg_g(K_X) < 0$, and $H_1(X, \mathbb{Z}) \simeq \mathbb{Z}$.
Compactness: \mathcal{M} is compact (– and Buchdahl).
This is proved using a the KH correspondence and a combination of gauge theoretical and complex geometric arguments.

For $b := b_2(X) \leq 3$ the statement follows from Donaldson-Uhlenbeck compactness theorem for instantons: in this range the lower strata of the Uhlenbeck compactification are empty for topological reasons.

For the following properties we suppose for simplicity that X is minimal, $\deg_g(K_X) < 0$, and $H_1(X, \mathbb{Z}) \cong \mathbb{Z}$.

Regularity: \mathcal{M}^{st} is a smooth b-dimensional complex manifold.
Compactness: \mathcal{M} is compact (– and Buchdahl). This is proved using a the KH correspondence and a combination of gauge theoretical and complex geometric arguments.

For $b := b_2(X) \leq 3$ the statement follows from Donaldson-Uhlenbeck compactness theorem for instantons: in this range the lower strata of the Uhlenbeck compactification are empty for topological reasons.

For the following properties we suppose for simplicity that X is minimal, $\deg_g(K_X) < 0$, and $H_1(X, \mathbb{Z}) \simeq \mathbb{Z}$.

Regularity: \mathcal{M}^{st} is a smooth b-dimensional complex manifold.

Reductions: \mathcal{R} is a disjoint union of 2^{b-1} circles $R_{\{I, \bar{I}\}}$ indexed by unordered partitions $\{I, \bar{I}\}$ of $\{1, \ldots, b\}$.
• **Compactness:** \mathcal{M} is compact (– and Buchdahl).
 This is proved using a the KH correspondence and a combination of gauge theoretical and complex geometric arguments.

• For $b := b_2(X) \leq 3$ the statement follows from Donaldson-Uhlenbeck compactness theorem for instantons: in this range the lower strata of the Uhlenbeck compactification are empty for topological reasons.

• For the following properties we suppose for simplicity that X is minimal, $\deg_g(\mathcal{K}_X) < 0$, and $H_1(X, \mathbb{Z}) \simeq \mathbb{Z}$.

• **Regularity:** \mathcal{M}^{st} is a smooth b-dimensional complex manifold.

• **Reductions:** \mathcal{R} is a disjoint union of 2^{b-1} circles $R_{\{I,\overline{I}\}}$ indexed by unordered partitions $\{I, \overline{I}\}$ of $\{1, \ldots, b\}$.

• Every $R_{\{I,\overline{I}\}}$ has a compact neighborhood homeomorphic to $R_{\{I,\overline{I}\}} \times [\text{cone over } \mathbb{P}_C^{b-1}]$.
Symmetry and twisted reductions: Natural involution on \mathcal{M}:

\[\otimes \mathcal{L}_0 : \mathcal{M} \rightarrow \mathcal{M}, \quad \mathcal{L}_0^\otimes 2 \simeq \mathcal{O}_X, \text{ where } [\mathcal{O}_X] \neq [\mathcal{L}_0] \in \text{Pic}^0(X) . \]

This involution has finitely many fixed points, called twisted reductions. There are 2^{b-1} twisted reductions if $\pi_1(X, x_0) \cong \mathbb{Z}$.

Andrei Teleman

Compact subspaces of moduli spaces
Symmetry and twisted reductions: Natural involution on \mathcal{M}:

$\otimes L_0 : \mathcal{M} \to \mathcal{M}, \ L_0^2 \simeq \mathcal{O}_X$, where $[\mathcal{O}_X] \neq [L_0] \in \text{Pic}^0(X)$.

This involution has finitely many fixed points, called twisted reductions. There are 2^{b-1} twisted reductions if $\pi_1(X,x_0) \simeq \mathbb{Z}$.

A twisted reduction \mathcal{E} can be written as $\pi_*(\mathcal{L})$, where

$$\pi : \tilde{X} \to X$$

is a double cover and \mathcal{L} is a line bundle on \tilde{X}. Therefore $\pi^*(\mathcal{E})$ is split polystable (and corresponds to a reducible instanton).
Symmetry and twisted reductions: Natural involution on \mathcal{M}:

$\otimes L_0 : \mathcal{M} \to \mathcal{M}$, $L_0 \otimes L_0 \cong \mathcal{O}_X$, where $[\mathcal{O}_X] \neq [L_0] \in \text{Pic}^0(X)$.

