The homology of the moduli spaces of plane sheaves of multiplicity 4 and 5

Mario Maican

VBAC 2014

Mario Maican ()

The homology of the moduli spaces of plane :

VBAC 2014 1 / 30

My set-up

 $\mathcal F$ will be a coherent semi-stable sheaf on $\mathbb P^n(\mathbb C)$ with support an algebraic curve.

The Hilbert polynomial of \mathcal{F} is $P_{\mathcal{F}}(m) = rm + \chi$

$$p(\mathcal{F}) = \chi/r$$
 is the slope of \mathcal{F}

Gieseker semi-stability (stability) means:

- *F* is pure, i.e. there are no proper subsheaves with support of dimension zero;
- **②** for any proper subsheaf $\mathcal{F}' \subset \mathcal{F}$ we have $p(\mathcal{F}') \leq (<)p(\mathcal{F})$.

- 4 同 6 4 日 6 4 日 6

Fix integers r > 0 and χ . Denote $M_{\mathbb{P}^n}(r, \chi) = M_{\mathbb{P}^n}(rm + \chi)$

Motivation for studying $M_{\mathbb{P}^2}(r, 1)$. Let X be a Calabi-Yau threefold. Fix $\beta \in H_2(X, \mathbb{Z})$. Let $M_X(\beta)$ be the moduli space of semi-stable sheaves \mathcal{F} on X supported on a curve of class β and such that $\chi(\mathcal{F}) = 1$. S. Katz defined the genus-zero BPS invariant $n_\beta(X) = \deg[M_X(\beta)]^{vir}$. J. Choi noted that when X is the local \mathbb{P}^2 , that is the total space of $\mathcal{O}_{\mathbb{P}^2}(-3)$, then $n_r(X) = (-1)^{r^2+1}\chi_{top}(M_{\mathbb{P}^2}(r, 1))$

・ 「 ・ ・ ・ ・ ・ ・ ・

If $gcd(r, \chi) = 1$, then $M_{\mathbb{P}^n}(r, \chi) = M^s_{\mathbb{P}^n}(r, \chi)$ is a fine moduli space. The map $[\mathcal{F}] \mapsto [\mathcal{F} \otimes \mathcal{O}(1)]$ gives an isomorphism $M_{\mathbb{P}^n}(r, \chi) \simeq M_{\mathbb{P}^n}(r, r + \chi)$, hence we may assume $\chi = 1, \ldots, r$.

Theorem (J. Le Potier)

The moduli space $M_{\mathbb{P}^2}(r, \chi)$ is an irreducible projective variety of dimension $r^2 + 1$, locally factorial, and smooth at all points given by stable sheaves.

I have classified the sheaves giving points in $M_{\mathbb{P}^2}(r, \chi)$ in the following cases: r = 4 (with J.-M. Drézet, 2010), r = 5 (2011), and r = 6 (2013).

This makes possible the investigation of the geometry of these moduli spaces. I have computed the Hodge numbers for the following: $M_{\mathbb{P}^2}(4,1)$ and $M_{\mathbb{P}^2}(4,3)$ (2014, joint work with J. Choi), $M_{\mathbb{P}^2}(5,1)$ (2013), and $M_{\mathbb{P}^2}(5,3)$.

イロト 不得下 イヨト イヨト 二日

Duality

Theorem

The map $[\mathcal{F}] \mapsto [\mathcal{E} \times t^{n-1}(\mathcal{F}, \omega_{\mathbb{P}^n})]$ gives an isomorphism $\mathsf{M}_{\mathbb{P}^n}(r, \chi) \simeq \mathsf{M}_{\mathbb{P}^n}(r, -\chi).$

M. Woolf has computed the nef cones of $M_{\mathbb{P}^2}(r, \chi)$ and, as a consequence, has shown that $M_{\mathbb{P}^2}(r, \chi_1)$ is not isomorphic to $M_{\mathbb{P}^2}(r, \chi_2)$ if $\chi_1 \neq \pm \chi_2 \mod r$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Summary for $M_{\mathbb{P}^2}(4,1)$

