Moduli spaces of holomorphic bundles on Gauduchon surfaces A moduli space of instantons on class VII surfaces Existence of a cycle on class VII surfaces with small second Betti nu

Compact subspaces of moduli spaces of bundles over class VII surfaces Towards the classification of class VII surfaces

Andrei Teleman

Institut de Mathématiques, Aix-Marseille Université

VBAC Berlin, September 4, 2014

A (1) < A (1) < A (1) </p>

Moduli spaces of holomorphic bundles on Gauduchon surfaces A moduli space of instantons on class VII surfaces Existence of a cycle on class VII surfaces with small second Betti nu

Table of Contents

1 Class VII surfaces

- 2 Moduli spaces of holomorphic bundles on Gauduchon surfaces
- 3 A moduli space of instantons on class VII surfaces
- Existence of a cycle on class VII surfaces with small second Betti number

Moduli spaces of holomorphic bundles on Gauduchon surfaces A moduli space of instantons on class VII surfaces Existence of a cycle on class VII surfaces with small second Betti nu

Table of Contents

1 Class VII surfaces

- 2 Moduli spaces of holomorphic bundles on Gauduchon surfaces
- 3 A moduli space of instantons on class VII surfaces
- Existence of a cycle on class VII surfaces with small second Betti number

Moduli spaces of holomorphic bundles on Gauduchon surfaces A moduli space of instantons on class VII surfaces Existence of a cycle on class VII surfaces with small second Betti nu

0

Definition 0.1

$$VII := \{X \text{ complex surface } | \ b_1(X) = 1, \ \operatorname{kod}(X) = -\infty\}$$

 Class VII surfaces with b₂ = 0 are classified. We are interested in minimal class VII surfaces with b₂ > 0. Let X ∈ VII^{b₂>0}_{min}

Moduli spaces of holomorphic bundles on Gauduchon surfaces A moduli space of instantons on class VII surfaces Existence of a cycle on class VII surfaces with small second Betti nu

0

Definition 0.1

$$VII := \{X \text{ complex surface } | \ b_1(X) = 1, \ \operatorname{kod}(X) = -\infty\}$$

- Class VII surfaces with b₂ = 0 are classified. We are interested in minimal class VII surfaces with b₂ > 0. Let X ∈ VII^{b₂>0}_{min}
- X has b₂(X) rational curves ⇒ X is a Kato surface (it belongs to the list of known surfaces) [Dloussky-Oeljeklaus-Toma].

< D > < A > < B > < B >

Moduli spaces of holomorphic bundles on Gauduchon surfaces A moduli space of instantons on class VII surfaces Existence of a cycle on class VII surfaces with small second Betti nu

0

Definition 0.1

$$VII := \{X \text{ complex surface } | \ b_1(X) = 1, \ \operatorname{kod}(X) = -\infty\}$$

- Class VII surfaces with b₂ = 0 are classified. We are interested in minimal class VII surfaces with b₂ > 0. Let X ∈ VII^{b₂>0}_{min}
- X has b₂(X) rational curves ⇒ X is a Kato surface (it belongs to the list of known surfaces) [Dloussky-Oeljeklaus-Toma].
- X contains a cycle of curves ⇒ X is the degeneration of a family of blown up primary Hopf surfaces [Nakamura].

• □ ▶ • □ ▶ • □ ▶

Moduli spaces of holomorphic bundles on Gauduchon surfaces A moduli space of instantons on class VII surfaces Existence of a cycle on class VII surfaces with small second Betti nu

0

Definition 0.1

$$VII := \{X \text{ complex surface } | \ b_1(X) = 1, \ \operatorname{kod}(X) = -\infty\}$$

- Class VII surfaces with b₂ = 0 are classified. We are interested in minimal class VII surfaces with b₂ > 0. Let X ∈ VII^{b₂>0}_{min}
- X has b₂(X) rational curves ⇒ X is a Kato surface (it belongs to the list of known surfaces) [Dloussky-Oeljeklaus-Toma].
- X contains a cycle of curves ⇒ X is the degeneration of a family of blown up primary Hopf surfaces [Nakamura].
- Let X ⊃ D > 0 be an effective divisor with ω_D ≃ O_D. Then D contains a cycle of curves. Recall: ω_D := K_D(D).

イロト イポト イヨト イヨト

Moduli spaces of holomorphic bundles on Gauduchon surfaces A moduli space of instantons on class VII surfaces Existence of a cycle on class VII surfaces with small second Betti nu

0

Definition 0.1

$$VII := \{X \text{ complex surface} \mid b_1(X) = 1, \text{ kod}(X) = -\infty\}$$

- Class VII surfaces with b₂ = 0 are classified. We are interested in minimal class VII surfaces with b₂ > 0. Let X ∈ VII^{b₂>0}_{min}
- X has b₂(X) rational curves ⇒ X is a Kato surface (it belongs to the list of known surfaces) [Dloussky-Oeljeklaus-Toma].
- X contains a cycle of curves ⇒ X is the degeneration of a family of blown up primary Hopf surfaces [Nakamura].
- Let X ⊃ D > 0 be an effective divisor with ω_D ≃ O_D. Then D contains a cycle of curves. Recall: ω_D := K_D(D).
- **Goal**: Prove that any $X \in VII_{\min}^{b_2 > 0}$ contains such a divisor. This would complete the classification up to deform. equivalence.

Table of Contents

1 Class VII surfaces

2 Moduli spaces of holomorphic bundles on Gauduchon surfaces

3 A moduli space of instantons on class VII surfaces

 Existence of a cycle on class VII surfaces with small second Betti number

1

 Let (X, g) be a complex surface endowed with a Gauduchon metric. The Gauduchon condition for surfaces : ∂∂ω_g = 0.

$$\deg_g(\mathcal{L}) := \int_X c_1(\mathcal{L}, h) \wedge \omega_g, \ \deg_g(\mathcal{F}) := \deg_g(\mathsf{det}(\mathcal{F})).$$

 $\deg_g : \operatorname{Pic}(X) \to \mathbb{R}$ is a morphism of Abelian Lie Groups.