This involution has finitely many fixed points, called *twisted reductions*. There are 2^{b-1} twisted reductions if $\pi_1(X, x_0) \cong \mathbb{Z}$.

A twisted reduction \mathcal{E} can be written as $\pi_*(\mathcal{L})$, where $\pi : \tilde{X} \to X$ is a double cover and \mathcal{L} is a line bundle on \tilde{X}. Therefore $\pi_*(\mathcal{E})$ is split polystable (and corresponds to a reducible instanton).

The filtrable bundles in our moduli space:

Put $b := b_2(X)$ and let (e_1, \ldots, e_b) be a *Donaldson basis* of $H^2(X, \mathbb{Z})$, i.e., it a basis (e_1, \ldots, e_b) such that

$$e_i \cdot e_j = -\delta_{ij}, \quad c_1(K_X) = \sum_{i=1}^b e_i.$$
Let \mathcal{E} be rank 2 bundle on X with $\det(\mathcal{E}) = K_X$, $c_2(\mathcal{E}) = 0$.

\mathcal{L} a line bundle and $0 \to \mathcal{L} \to \mathcal{E}$ a sheaf monomorphism with torsion free quotient.
Let \mathcal{E} be rank 2 bundle on X with det$(\mathcal{E}) = \mathcal{K}_X$, $c_2(\mathcal{E}) = 0$
\mathcal{L} a line bundle and $0 \to \mathcal{L} \to \mathcal{E}$ a sheaf monomorphism with torsion free quotient.
One can prove that \mathcal{E}/\mathcal{L} is then locally free and
\[c_1(\mathcal{L}) = e_I := \sum_{i \in I} e_i \text{ where } I \subset \{1, \ldots, b\}. \]

Therefore

Proposition 2.1

Any filtrable bundle in our moduli space is an extension

\[0 \to \mathcal{L} \to \mathcal{E} \to \mathcal{K}_X \otimes \mathcal{L}^\vee \to 0, \quad (1) \]

where $c_1(\mathcal{L}) = e_I$ for an index set $I \subset \{1, \ldots, b\}$.
Let \mathcal{E} be rank 2 bundle on X with $\det(\mathcal{E}) = \mathcal{K}_X$, $c_2(\mathcal{E}) = 0$

\mathcal{L} a line bundle and $0 \rightarrow \mathcal{L} \rightarrow \mathcal{E}$ a sheaf monomorphism with torsion free quotient.

One can prove that \mathcal{E}/\mathcal{L} is then locally free and

$$c_1(\mathcal{L}) = e_I := \sum_{i \in I} e_i$$

where $I \subset \{1, \ldots, b\}$.

Therefore

Proposition 2.1

Any filtrable bundle in our moduli space is an extension

$$0 \rightarrow \mathcal{L} \rightarrow \mathcal{E} \rightarrow \mathcal{K}_X \otimes \mathcal{L}^\vee \rightarrow 0$$

(1)

where $c_1(\mathcal{L}) = e_I$ for an index set $I \subset \{1, \ldots, b\}$.

$\mathcal{M}^{\text{st}} \supset \mathcal{M}_I^{\text{st}} :=$ the subspace of stable bundles which are extensions of type (1) with fixed $c_1(\mathcal{L}) = e_I$.
A crucial role is played by $\mathcal{M}_{I_m}^{st}$ associated with the maximal index set $I_m := \{1, \ldots, b\}$. Except for certain known (!) surfaces, one has

$$\mathcal{M}_{I_m}^{st} = \{ \mathcal{A}, \mathcal{A}' \}$$

where \mathcal{A} is the *canonical extension* of X, defined as the essentially unique non-trivial extension of the form

$$0 \to \mathcal{K}_X \to \mathcal{A} \to \mathcal{O}_X \to 0$$

(note $h^1(\mathcal{K}_X) = 1$ by Serre duality), and $\mathcal{A}' := \mathcal{A} \otimes \mathcal{L}_0$.
A crucial role is played by $\mathcal{M}_{l_m}^{\text{st}}$ associated with the maximal index set $l_m := \{1, \ldots, b\}$. Except for certain known (!) surfaces, one has

$$\mathcal{M}_{l_m}^{\text{st}} = \{\mathcal{A}, \mathcal{A}'\}$$

where \mathcal{A} is the canonical extension of X, defined as the essentially unique non-trivial extension of the form

$$0 \to \mathcal{K}_X \to \mathcal{A} \to \mathcal{O}_X \to 0$$

(note $h^1(\mathcal{K}_X) = 1$ by Serre duality), and $\mathcal{A}' := \mathcal{A} \otimes \mathcal{L}_0$.