・ロト ・回 ト ・ ヨ ト ・

1

 Let (X, g) be a complex surface endowed with a Gauduchon metric. The Gauduchon condition for surfaces : ∂∂ω_g = 0.

$$\deg_g(\mathcal{L}) := \int_X c_1(\mathcal{L}, h) \wedge \omega_g, \ \deg_g(\mathcal{F}) := \deg_g(\mathsf{det}(\mathcal{F})).$$

 $\deg_g : \operatorname{Pic}(X) \to \mathbb{R}$ is a morphism of Abelian Lie Groups.

- A holomorphic rank 2 bundle \mathcal{E} on X is called
 - stable, if for every line bundle \mathcal{L} and non-trivial morphism $\mathcal{L} \to \mathcal{E}$ one has $\deg(\mathcal{L}) < \frac{1}{2} \deg_g(\det(\mathcal{E}))$.
 - polystable, if is either stable or isomorphic to a direct sum $\mathcal{L} \oplus \mathcal{M}$ of line bundles with $\deg_g(\mathcal{L}) = \deg_g(\mathcal{M})$.

- 4 同 6 4 日 6 4 日 6

1

 Let (X, g) be a complex surface endowed with a Gauduchon metric. The Gauduchon condition for surfaces : ∂∂ω_g = 0.

$$\deg_g(\mathcal{L}) := \int_X c_1(\mathcal{L}, h) \wedge \omega_g, \ \deg_g(\mathcal{F}) := \deg_g(\mathsf{det}(\mathcal{F})).$$

 $\deg_g : \operatorname{Pic}(X) \to \mathbb{R}$ is a morphism of Abelian Lie Groups.

- A holomorphic rank 2 bundle \mathcal{E} on X is called
 - stable, if for every line bundle \mathcal{L} and non-trivial morphism $\mathcal{L} \to \mathcal{E}$ one has $\deg(\mathcal{L}) < \frac{1}{2} \deg_g(\det(\mathcal{E}))$.
 - polystable, if is either stable or isomorphic to a direct sum $\mathcal{L} \oplus \mathcal{M}$ of line bundles with $\deg_g(\mathcal{L}) = \deg_g(\mathcal{M})$.
- Let *E* be a C^{∞} 2-bundle on *X*, D hol. struct. on $D := \det(E)$,

$$\mathcal{M}^{\mathrm{st}}_{\mathcal{D}}(E) \ , \ \mathcal{M}^{\mathrm{pst}}_{\mathcal{D}}(E)$$

the moduli spaces of stable, polystable hol. structures \mathcal{E} on E inducing \mathcal{D} on det(E), modulo $\operatorname{Aut}_D(E) = \mathcal{G}^{\mathbb{C}} := \Gamma(X, \operatorname{SL}(E))$.

2

Remarks:

• If $b_1(X)$ is odd then $\operatorname{Pic}^0(X)$ is non-compact and \deg_g is not a topological invariant.

Example: For a class VII surface one has

$$\operatorname{Pic}^{0}(X) \simeq \mathbb{C}^{*} \ , \ \deg_{g}(\mathcal{L}_{\zeta}) = C_{g} \log |\zeta|.$$

< D > < A > < B > < B >

2

Remarks:

 If b₁(X) is odd then Pic⁰(X) is non-compact and deg_g is not a topological invariant.

Example: For a class VII surface one has

$$\operatorname{Pic}^{0}(X) \simeq \mathbb{C}^{*}, \ \operatorname{deg}_{g}(\mathcal{L}_{\zeta}) = C_{g} \log |\zeta|.$$

\$\mathcal{M}_D^{st}(E)\$ has a natural complex space structure obtained using classical deformation theory or complex gauge theory.

< D > < A > < B > < B >

2

Remarks:

• If $b_1(X)$ is odd then $\operatorname{Pic}^0(X)$ is non-compact and \deg_g is not a topological invariant.

Example: For a class VII surface one has

$$\operatorname{Pic}^{0}(X) \simeq \mathbb{C}^{*} \ , \ \deg_{g}(\mathcal{L}_{\zeta}) = C_{g} \log |\zeta|.$$

- $\mathcal{M}_{\mathcal{D}}^{\mathrm{st}}(E)$ has a natural complex space structure obtained using classical deformation theory or complex gauge theory.
- The Kobayashi-Hitchin correspondence: Let *a* be the Chern connection of the pair $(\mathcal{D}, \det(h))$. We have isomorphisms

$$\mathcal{M}^{\mathrm{pst}}_{\mathcal{D}}(E) \xrightarrow{\simeq \mathcal{K}H} \mathcal{M}^{\mathrm{ASD}}_{a}(E), \ \mathcal{M}^{\mathrm{st}}_{\mathcal{D}}(E) \xrightarrow{\simeq \mathcal{K}H^{*}} \mathcal{M}^{\mathrm{ASD}}_{a}(E)^{*}$$

The points of the reduction space $\mathcal{R} = \mathcal{M}_{\mathcal{D}}^{\mathrm{pst}}(E) \setminus \mathcal{M}_{\mathcal{D}}^{\mathrm{st}}(E)$ have two interpretations: split polystable 2-bundles and reducible instantons.

3

• From now on we assume

• about X:
$$b_1(X) = 1$$
 and $p_g(X) = 0$ ($b_+(X) = 0$).

• about
$$E: c_1(E) \notin 2H^2(X, \mathbb{Z}).$$

Under these assumptions $\ensuremath{\mathcal{R}}$ is a finite disjoint union of circles.

• In general $\mathcal{M}_{\mathcal{D}}^{\mathrm{pst}}(E)$ is not a complex space around \mathcal{R} . The topological structure of the moduli space $\mathcal{M}_{\mathcal{D}}^{\mathrm{pst}}(E)$ around a circle R of regular reductions is simple: A cone bundle over R with fibre: cone (in the topological sense) over \mathbb{P}_{C}^{d-1} . Here

$$d = 4c_2(E) - c_1^2(E)$$

is the expected complex dimension of the moduli space.

イロト イポト イラト イラト

3

• From now on we assume

• about X:
$$b_1(X) = 1$$
 and $p_g(X) = 0$ ($b_+(X) = 0$).

• about
$$E: c_1(E) \notin 2H^2(X, \mathbb{Z}).$$

Under these assumptions $\ensuremath{\mathcal{R}}$ is a finite disjoint union of circles.