For $l \neq l_m$: If X has no curves in certain homology classes (which we assume for simplicity!) $\mathcal{M}_l^{\text{st}}$ is a $\mathbb{P}^{b-|l|-1}_{\mathbb{C}}$-fibration over a punctured disk, these fibrations are pairwise disjoint, and the closure $\bar{\mathcal{M}}_l^{\text{st}}$ in \mathcal{M} contains the circle $R\{l,\bar{l}\}$.
Overview: What do we know about the moduli space \(\mathcal{M} \)?

- We know that \(\mathcal{M} \) is always compact. If certain simplifying conditions are satisfied (which we assume) then
Overview: What do we know about the moduli space \mathcal{M}?

- We know that \mathcal{M} is always compact. If certain simplifying conditions are satisfied (which we assume) then
- it contains 2^{b-1} circles $R\{I,\bar{I}\}$ of reductions, a finite number of isolated twisted reductions (fixed points of the involution $\otimes \mathcal{L}_0$).
Overview: What do we know about the moduli space \mathcal{M}?

- We know that \mathcal{M} is always compact. If certain simplifying conditions are satisfied (which we assume) then
- it contains 2^{b-1} circles $R\{I,\bar{I}\}$ of reductions, a finite number of isolated twisted reductions (fixed points of the involution $\otimes \mathcal{L}_0$).
- \mathcal{M}^{st} is a smooth b-dimensional manifold and the local structure around a circle of reductions is known (topologically).
Overview: What do we know about the moduli space \mathcal{M}?

- We know that \mathcal{M} is always compact. If certain simplifying conditions are satisfied (which we assume) then
- it contains 2^{b-1} circles $R_{\{I,\bar{I}\}}$ of reductions, a finite number of isolated twisted reductions (fixed points of the involution $\otimes L_0$).
- \mathcal{M}^{st} is a smooth b-dimensional manifold and the local structure around a circle of reductions is known (topologically).
- The locus of filtrable stable bundles decomposes as

$$\bigcup_{I \subset I_m} \mathcal{M}_{I}^{\text{st}}, \text{ where } \mathcal{M}_{I_m}^{\text{st}} = \{A, A'\}, A' := A \otimes L_0$$
Overview: What do we know about the moduli space \mathcal{M}?

- We know that \mathcal{M} is always compact. If certain simplifying conditions are satisfied (which we assume) then
- it contains 2^{b-1} circles $R\{I, \overline{I}\}$ of reductions, a finite number of isolated twisted reductions (fixed points of the involution $\otimes \mathcal{L}_0$).
- \mathcal{M}^{st} is a smooth b-dimensional manifold and the local structure around a circle of reductions is known (topologically).
- The locus of filtrable stable bundles decomposes as
 $\bigcup_{I \subset I_m} \mathcal{M}^{st}_I$, where $\mathcal{M}^{st}_{I_m} = \{A, A'\}, A' := A \otimes \mathcal{L}_0$

- for $I \neq I_m$ the space \mathcal{M}^{st}_I is a $\mathbb{P}_{\mathbb{C}}^{b-|I|-1}$-fibration over a punctured disk. The closure of \mathcal{M}^{st}_I contains the circle $R\{I, \overline{I}\}$.
Table of Contents

1. Class VII surfaces
2. Moduli spaces of holomorphic bundles on Gauduchon surfaces
3. A moduli space of instantons on class VII surfaces
4. Existence of a cycle on class VII surfaces with small second Betti number
Theorem 3.1

Any minimal class VII surface X with $b_2(X) \in \{1, 2, 3\}$ has a cycle.
Theorem 3.1

Any minimal class VII surface X with $b_2(X) \in \{1, 2, 3\}$ has a cycle.

I hope: the method generalizes for arbitrary b_2. This would complete the classification of class VII surfaces up to deformation equivalence.
Theorem 3.1

Any minimal class VII surface X with $b_2(X) \in \{1, 2, 3\}$ has a cycle.

- I hope: the method generalizes for arbitrary b_2. This would complete the classification of class VII surfaces up to deformation equivalence.
- For $b_2 \in \{1, 2\}$ the result is proven in previous articles. The proof for $b_2 = 3$: partially available on the archive. Trying to go directly to arbitrary b_2.
- I will explain the proof for $b_2 = 1$, a new proof for $b_2 = 2$ and if I have the time, I will also explain briefly the case $b_2 = 3$.

Strategy of the proof (in general): Use the following
Theorem 3.1

Any minimal class VII surface X with $b_2(X) \in \{1, 2, 3\}$ has a cycle.

- I hope: the method generalizes for arbitrary b_2. This would complete the classification of class VII surfaces up to deformation equivalence.
- For $b_2 \in \{1, 2\}$ the result is proven in previous articles. The proof for $b_2 = 3$: partially available on the archive. Trying to go directly to arbitrary b_2.
- I will explain the proof for $b_2 = 1$, a new proof for $b_2 = 2$ and if I have the time, I will also explain briefly the case $b_2 = 3$.
- Strategy of the proof (in general): Use the following...
Proposition 3.2

If the canonical extension A can be written as an extension in a different way, then X has a cycle. In particular, if A belongs to M_{I}^{st} for $I \neq I_m$ or coincides with a twisted reduction, then X has a cycle.
Proposition 3.2

If the canonical extension \mathcal{A} can be written as an extension in a different way, then X has a cycle. In particular, if \mathcal{A} belongs to \mathcal{M}_I^{st} for $I \neq I_m$ or coincides with a twisted reduction, then X has a cycle.

Proof.

\[
\begin{array}{cccccc}
0 & \rightarrow & \mathcal{K}_X & \overset{i}{\rightarrow} & \mathcal{A} & \overset{p}{\rightarrow} & \mathcal{O}_X & \rightarrow & 0 \\
\downarrow j & & \downarrow p \circ j & & & & \mathcal{L} \\
\end{array}
\]

$p \circ j$ is non-zero (because \mathcal{L} is a different kernel) and non-isomorphism, because the canonical extension is non-split. Therefore $\text{im}(p \circ j) = \mathcal{O}_X(-D)$ where $D > 0$ is the vanishing divisor of $p \circ j$. Restrict the diagram to D taking into account that j is a bundle embedding. We get $\omega_D := \mathcal{K}_X(D)_D \simeq \mathcal{O}_D$, so D contains a cycle.
In order to complete the proof it "suffices" to prove

The remarkable incidence: The bundle \mathcal{A} belongs to

$$\{\text{twisted reductions}\} \cup \left(\bigcup_{l \neq l_m} \mathcal{M}_l^{st} \right)$$

How will be this "remarkable incidence" proven?
In order to complete the proof it "suffices" to prove

The remarkable incidence: The bundle \mathcal{A} belongs to

$$\{\text{twisted reductions}\} \cup \left(\bigcup_{I \neq I_m} \mathcal{M}_I^{st} \right).$$

How will this RI be proved?
In order to complete the proof it "suffices" to prove

The remarkable incidence: The bundle \mathcal{A} belongs to

$$\{\text{twisted reductions}\} \cup \left(\bigcup_{I \neq I_m} \mathcal{M}_{st}^I \right).$$

How will this RI be proved?
For $b_2 = 1$: $I \in \{\emptyset, I_m\}$.

red locus: the circle of reductions
grey locus (punctured disk): $\mathcal{M}_{st}^\emptyset$
the blue point: a twisted reduction!
In order to complete the proof it "suffices" to prove

The remarkable incidence: The bundle \mathcal{A} belongs to

$$\{\text{twisted reductions}\} \cup \left(\bigcup_{I \neq I_m} \mathcal{M}_I^{\text{st}} \right).$$

How will this RI be proved?

For $b_2 = 1$: $I \in \{\emptyset, I_m\}$.

red locus: the circle of reductions

grey locus (punctured disk): $\mathcal{M}_\emptyset^{\text{st}}$

the blue point: a twisted reduction!

Therefore we have the **dichotomy:** either (1) the remarkable incidence holds (*and the conjecture is proved*), or (2) the connected component of \mathcal{A} in \mathcal{M} is a closed Riemann surface $Y \subset \mathcal{M}^{\text{st}}$ which has at most two filtrable points.
In order to complete the proof it "suffices" to prove

The remarkable incidence: The bundle \mathcal{A} belongs to

$$\{\text{twisted reductions}\} \cup \left(\bigcup_{I \neq I_m} \mathcal{M}^\text{st}_I \right).$$

How will this RI be proved?