• In general $\mathcal{M}_{\mathcal{D}}^{\mathrm{pst}}(E)$ is not a complex space around \mathcal{R} . The topological structure of the moduli space $\mathcal{M}_{\mathcal{D}}^{\mathrm{pst}}(E)$ around a circle R of regular reductions is simple: A cone bundle over R with fibre: cone (in the topological sense) over \mathbb{P}_{C}^{d-1} . Here

$$d = 4c_2(E) - c_1^2(E)$$

is the expected complex dimension of the moduli space.

• **Example:** For d = 1: $\mathcal{M}_{\mathcal{D}}^{pst}(E)$ has the structure of a Riemann surface with boundary R around a circle R of reductions.

(*) *) *) *)

4

On non-algebraic surfaces: the appearance of *non-filtrable bundles* complicates the description of a moduli space M^{pst}_D(E).
 A rank 2 holomorphic bundle E on X is called *filtrable* if there exists a sheaf mono-morphism

$$0
ightarrow \mathcal{L}
ightarrow \mathcal{E}$$

where \mathcal{L} is a line bundle.

< A > < 3

4

On non-algebraic surfaces: the appearance of *non-filtrable bundles* complicates the description of a moduli space M^{pst}_D(E).
 A rank 2 holomorphic bundle E on X is called *filtrable* if there exists a sheaf mono-morphism

$$0
ightarrow \mathcal{L}
ightarrow \mathcal{E}$$

where \mathcal{L} is a line bundle.

• A filtrable bundle $\mathcal E$ fits in a short exact sequence

$$0 \to \mathcal{M} \to \mathcal{E} \to \mathcal{N} \otimes \mathcal{I}_Z \to 0 \ ,$$

for line bundles \mathcal{M} , \mathcal{N} and a 0-dimensional l.c.i. $Z \subset X$.

On non-algebraic surfaces: the appearance of *non-filtrable bundles* complicates the description of a moduli space M^{pst}_D(E).
 A rank 2 holomorphic bundle E on X is called *filtrable* if there exists a sheaf mono-morphism

$$0
ightarrow \mathcal{L}
ightarrow \mathcal{E}$$

where \mathcal{L} is a line bundle.

 \bullet A filtrable bundle ${\mathcal E}$ fits in a short exact sequence

$$0 \to \mathcal{M} \to \mathcal{E} \to \mathcal{N} \otimes \mathcal{I}_Z \to 0 \ ,$$

for line bundles \mathcal{M} , \mathcal{N} and a 0-dimensional l.c.i. $Z \subset X$.

• A non-filtrable bundle is stable with respect to *any* Gauduchon metric. There exists no classification method for non-filtrable bundles.

Table of Contents

1 Class VII surfaces

2 Moduli spaces of holomorphic bundles on Gauduchon surfaces

3 A moduli space of instantons on class VII surfaces

 Existence of a cycle on class VII surfaces with small second Betti number

• Let now X be a class VII surface and (E, h) a differentiable rank 2-bundle on X with

 $c_2(E) = 0, \ \det(E) = \mathcal{K}_X \ (\text{the underlying } \mathcal{C}^\infty \ \text{bundle of } \mathcal{K}_X) \ ,$

and let *a* be the Chern connection of $(\mathcal{K}_X, \det(h))$.

くロ と く 同 と く ヨ と 一

• Let now X be a class VII surface and (E, h) a differentiable rank 2-bundle on X with

 $c_2(E)=0, \ \det(E)=\mathcal{K}_X \ (\text{the underlying } \mathcal{C}^\infty \ \text{bundle of } \mathcal{K}_X) \ ,$

and let *a* be the Chern connection of $(\mathcal{K}_X, \det(h))$.

• Our fundamental object: the moduli space

$$\mathcal{M} := \mathcal{M}_{\mathcal{K}}^{\mathrm{pst}}(E) \stackrel{\overset{\scriptscriptstyle{\mathcal{K}H}}{\longleftarrow}}{\longleftarrow} \mathcal{M}_{a}^{\mathrm{ASD}}(E) \;.$$

and its open subspace $\mathcal{M}^{st} := \mathcal{M}^{st}_{\mathcal{K}}(E)$ of stable bundles, which is a complex space of dimension $b := b_2(X)$.

• Let now X be a class VII surface and (E, h) a differentiable rank 2-bundle on X with

 $c_2(E)=0, \ {\rm det}(E)=\mathcal{K}_X \ ({
m the underlying} \ \mathcal{C}^\infty \ {
m bundle \ of} \ \mathcal{K}_X) \ ,$

and let *a* be the Chern connection of $(\mathcal{K}_X, \det(h))$.

• Our fundamental object: the moduli space

$$\mathcal{M} := \mathcal{M}_{\mathcal{K}}^{\mathrm{pst}}(E) \stackrel{\overset{\scriptscriptstyle{\mathcal{K}H}}{\longleftarrow}}{\longleftarrow} \mathcal{M}_{a}^{\mathrm{ASD}}(E) \;.$$

and its open subspace $\mathcal{M}^{st} := \mathcal{M}^{st}_{\mathcal{K}}(E)$ of stable bundles, which is a complex space of dimension $b := b_2(X)$.

• Using bundles to prove existence of curves: prove that the same filtrable bundle can be written as en extension in two different ways. This yields a non-trivial (and non-isomorphic) morphism of line bundles, whose vanishing locus will be a curve.

6

Compactness: *M* is compact (– and Buchdahl).
 This is proved using a the KH correspondence and a combination of gauge theoretical and complex geometric arguments.

6

- Compactness: \mathcal{M} is compact (and Buchdahl). This is proved using a the KH correspondence and a combination of gauge theoretical and complex geometric arguments.
- For $b := b_2(X) \le 3$ the statement follows from Donaldson-Uhlenbeck compactness theorem for instantons: in this range the lower strata of the Uhlenbeck compactification are empty for topological reasons.

- Compactness: *M* is compact (and Buchdahl).
 This is proved using a the KH correspondence and a combination of gauge theoretical and complex geometric arguments.
- For $b := b_2(X) \le 3$ the statement follows from Donaldson-Uhlenbeck compactness theorem for instantons: in this range the lower strata of the Uhlenbeck compactification are empty for topological reasons.
- For the following properties we suppose for simplicity that X is minimal, deg_g(K_X) < 0, and H₁(X, ℤ) ≃ ℤ.