For $b_2 = 1$:

- Therefore we have the **dichotomy:** either (1) the remarkable incidence holds (*and the conjecture is proved*), or (2) the connected component of \mathcal{A} in \mathcal{M} is a closed Riemann surface $Y \subset \mathcal{M}^\text{st}$ which has at most two filtrable points.
The latter possibility is ruled out by the following result, which can be interpreted as a “non-existence” theorem:
The latter possibility is ruled out by the following result, which can be interpreted as a “non-existence” theorem:

Proposition 3.3

Suppose that X is a complex surface with $a(X) = 0$, E a differentiable rank 2 bundle over X, Y a closed Riemann surface and $f : Y \rightarrow \mathcal{M}_{simple}(E)$, $y \mapsto [\mathcal{E}_y]$ a holomorphic map. Then the bundles \mathcal{E}_y are either all filtrable or all non-filtrable.
The latter possibility is ruled out by the following result, which can be interpreted as a "non-existence" theorem:

Proposition 3.3

Suppose that X is a complex surface with $a(X) = 0$, E a differentiable rank 2 bundle over X, Y a closed Riemann surface and $f : Y \to \mathcal{M}^{\text{simple}}(E)$, $y \mapsto [\mathcal{E}_y]$ a holomorphic map. Then the bundles \mathcal{E}_y are either all filtrable or all non-filtrable.

Proof.

(Idea) Change the roles, i.e. construct a family of holomorphic bundles on Y parameterized by X. Use the fact that Y is algebraic and $a(X) = 0$.

Abdul Teleman

Compact subspaces of moduli spaces
For $b_2 \geq 2$, $\dim(\mathcal{M}) = b_2$ and \mathcal{M} contains 2^{b_2-1} circles of reductions.

Remark 3.4

For $b_2 \leq 3$ all circles of reductions belong to the same component \mathcal{M}_0 of \mathcal{M}. This component comes with a natural stratification.
For $b_2 \geq 2$, $\dim(M) = b_2$ and M contains 2^{b_2-1} circles of reductions.

Remark 3.4

For $b_2 \leq 3$ all circles of reductions belong to the same component M_0 of M. This component comes with a natural stratification.

We give the proof in the case $b_2 = 2$, in particular we show how the *canonical stratification* of M_0 is obtained. The method generalizes to $b_2 = 3$ and (it seems) to arbitrary b_2.
Proof.

For $b_2 = 2$ we have 2 circles of reductions $R_{\{\emptyset, I_m\}}, R_{\{1, 2\}}$. We prove that there does not exist any connected component Y of \mathcal{M} containing exactly one circle of reductions R.
Proof.

For $b_2 = 2$ we have 2 circles of reductions $R_{\{\emptyset, l_m\}}, R_{\{1\},\{2\}}$. We prove that there does not exist any connected component Y of \mathcal{M} containing exactly one circle of reductions R.

Let N be a standard compact neighborhood of R. The boundary ∂N is also the boundary of $Y \setminus \partial N \subset B^* a(E)$ (the moduli space of irreducible connections with fixed determinant a), so ∂N would be homologically trivial in $B^* a(E)$. On the other hand the restriction to ∂N of a Donaldson class $\eta \in H^3(B^* a(E), \mathbb{Q})$ is nontrivial. Contradiction.
Proof.

- For $b_2 = 2$ we have 2 circles of reductions $R_{\emptyset, l_m}, R\{\{1\}, \{2\}\}$. We prove that there does not exist any connected component Y of \mathcal{M} containing exactly one circle of reductions R.

- Let \mathcal{N} be standard compact neighborhood of R. The boundary $\partial \mathcal{N}$ is also the boundary of $Y \setminus \mathcal{N} \subset \mathcal{B}_a^*(E)$ (the moduli space of irreducible connections with fixed determinant a), so $\partial \mathcal{N}$ would be homologically trivial in $\mathcal{B}_a^*(E)$.
Proof.

For $b_2 = 2$ we have 2 circles of reductions $R\{\emptyset,l_m\}, R\{\{1\},\{2\}\}$. We prove that there does not exist any connected component Y of \mathcal{M} containing exactly one circle of reductions R.

Let N be standard compact neighborhood of R. The boundary ∂N is also the boundary of $Y \setminus \hat{N} \subset B_a^*(E)$ (the moduli space of irreducible connections with fixed determinant a), so ∂N would be homologically trivial in $B_a^*(E)$.

On the other hand the restriction to ∂N of a Donaldson class $\eta \in H^3(B_a^*(E),\mathbb{Q})$ is nontrivial. Contradiction.
\(\mathcal{M}_0 \) contains both circles of reductions, so also the strata \(\mathcal{M}_0^{st} \), \(\mathcal{M}^{st}_{\{1\}} \), \(\mathcal{M}^{st}_{\{2\}} \).
\mathcal{M}_0 contains both circles of reductions, so also the strata \mathcal{M}^{st}_0, $\mathcal{M}^{st}_{\{1\}}$, $\mathcal{M}^{st}_{\{2\}}$. We can build the connected component \mathcal{M}_0 from the known pieces as in a puzzle game.
\(\mathcal{M}_0 \) contains both circles of reductions, so also the strata \(\mathcal{M}_{0}^{st} \), \(\mathcal{M}_{\{1\}}^{st} \), \(\mathcal{M}_{\{2\}}^{st} \).
The obvious solution of the puzzle game is the space obtained from $D \times \mathbb{P}^1_{\mathbb{C}}$ by collapsing to points the projective lines above the boundary of D. This space is the sphere S^4.
The obvious solution of the puzzle game is the space obtained from \(D \times \mathbb{P}^1_C \) by collapsing to points the projective lines above the boundary of \(D \). This space is the sphere \(S^4 \).
The obvious solution of the puzzle game is the space obtained from $D \times \mathbb{P}^1_C$ by collapsing to points the projective lines above the boundary of D. This space is the sphere S^4.

Unfortunately there is no way to prove directly that the obvious solution is the correct solution, because we don’t know if we have all the pieces. Classification of surfaces: a minimal ruled surface is a locally trivial \mathbb{P}^1-bundle, but our component \mathcal{M}_0 might be non-minimal.
The obvious solution of the puzzle game is the space obtained from $D \times \mathbb{P}^1_C$ by collapsing to points the projective lines above the boundary of D. This space is the sphere S^4.

Unfortunately there is no way to prove directly that the obvious solution is the correct solution, because we don’t know if we have all the pieces. Classification of surfaces: a minimal ruled surface is a locally trivial \mathbb{P}^1-bundle, but our component \mathcal{M}_0 might be non-minimal.
The correct solution: M_0 is obtained from $D \times \mathbb{P}^1_C$ by applying an iterated blow up above the origin of D and afterwards collapsing to points the projective lines above the boundary of D.

The fiber over $0 \in D$ is a tree of rational curves: the known curve $M_{st}\{1\} \cup M_{st}\{2\} \cup \mathcal{R}\{\{1\},\{2\}\} \cup \{two\ twisted\ reductions\}$ and unknown ("green") curves, whose generic points must be non-filtrable.
The correct solution: \mathcal{M}_0 is obtained from $D \times \mathbb{P}^1_C$ by applying an iterated blow up above the origin of D and afterwards collapsing to points the projective lines above the boundary of D.

The fiber over $0 \in D$ is a tree of rational curves: the known curve $\mathcal{M}_{\{1\}}^{st} \cup \mathcal{M}_{\{2\}}^{st} \cup R_{\{1\},\{2\}} \cup \{\text{two twisted reductions}\}$ and unknown ("green") curves, whose generic points must be non-filtrable.
The moduli space \mathcal{M} consists of \mathcal{M}_0 and possibly other connected components:
The moduli space \mathcal{M} consists of \mathcal{M}_0 and possibly other connected components:

- All positive dimensional of stable bundles appear in grey, all reductions in red, and all twisted reductions in blue. *Any green component (curve or surface) consists generically of non-filtrable bundles.*
The moduli space \mathcal{M} consists of \mathcal{M}_0 and possibly other connected components:

- All positive dimensional of stable bundles appear in grey, all reductions in red, and all twisted reductions in blue. Any green component (curve or surface) consists generically of non-filtrable bundles.
- The natural question is: What is the position of $a := [\mathcal{A}]$?
We have again a **dichotomy**: Either the remarkable incidence holds (hence X has a cycle), or $a := [A]$ belongs to a compact subspace of \mathcal{M}^{st} (of dimension 1 or 2) consisting generically of non-filtrable bundles.
We have again a **dichotomy**: Either the remarkable incidence holds (hence X has a cycle), or $a := [A]$ belongs to a compact subspace of \mathcal{M}^{st} (of dimension 1 or 2) consisting generically of non-filtrable bundles.