- Compactness: *M* is compact (and Buchdahl).
 This is proved using a the KH correspondence and a combination of gauge theoretical and complex geometric arguments.
- For $b := b_2(X) \le 3$ the statement follows from Donaldson-Uhlenbeck compactness theorem for instantons: in this range the lower strata of the Uhlenbeck compactification are empty for topological reasons.
- For the following properties we suppose for simplicity that X is minimal, deg_g(K_X) < 0, and H₁(X, ℤ) ≃ ℤ.
- Regularity: \mathcal{M}^{st} is a smooth *b*-dimensional complex manifold.

- Compactness: *M* is compact (and Buchdahl).
 This is proved using a the KH correspondence and a combination of gauge theoretical and complex geometric arguments.
- For $b := b_2(X) \le 3$ the statement follows from Donaldson-Uhlenbeck compactness theorem for instantons: in this range the lower strata of the Uhlenbeck compactification are empty for topological reasons.
- For the following properties we suppose for simplicity that X is minimal, deg_g(K_X) < 0, and H₁(X, ℤ) ≃ ℤ.
- Regularity: \mathcal{M}^{st} is a smooth *b*-dimensional complex manifold.
- Reductions: *R* is a disjoint union of 2^{b-1} circles *R*_{*I*,*Ī*} indexed by unordered partitions {*I*, *Ī*} of {1,..., *b*}.

くロ と く 同 と く ヨ と 一

- Compactness: *M* is compact (and Buchdahl).
 This is proved using a the KH correspondence and a combination of gauge theoretical and complex geometric arguments.
- For $b := b_2(X) \le 3$ the statement follows from Donaldson-Uhlenbeck compactness theorem for instantons: in this range the lower strata of the Uhlenbeck compactification are empty for topological reasons.
- For the following properties we suppose for simplicity that X is minimal, deg_g(K_X) < 0, and H₁(X, ℤ) ≃ ℤ.

• Regularity: \mathcal{M}^{st} is a smooth *b*-dimensional complex manifold.

- Reductions: *R* is a disjoint union of 2^{b-1} circles *R*_{*I*,*Ī*} indexed by unordered partitions {*I*, *Ī*} of {1,..., *b*}.
- Every $R_{\{I,\overline{I}\}}$ has a compact neighborhood homeomorphic to $R_{\{I,\overline{I}\}} \times [\text{cone over } \mathbb{P}^{b-1}_{\mathbb{C}}].$

• Symmetry and twisted reductions: Natural involution on \mathcal{M} :

$$\otimes \mathcal{L}_0: \mathcal{M} \to \mathcal{M}, \ \mathcal{L}_0^{\otimes 2} \simeq \mathcal{O}_X, \ \text{where} \ [\mathcal{O}_X] \neq [\mathcal{L}_0] \in \operatorname{Pic}^0(X).$$

This involution has finitely many fixed points, called *twisted* reductions. There are 2^{b-1} twisted reductions if $\pi_1(X, x_0) \simeq \mathbb{Z}$.

イロト イポト イヨト イヨト

• Symmetry and twisted reductions: Natural involution on \mathcal{M} :

$$\otimes \mathcal{L}_0: \mathcal{M} \to \mathcal{M}, \ \mathcal{L}_0^{\otimes 2} \simeq \mathcal{O}_X, \ \text{where} \ [\mathcal{O}_X] \neq [\mathcal{L}_0] \in \operatorname{Pic}^0(X).$$

This involution has finitely many fixed points, called *twisted* reductions. There are 2^{b-1} twisted reductions if $\pi_1(X, x_0) \simeq \mathbb{Z}$.

• A twisted reduction ${\mathcal E}$ can be written as $\pi_*({\mathcal L})$, where

$$\pi: \tilde{X} \to X$$

is a double cover and \mathcal{L} is a line bundle on \tilde{X} . Therefore $\pi^*(\mathcal{E})$ is split polystable (and corresponds to a reducible instanton).

- 4 周 ト 4 戸 ト 4 戸 ト

• Symmetry and twisted reductions: Natural involution on \mathcal{M} :

$$\otimes \mathcal{L}_0 : \mathcal{M} o \mathcal{M}, \ \mathcal{L}_0^{\otimes 2} \simeq \mathcal{O}_X, \ ext{where} \ [\mathcal{O}_X]
eq [\mathcal{L}_0] \in \operatorname{Pic}^0(X).$$

This involution has finitely many fixed points, called *twisted* reductions. There are 2^{b-1} twisted reductions if $\pi_1(X, x_0) \simeq \mathbb{Z}$.

• A twisted reduction ${\mathcal E}$ can be written as $\pi_*({\mathcal L})$, where

$$\pi: \tilde{X} \to X$$

is a double cover and \mathcal{L} is a line bundle on \tilde{X} . Therefore $\pi^*(\mathcal{E})$ is split polystable (and corresponds to a reducible instanton).

The filtrable bundles in our moduli space:
 Put b := b₂(X) and let (e₁,..., e_b) be a Donaldson basis of H²(X, Z), i.e., it a basis (e₁,..., e_b) such that

$$e_i \cdot e_j = -\delta_{ij}, \ c_1(\mathcal{K}_X) = \sum_{i=1}^b e_i \ .$$

8

• Let \mathcal{E} be rank 2 bundle on X with det $(\mathcal{E}) = \mathcal{K}_X$, $c_2(\mathcal{E}) = 0$ \mathcal{L} a line bundle and $0 \rightarrow \mathcal{L} \rightarrow \mathcal{E}$ a sheaf monomorphism with torsion free quotient.

イロト イポト イヨト イヨト

8

- Let \mathcal{E} be rank 2 bundle on X with det $(\mathcal{E}) = \mathcal{K}_X$, $c_2(\mathcal{E}) = 0$ \mathcal{L} a line bundle and $0 \rightarrow \mathcal{L} \rightarrow \mathcal{E}$ a sheaf monomorphism with torsion free quotient.
- \bullet One can prove that \mathcal{E}/\mathcal{L} is then locally free and

$$c_1(\mathcal{L}) = e_I := \sum_{i \in I} e_i ext{ where } I \subset \{1, \dots, b\}.$$

Therefore

Proposition 2.1

Any filtrable bundle in our moduli space is an extension

$$0 \to \mathcal{L} \to \mathcal{E} \to \mathcal{K}_X \otimes \mathcal{L}^{\vee} \to 0 , \qquad (1)$$

くロ と く 同 と く ヨ と 一

where $c_1(\mathcal{L}) = e_I$ for an index set $I \subset \{1, \ldots, b\}$.

8

- Let \mathcal{E} be rank 2 bundle on X with det $(\mathcal{E}) = \mathcal{K}_X$, $c_2(\mathcal{E}) = 0$ \mathcal{L} a line bundle and $0 \rightarrow \mathcal{L} \rightarrow \mathcal{E}$ a sheaf monomorphism with torsion free quotient.
- \bullet One can prove that \mathcal{E}/\mathcal{L} is then locally free and

$$c_1(\mathcal{L}) = e_I := \sum_{i \in I} e_i ext{ where } I \subset \{1, \dots, b\}.$$

Therefore

Proposition 2.1

Any filtrable bundle in our moduli space is an extension

$$0 \to \mathcal{L} \to \mathcal{E} \to \mathcal{K}_X \otimes \mathcal{L}^{\vee} \to 0 , \qquad (1)$$

where $c_1(\mathcal{L}) = e_I$ for an index set $I \subset \{1, \dots, b\}$.

• $\mathcal{M}^{\mathrm{st}} \supset \mathcal{M}_{I}^{\mathrm{st}} :=$ the subspace of stable bundles which are extensions of type (1) with fixed $c_1(\mathcal{L}) = e_I$.
9

• A crucial role is played by $\mathcal{M}_{I_m}^{\mathrm{st}}$ associated with the maximal index set $I_m := \{1, \ldots, b\}$. Except for certain known (!) surfaces, one has

$$\mathcal{M}_{\mathit{I}_m}^{\mathrm{st}} = \{\mathcal{A}, \mathcal{A}'\}$$

where A is the *canonical extension* of X, defined as the essentially unique non-trivial extension of the form

$$0
ightarrow \mathcal{K}_X
ightarrow \mathcal{A}
ightarrow \mathcal{O}_X
ightarrow 0$$

(note $h^1(\mathcal{K}_X) = 1$ by Serre duality), and $\mathcal{A}' := \mathcal{A} \otimes \mathcal{L}_0$.

イロト イポト イヨト イヨト

9

• A crucial role is played by $\mathcal{M}_{I_m}^{\mathrm{st}}$ associated with the maximal index set $I_m := \{1, \ldots, b\}$. Except for certain known (!) surfaces, one has

$$\mathcal{M}_{\mathit{I}_m}^{\mathrm{st}} = \{\mathcal{A}, \mathcal{A}'\}$$

where A is the *canonical extension* of X, defined as the essentially unique non-trivial extension of the form

$$0
ightarrow \mathcal{K}_X
ightarrow \mathcal{A}
ightarrow \mathcal{O}_X
ightarrow 0$$

(note $h^1(\mathcal{K}_X) = 1$ by Serre duality), and $\mathcal{A}' := \mathcal{A} \otimes \mathcal{L}_0$.

• For $I \neq I_m$: If X has no curves in certain homology classes (which we assume for simplicity!) $\mathcal{M}_I^{\mathrm{st}}$ is a $\mathbb{P}^{b-|I|-1}_{\mathbb{C}}$ -fibration over a punctured disk, these fibrations are pairwise disjoint, and the closure $\bar{\mathcal{M}}_I^{\mathrm{st}}$ in \mathcal{M} contains the circle $R_{\{I,\bar{I}\}}$.

伺 ト イヨト イヨト

10

Overview: What do we know about the moduli space $\mathcal{M} \ref{eq:model}$

 \bullet We know that ${\cal M}$ is always compact. If certain simplifying conditions are satisfied (which we assume) then

Overview: What do we know about the moduli space $\mathcal{M}\textbf{?}$

- \bullet We know that ${\cal M}$ is always compact. If certain simplifying conditions are satisfied (which we assume) then
- it contains 2^{b-1} circles R_{I,Ī} of reductions, a finite number of isolated twisted reductions (fixed points of the involution ⊗L₀).

Overview: What do we know about the moduli space $\mathcal{M}\textbf{?}$

- \bullet We know that ${\cal M}$ is always compact. If certain simplifying conditions are satisfied (which we assume) then
- it contains 2^{b-1} circles R_{I,Ī} of reductions, a finite number of isolated twisted reductions (fixed points of the involution ⊗L₀).
- \mathcal{M}^{st} is a smooth *b*-dimensional manifold and the local structure around a circle of reductions is known (topologically).

Overview: What do we know about the moduli space $\mathcal{M}\textbf{?}$

- \bullet We know that ${\cal M}$ is always compact. If certain simplifying conditions are satisfied (which we assume) then
- it contains 2^{b-1} circles R_{I,Ī} of reductions, a finite number of isolated twisted reductions (fixed points of the involution ⊗L₀).
- \mathcal{M}^{st} is a smooth *b*-dimensional manifold and the local structure around a circle of reductions is known (topologically).
- The locus of filtrable stable bundles decomposes as

$$\bigcup_{I \subset I_m} \mathcal{M}_I^{\mathrm{st}} \ , \ \text{where} \ \mathcal{M}_{I_m}^{\mathrm{st}} = \{\mathcal{A}, \mathcal{A}'\} \ , \mathcal{A}' := \mathcal{A} \otimes \mathcal{L}_0$$

Overview: What do we know about the moduli space $\mathcal{M}\textbf{?}$

- \bullet We know that ${\cal M}$ is always compact. If certain simplifying conditions are satisfied (which we assume) then
- it contains 2^{b-1} circles R_{I,Ī} of reductions, a finite number of isolated twisted reductions (fixed points of the involution ⊗L₀).
- \mathcal{M}^{st} is a smooth *b*-dimensional manifold and the local structure around a circle of reductions is known (topologically).
- The locus of filtrable stable bundles decomposes as

$$\bigcup_{I \subset I_m} \mathcal{M}_I^{\mathrm{st}} \ , \ \text{where} \ \mathcal{M}_{I_m}^{\mathrm{st}} = \{\mathcal{A}, \mathcal{A}'\} \ , \mathcal{A}' := \mathcal{A} \otimes \mathcal{L}_0$$

• for $I \neq I_m$ the space $\mathcal{M}_I^{\text{st}}$ is a $\mathbb{P}_{\mathbb{C}}^{b-|I|-1}$ -fibration over a punctured disk. The closure of $\mathcal{M}_I^{\text{st}}$ contains the circle $R_{\{I,\overline{I}\}}$.