The latter possibility is ruled out by the main result of a recent article ("Compact subspaces of moduli ..." arXiv:1309.0350):

Theorem 3.5

There does not exist any positive dimensional compact subspace $Y \subset \mathcal{M}^{\text{st}}$ containing the point a and an open neighborhood $a \in Y_a \subset Y$ such that $Y_a \setminus \{a\}$ consists only of non-filtrable bundles.
We have again a **dichotomy**: Either the remarkable incidence holds (hence X has a cycle), or $a := [A]$ belongs to a compact subspace of \mathcal{M}^{st} (of dimension 1 or 2) consisting generically of non-filtrable bundles.

The latter possibility is ruled out by the main result of a recent article (**"Compact subspaces of moduli..."** arXiv:1309.0350):

Theorem 3.5

There does not exist any positive dimensional compact subspace $Y \subset \mathcal{M}^{st}$ containing the point a and an open neighborhood $a \in Y_a \subset Y$ such that $Y_a \setminus \{a\}$ consists only of non-filtrable bundles.

- In other words, within any positive dimensional compact subspace $a \in Y \subset \mathcal{M}^{st}$, the point a can be approached by filtrable bundles, *it cannot be surrounded only by non-filtrables.*
general strategy

The strategy of the proof (for any b_2) is:

- We showed (easy!) that the RI implies the existence of a cycle.
The strategy of the proof (for any b_2) is:

- We showed (easy!) that the RI implies the existence of a cycle.
- The connected component \mathcal{M}_0 of \mathcal{M} which contains the circles of reductions comes with a natural stratification. Studying this stratification one comes to the dichotomy: Either (1) the remarkable incidence holds, or (2) $a := [\mathcal{A}]$ belongs to a compact complex subspace $Y \subset \mathcal{M}^{\text{st}}$ in which it is surrounded only by non-filtrable points.
The strategy of the proof (for any b_2) is:

- We showed (easy!) that the RI implies the existence of a cycle.
- The connected component M_0 of M which contains the circles of reductions comes with a natural stratification. Studying this stratification one comes to the dichotomy: Either (1) the remarkable incidence holds, or (2) $a := [\mathcal{A}]$ belongs to a compact complex subspace $Y \subset M^{st}$ in which it is surrounded only by non-filtrable points.
- Apply our non-existence theorem, which rules out the second possibility.
The difficulty for $b_2 \geq 3$:

Main difficulty: rule out the situation when \mathcal{M}_0 contains an unknown stratum Y (consisting generically of non-filtrable bundles) which contains a circle of reductions. For such a stratum the non-existence theorem does not apply.
The difficulty for $b_2 \geq 3$:

Main difficulty: rule out the situation when \mathcal{M}_0 contains an unknown stratum \mathcal{Y} (consisting generically of non-filtrable bundles) which contains a circle of reductions. For such a stratum the non-existence theorem does not apply.

Theorem 3.6

Suppose $b_2 = 3$. Any bidimensional stratum \mathcal{Z} of the canonical stratification of \mathcal{M}_0 whose closure contains the circle $R_{\{\{i\},\{j,k\}\}}^{\{a\},\{b,c\}}$ coincides with a known stratum $\mathcal{M}_{\text{st}}^{\{a\},\{b,c\}}$.

Andrei Teleman

Compact subspaces of moduli spaces
The difficulty for $b_2 \geq 3$:

Main difficulty: rule out the situation when \mathcal{M}_0 contains an unknown stratum Y (consisting generically of non-filtrable bundles) which contains a circle of reductions. For such a stratum the non-existence theorem does not apply.

Theorem 3.6

Suppose $b_2 = 3$. Any bidimensional stratum Z of the canonical stratification of \mathcal{M}_0 whose closure contains the circle $R_{\{\{i\},\{j,k\}\}}$ coincides with a known stratum $\mathcal{M}^{st}_{\{a\},\{b,c\}}$.

The proof uses “reductio ad absurdum" and a cobordism argument.
bibliography

A. Teleman: *Donaldson theory on non-Kählerian surfaces and class VII surfaces with \(b_2 = 1\)*, Invent. math. 162, 493-521 (2005)