不同 医不足 医下下下

Table of Contents

Class VII surfaces

2 Moduli spaces of holomorphic bundles on Gauduchon surfaces

3 A moduli space of instantons on class VII surfaces

Existence of a cycle on class VII surfaces with small second Betti number

イロト イポト イラト イラト

11

Theorem 3.1

Any minimal class VII surface X with $b_2(X) \in \{1, 2, 3\}$ has a cycle.

<ロト < 同ト < ヨト < ヨト

11

Theorem 3.1

Any minimal class VII surface X with $b_2(X) \in \{1, 2, 3\}$ has a cycle.

• I hope: the method generalizes for arbitrary b_2 . This would complete the classification of class VII surfaces up to deformation equivalence.

Theorem 3.1

Any minimal class VII surface X with $b_2(X) \in \{1, 2, 3\}$ has a cycle.

- I hope: the method generalizes for arbitrary b_2 . This would complete the classification of class VII surfaces up to deformation equivalence.
- For $b_2 \in \{1,2\}$ the result is proven in previous articles. The proof for $b_2 = 3$: partially available on the archive. Trying to go directly to arbitrary b_2 .
- I will explain the proof for $b_2 = 1$, a new proof for $b_2 = 2$ and if I have the time, I will also explain briefly the case $b_2 = 3$.

Theorem 3.1

Any minimal class VII surface X with $b_2(X) \in \{1, 2, 3\}$ has a cycle.

- I hope: the method generalizes for arbitrary b_2 . This would complete the classification of class VII surfaces up to deformation equivalence.
- For $b_2 \in \{1,2\}$ the result is proven in previous articles. The proof for $b_2 = 3$: partially available on the archive. Trying to go directly to arbitrary b_2 .
- I will explain the proof for $b_2 = 1$, a new proof for $b_2 = 2$ and if I have the time, I will also explain briefly the case $b_2 = 3$.
- Strategy of the proof (in general): Use the following

イロト 不得 トイヨト イヨト 三日

12

Proposition 3.2

If the canonical extension \mathcal{A} can be written as an extension in a different way, then X has a cycle. In particular, if \mathcal{A} belongs to \mathcal{M}_{I}^{st} for $I \neq I_{m}$ or coincides with a twisted reduction, then X has a cycle.

12

Proposition 3.2

If the canonical extension \mathcal{A} can be written as an extension in a different way, then X has a cycle. In particular, if \mathcal{A} belongs to \mathcal{M}_{I}^{st} for $I \neq I_{m}$ or coincides with a twisted reduction, then X has a cycle.

Proof.

$$0 \longrightarrow \mathcal{K}_{X} \xrightarrow{i} \mathcal{A} \xrightarrow{p} \mathcal{O}_{X} \longrightarrow 0$$
$$j \uparrow \swarrow p \circ j$$
$$\mathcal{L}$$

 $p \circ j$ is non-zero (because \mathcal{L} is a different kernel) and nonisomorphism, because the canonical extension is non-split. Therefore $\operatorname{im}(p \circ j) = \mathcal{O}_X(-D)$ where D > 0 is the vanishing divisor of $p \circ j$. Restrict the diagram to D taking into account that j is a bundle embedding. We get $\omega_D := \mathcal{K}_X(D)_D \simeq \mathcal{O}_D$, so D contains a cycle.

• In order to complete the proof it "suffices" to prove **The remarkable incidence:** The bundle *A* belongs to

$$\{\text{twisted reductions}\} \cup \big(\bigcup_{I \neq I_m} \mathcal{M}_I^{\mathrm{st}}\big)$$

How will be this "remarkable incidence" proven?

< D > < A > < B > < B >

14

• In order to complete the proof it "suffices" to prove **The remarkable incidence:** The bundle *A* belongs to

 $\{\text{twisted reductions}\} \cup \big(\bigcup_{I \neq I_m} \mathcal{M}_I^{\mathrm{st}}\big) \ .$

How will this **RI** be proved?

14

• In order to complete the proof it "suffices" to prove The remarkable incidence: The bundle *A* belongs to

 $\{\text{twisted reductions}\} \cup \big(\bigcup_{I \neq I_m} \mathcal{M}_I^{\mathrm{st}}\big) \ .$

How will this **RI** be proved? For $b_2 = 1$: $I \in \{\emptyset, I_m\}$.

•

A (10) < A (10) </p>

red locus: the circle of reductions grey locus (punctured disk): $\mathcal{M}_{\emptyset}^{\mathrm{st}}$ the blue point: a twisted reduction!

14

• In order to complete the proof it "suffices" to prove The remarkable incidence: The bundle *A* belongs to

$$\{ ext{twisted reductions}\} \cup ig(igcup_{I
eq I_m}\mathcal{M}_I^{ ext{st}}ig) \;.$$

How will this **RI** be proved?

red locus: the circle of reductions grey locus (punctured disk): $\mathcal{M}_{\emptyset}^{st}$ the blue point: a twisted reduction!

For $b_2 = 1$: $I \in \{\emptyset, I_m\}$.

•

Therefore we have the dichotomy: either (1) the remarkable incidence holds (and the conjecture is proved), or (2) the connected component of A in M is a closed Riemann surface Y ⊂ Mst which has at most two filtrable points.

14

In order to complete the proof it "suffices" to prove
 The remarkable incidence: The bundle A belongs to

Therefore we have the dichotomy: either (1) the remarkable incidence holds (and the conjecture is proved), or (2) the connected component of A in M is a closed Riemann surface Y ⊂ Mst which has at most two filtrable points.

15

• The latter possibility is ruled out by the following result, which can be interpreted as a "non-existence" theorem:

15

• The latter possibility is ruled out by the following result, which can be interpreted as a "non-existence" theorem:

Proposition 3.3

Suppose that X is a complex surface with a(X) = 0, E a differentiable rank 2 bundle over X, Y a closed Riemann surface and

$$f: Y \to \mathcal{M}^{\mathrm{simple}}(E) \ , \ y \mapsto [\mathcal{E}_y]$$

a holomorphic map. Then the bundles \mathcal{E}_y are either all filtrable or all non-filtrable.

- A 🗇 🕨 A 🖻 🕨 A 🖻

15

• The latter possibility is ruled out by the following result, which can be interpreted as a "non-existence" theorem:

Proposition 3.3

Suppose that X is a complex surface with a(X) = 0, E a differentiable rank 2 bundle over X, Y a closed Riemann surface and

$$f: Y \to \mathcal{M}^{\mathrm{simple}}(E) \ , \ y \mapsto [\mathcal{E}_y]$$

a holomorphic map. Then the bundles \mathcal{E}_y are either all filtrable or all non-filtrable.

Proof.

(Idea) Change the roles, i.e. construct a family of holomorphic bundles on Y parameterized by X. Use the fact that Y is algebraic and a(X) = 0.

16

• For $b_2 \ge 2$, dim $(\mathcal{M}) = b_2$ and \mathcal{M} contains 2^{b_2-1} circles of reductions.

Remark 3.4

For $b_2 \leq 3$ all circles of reductions belong to the same component \mathcal{M}_0 of \mathcal{M} . This component comes with a natural stratification.

くロ と く 同 と く ヨ と 一

• For $b_2 \ge 2$, dim $(\mathcal{M}) = b_2$ and \mathcal{M} contains 2^{b_2-1} circles of reductions.

Remark 3.4

For $b_2 \leq 3$ all circles of reductions belong to the same component \mathcal{M}_0 of \mathcal{M} . This component comes with a natural stratification.

 We give the proof in the case b₂ = 2, in particular we show how the *canonical stratification* of M₀ is obtained. The method generalizes to b₂ = 3 and (it seems) to arbitrary b₂.

くロ と く 同 と く ヨ と 一

17

Proof.

• For $b_2 = 2$ we have 2 circles of reductions $R_{\{\emptyset,I_m\}}$, $R_{\{1\},\{2\}\}}$. We prove that there does not exist any connected component Y of \mathcal{M} containing exactly one circle of reductions R.

(日)

17

Proof.

• For $b_2 = 2$ we have 2 circles of reductions $R_{\{\emptyset, I_m\}}$, $R_{\{1\}, \{2\}\}}$. We prove that there does not exist any connected component Y of \mathcal{M} containing exactly one circle of reductions R.

17

Proof.

• For $b_2 = 2$ we have 2 circles of reductions $R_{\{\emptyset, I_m\}}$, $R_{\{1\}, \{2\}\}}$. We prove that there does not exist any connected component Y of \mathcal{M} containing exactly one circle of reductions R.

• Let N be standard compact neighborhood of R. The boundary ∂N is also the boundary of $Y \setminus \mathring{N} \subset \mathcal{B}^*_a(E)$ (the moduli space of irreducible connections with fixed determinant a), so ∂N would be homologically trivial in $\mathcal{B}^*_a(E)$.

17

Proof.

• For $b_2 = 2$ we have 2 circles of reductions $R_{\{\emptyset, I_m\}}$, $R_{\{1\}, \{2\}\}}$. We prove that there does not exist any connected component Y of \mathcal{M} containing exactly one circle of reductions R.

- Let N be standard compact neighborhood of R. The boundary ∂N is also the boundary of $Y \setminus \mathring{N} \subset \mathcal{B}^*_a(E)$ (the moduli space of irreducible connections with fixed determinant a), so ∂N would be homologically trivial in $\mathcal{B}^*_a(E)$.
- On the other hand the restriction to ∂N of a Donaldson class $\eta \in H^3(\mathcal{B}^*_a(E), \mathbb{Q})$ is nontrivial. Contradiction.

18

• \mathcal{M}_0 contains both circles of reductions, so also the strata $\mathcal{M}^{\mathrm{st}}_{\emptyset}$, $\mathcal{M}^{\mathrm{st}}_{\{1\}}$, $\mathcal{M}^{\mathrm{st}}_{\{2\}}$.

• \mathcal{M}_0 contains both circles of reductions, so also the strata $\mathcal{M}^{\mathrm{st}}_{\emptyset}$, $\mathcal{M}^{\mathrm{st}}_{\{1\}}$, $\mathcal{M}^{\mathrm{st}}_{\{2\}}$. We can build the connected component \mathcal{M}_0 from the known pieces as in a puzzle game.

< D > < P > < P > < P >

18

 The obvious solution of the puzzle game is the space obtained from D × P¹_ℂ by collapsing to points the projective lines above the boundary of D. This space is the sphere S⁴.

19

• The obvious solution of the puzzle game is the space obtained from $D \times \mathbb{P}^1_{\mathbb{C}}$ by collapsing to points the projective lines above the boundary of D. This space is the sphere S^4 .

- The obvious solution of the puzzle game is the space obtained from $D \times \mathbb{P}^1_{\mathbb{C}}$ by collapsing to points the projective lines above the boundary of D. This space is the sphere S^4 .
- Unfortunately there is no way to prove directly that the obvious solution is the correct solution, *because we don't know if we have all the pieces*. Classification of surfaces: a minimal ruled surface is a locally trivial P¹-bundle, but our component M₀ might be non-minimal.

19

- The obvious solution of the puzzle game is the space obtained from $D \times \mathbb{P}^1_{\mathbb{C}}$ by collapsing to points the projective lines above the boundary of D. This space is the sphere S^4 .
- Unfortunately there is no way to prove directly that the obvious solution is the correct solution, because we don't know if we have all the pieces. Classification of surfaces: a minimal ruled surface is a locally trivial P¹-bundle, but our component M₀ might be non-minimal.

20

• The correct solution: \mathcal{M}_0 is obtained from $D \times \mathbb{P}^1_{\mathbb{C}}$ by applying an iterated blow up above the origin of D and afterwards collapsing to points the projective lines above the boundary of D.

< A > < 3
20

• The correct solution: \mathcal{M}_0 is obtained from $D \times \mathbb{P}^1_{\mathbb{C}}$ by applying an iterated blow up above the origin of D and afterwards collapsing to points the projective lines above the boundary of D.

• The fiber over $0 \in D$ is a tree of rational curves: the known curve $\mathcal{M}_{\{1\}}^{\mathrm{st}} \cup \mathcal{M}_{\{2\}}^{\mathrm{st}} \cup R_{\{\{1\},\{2\}\}} \cup \{\text{two twisted reductions}\}$ and unknown ("green") curves, whose generic points must be non-filtrable.

21

• The moduli space \mathcal{M} consists of \mathcal{M}_0 and possibly other connected components

21

• The moduli space \mathcal{M} consists of \mathcal{M}_0 and possibly other connected components

• All *positive dimensional* of stable bundles appear in grey, all reductions in red, and all twisted reductions in blue. *Any green component (curve or surface) consists generically of non-filtrable bundles.*

< D > < A > < B > < B >

21

• The moduli space \mathcal{M} consists of \mathcal{M}_0 and possibly other connected components

- All *positive dimensional* of stable bundles appear in grey, all reductions in red, and all twisted reductions in blue. *Any green component (curve or surface) consists generically of non-filtrable bundles.*
- The natural question is: What is the position of a := [A]?

22

 We have again a dichotomy: Either the remarkable incidence holds (hence X has a cycle), or a := [A] belongs to a compact subspace of Mst (of dimension 1 or 2) consisting generically of non-filtrable bundles.

- 4 同 ト 4 ヨ ト 4 ヨ ト

22

- We have again a dichotomy: Either the remarkable incidence holds (hence X has a cycle), or a := [A] belongs to a compact subspace of Mst (of dimension 1 or 2) consisting generically of non-filtrable bundles.
- The latter possibility is ruled out by the main result of a recent article ("Compact subspaces of moduli ... " arXiv:1309.0350):

Theorem 3.5

There does not exist any positive dimensional compact subspace $Y \subset \mathcal{M}^{st}$ containing the point a and an open neighborhood $a \in Y_a \subset Y$ such that $Y_a \setminus \{a\}$ consists only of non-filtrable bundles.

くロ と く 同 と く ヨ と 一

22

- We have again a dichotomy: Either the remarkable incidence holds (hence X has a cycle), or a := [A] belongs to a compact subspace of Mst (of dimension 1 or 2) consisting generically of non-filtrable bundles.
- The latter possibility is ruled out by the main result of a recent article ("*Compact subspaces of moduli* ... " arXiv:1309.0350):

Theorem 3.5

There does not exist any positive dimensional compact subspace $Y \subset \mathcal{M}^{st}$ containing the point a and an open neighborhood $a \in Y_a \subset Y$ such that $Y_a \setminus \{a\}$ consists only of non-filtrable bundles.

In other words, within any positive dimensional compact subspace a ∈ Y ⊂ Mst, the point a can be approached by filtrable bundles, *it cannot be surrounded only by non-filtrables*.

general strategy

The strategy of the proof (for any b_2) is:

• We showed (easy!) that the **RI** implies the existence of a cycle.

< D > < A > < B > < B >

general strategy

The strategy of the proof (for any b_2) is:

- We showed (easy!) that the **RI** implies the existence of a cycle.
- The connected component M₀ of M which contains the circles of reductions comes with a natural stratification. Studying this stratification one comes to the dichotomy: Either (1) the remarkable incidence holds, or (2) a := [A] belongs to a compact complex subspace Y ⊂ Mst in which it is surrounded only by non-filtrable points.

general strategy

The strategy of the proof (for any b_2) is:

- We showed (easy!) that the **RI** implies the existence of a cycle.
- The connected component M₀ of M which contains the circles of reductions comes with a natural stratification. Studying this stratification one comes to the dichotomy: Either (1) the remarkable incidence holds, or (2) a := [A] belongs to a compact complex subspace Y ⊂ Mst in which it is surrounded only by non-filtrable points.
- Apply our non-existence theorem, which rules out the second possibility.

• □ ▶ • □ ▶ • □ ▶

difficulty

• The difficulty for $b_2 \ge 3$:

Main difficulty: rule out the situation when \mathcal{M}_0 contains an unknown stratum Y (consisting generically of non-filtrable bundles) which *contains* a circle of reductions. For such a stratum the non-existence theorem does not apply.

< ロ > < 同 > < 三 > < 三 >

difficulty

• The difficulty for $b_2 \geq 3$:

Main difficulty: rule out the situation when \mathcal{M}_0 contains an unknown stratum Y (consisting generically of non-filtrable bundles) which *contains* a circle of reductions. For such a stratum the non-existence theorem does not apply.

Theorem 3.6

Suppose $b_2 = 3$. Any bidimensional stratum Z of the canonical stratification of \mathcal{M}_0 whose closure contains the circle $R_{\{i\},\{j,k\}\}}$ coincides with a known stratum $\mathcal{M}_{\{a\},\{b,c\}}^{\mathrm{st}}$.

くロ と く 同 と く ヨ と 一

difficulty

• The difficulty for $b_2 \geq 3$:

Main difficulty: rule out the situation when \mathcal{M}_0 contains an unknown stratum Y (consisting generically of non-filtrable bundles) which *contains* a circle of reductions. For such a stratum the non-existence theorem does not apply.

Theorem 3.6

Suppose $b_2 = 3$. Any bidimensional stratum Z of the canonical stratification of \mathcal{M}_0 whose closure contains the circle $R_{\{i\},\{j,k\}\}}$ coincides with a known stratum $\mathcal{M}_{\{a\},\{b,c\}}^{\mathrm{st}}$.

• The proof uses "reductio ad absurdum" and a cobordism argument.

< ロ > < 同 > < 回 > < 回 > < □ > <

bibliography

- G. Dloussky, K. Oeljeklaus, M. Toma: *Class* VII₀ *surfaces with* b_2 *curves*, Tohoku Math. J. (2) 55 no. 2, 283-309 (2003)
- I. Nakamura : Towards classification of non-Kählerian surfaces, Sugaku Expositions vol. 2, No 2, 209-229 (1989)
- A. Teleman: Donaldson theory on non-Kählerian surfaces and class VII surfaces with b₂ = 1, Invent. math. 162, 493-521 (2005)
- A. Teleman: *Instantons and holomorphic curves on class VII surfaces*, Annals of Mathematics, 172 (2010), 1749-1804.
- A. Teleman: A variation formula for the determinant line bundle. Compact subspaces of moduli spaces of stable bundles over class VII surfaces, arXiv:1309.0350.

< ロ > < 同 > < 三 > < 三 >