stratum	cohomological conditions	set W_i of morphisms $arphi$	
M ₀	$h^0(\mathcal{F}(-1))=0$	$0 ightarrow 3\mathcal{O}(-2) \stackrel{arphi}{ ightarrow} 2\mathcal{O}(-1) \oplus \mathcal{O} ightarrow \mathcal{F} ightarrow 0$	
	$h^1(\mathcal{F}) = 0$	$arphi_{11}$ has linearly independent	0
	$h^0(\mathcal{F}\otimes \Omega^1(1))=0$	maximal minors	
<i>M</i> ₁	$h^0(\mathcal{F}(-1))=0$	$0 \rightarrow \mathcal{O}(-2) \oplus \mathcal{O}(-1) \stackrel{\mathcal{C}}{\rightarrow} \mathcal{O}(-2) \rightarrow T \rightarrow 0$	
	$h^1(\mathcal{F}) = 1$	$0 \to O(-3) \oplus O(-1) \to 2O \to F \to 0$	2
	$h^0(\mathcal{F}\otimes \Omega^1(1))=1$	φ_{12} has linearly independent entries	

Geometric quotients: $M_0 = W_0/G_0$, $M_1 = W_1/G_1$

 ζ_1 , ζ_2 , ζ_3 the maximal minors of φ_{11}

 $U \subset M_0$ the open subset given by: ζ_1 , ζ_2 , ζ_3 have no common factor

This condition is equivalent to: $(\zeta_1, \zeta_2, \zeta_3) = I_Z$ for a zero dimensional subscheme $Z \subset \mathbb{P}^2$ of length 3 that is not contained in a line. Denote $\operatorname{Hilb}_{\mathbb{P}^2}^0(3) \subset \operatorname{Hilb}_{\mathbb{P}^2}(3)$ the corresponding open subset in the Hilbert scheme.

The sheaves in U are precisely the non-split extensions

$$0
ightarrow \mathcal{O}_Q
ightarrow \mathcal{F}
ightarrow \mathcal{O}_Z
ightarrow 0$$

where $Q = \{\det(\varphi) = 0\}$. Thus *U* is a fiber bundle over $\operatorname{Hilb}_{\mathbb{P}^2}^0(3)$. The fiber over *Z* is the set of quartics passing through *Z*.

The sheaves in $M_0 \setminus U$ are precisely the extension sheaves

$$0 \to \mathcal{O}_C \to \mathcal{F} \to \mathcal{O}_L \to 0$$

satisfying $H^1(\mathcal{F}) = 0$. Here *C* is a cubic, *L* is the line $\{I = 0\}$, where $I = \text{gcd}(\zeta_1, \zeta_2, \zeta_3)$. Denote by $M_{L,C} \subset M_{\mathbb{P}^2}(4, 1)$ the subset of such extensions.

The sheaves in M_1 are the twisted ideal sheaves $\mathcal{O}_Q(-P) \otimes \mathcal{O}(1)$ of points P on quartic curves Q. Thus M_1 is isomorphic to the universal quartic.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ■ ● ● ● ●

Torus action on $M_{\mathbb{P}^2}(4,1)$

Torus $T = (\mathbb{C}^*)^3 / \{(c, c, c), c \in \mathbb{C}^*\}$ T acts on $\mathbb{P}^2 = \mathbb{P}(V)$ via $(t_0, t_1, t_2) \cdot (x_0, x_1, x_2) = (t_0^{-1}x_0, t_1^{-1}x_1, t_2^{-1}x_2)$ $\mu_t \colon \mathbb{P}^2 \to \mathbb{P}^2$ map of multiplication by $t \in T$ Induced action on $M_{\mathbb{P}^2}(4, 1)$ given by $t[\mathcal{F}] = [\mu_{t^{-1}}^*\mathcal{F}]$ $\{X, Y, Z\}$ basis of V^*

Induced action of T on the symmetric algebra of V^* given by $t X^i Y^j Z^k = t_0^i t_1^j t_2^k X^i Y^j Z^k$

T-fixed points in $M_{\mathbb{P}^2}(4,1)$

 $p_0 = (1, 0, 0), p_1 = (0, 1, 0), p_2 = (0, 0, 1)$ fixed points in \mathbb{P}^2 p_{ij} = double point supported on p_i and contained in the line $p_i p_j$ q_i = fixed triple point supported on p_i

There are 10 fixed zero dimensional schemes Z of length 3, Z not contained in a line:

 $\{ p_0, p_1, p_2 \},$ $\{ p_0, p_{12} \}, \{ p_0, p_{21} \}, \{ p_1, p_{02} \}, \{ p_1, p_{20} \}, \{ p_2, p_{01} \}, \{ p_2, p_{10} \},$ $\{ q_0 \}, \{ q_1 \}, \{ q_2 \}$

 $[\mathcal{F}] = [\mathcal{O}_Q(Z)]$ is T-fixed precisely if Q is T-invariant and Z is T-fixed

For each Z there are 12 invariant quartics containing Z

Thus we get 120 isolated fixed points in U

Example: if $Z = \{p_0, p_1, p_2\}$, then I(Z) = (XY, XZ, YZ) and $[\mathcal{F}]$ is represented by the matrices

$$\begin{bmatrix} Y & 0 & X \\ 0 & Z & X \\ X^{i}Y^{j}Z^{k} & 0 & 0 \end{bmatrix}, \begin{bmatrix} Y & 0 & X \\ 0 & Z & X \\ 0 & X^{i}Y^{j} & 0 \end{bmatrix}, \begin{bmatrix} Y & 0 & X \\ 0 & Z & X \\ 0 & 0 & Y^{j}Z^{k} \end{bmatrix}$$

Likewise, we get 42 fixed points in M_1 of the form $[\mathcal{O}_Q(-P)(1)]$, where P is one of the p_i and Q is a T-invariant quartic passing through P.

Example: if $P = p_2$, then \mathcal{F} is represented by the matrices

$$\left[\begin{array}{cc} X^{i}Y^{j}Z^{k} & X\\ 0 & Y \end{array}\right], \quad \left[\begin{array}{cc} 0 & X\\ X^{i}Z^{k} & Y \end{array}\right]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

$M_{p2}(4, 1)$ and $M_{p2}(4, 3)$

 $M_{L,C}$ contains fixed points only if L and C are T-invariant. We claim that in this case $M_{L,C} \simeq \mathbb{A}^2$. For instance, if $L = \{X = 0\}$ and $C = \{X^i Y^j Z^k = 0\}$, then $M_{L,C}$ has parametrisation

$$\left[egin{array}{ccc} X & 0 & -Y \ 0 & X & -Z \ q_1-(bY+cZ)Z & q_2+(bY+cZ)Y & q_3 \end{array}
ight], \hspace{0.2cm} extbf{a}, \hspace{0.2cm} extbf{a}, b\in\mathbb{C}$$

where q_1 , q_2 , q_3 are fixed quadratic forms satisfying $q_1Y + q_2Z + q_3X = X^iY^jZ^k$.

Action on $M_{L,C}$ given by $t(a,b) = (t_0^{-i}t_1^{2-j}t_2^{1-k}a, t_0^{-i}t_1^{1-j}t_2^{2-k}b)$

We get an isolated fixed point (0,0) unless (i,j,k) = (0,2,1) or (0,1,2), in which case we get an affine line of fixed points (a,0), $a \in \mathbb{C}$, resp. (0,b), $b \in \mathbb{C}$.

We get 24 isolated fixed points and 3 affine lines of fixed points in $M_0 \setminus U$

E Sac

ヘロト 不良 トイヨト イヨト

Topology of $M_{\mathbb{P}^2}(4,1)$

Theorem (J. Choi, M. Maican)

The fixed point locus of $M_{\mathbb{P}^2}(4,1)$ consists of 180 isolated points and 6 one-dimensional components isomorphic to \mathbb{P}^1 . Furthermore, the integral homology of $M_{\mathbb{P}^2}(4,1)$ has no torsion and its Poincaré polynomial is

$$P_{\mathsf{M}_{\mathbb{P}^{2}}(4,1)}(x) = 1 + 2x^{2} + 6x^{4} + 10x^{6} + 14x^{8} + 15x^{10} + 16x^{12} + 16x^{14} + 16x^{16} + 16x^{18} + 16x^{20} + 16x^{22} + 15x^{24} + 14x^{26} + 10x^{28} + 6x^{30} + 2x^{32} + x^{34}.$$

The Hodge numbers h^{pq} are zero if $p \neq q$. The Picard group is \mathbb{Z}^2 . The fundamental group π_1 is trivial. Moreover, $M_{\mathbb{P}^2}(4,1)$ is rational.

Białynicki-Birula theory

X = smooth projective variety with a \mathbb{C}^* -action. Let X_1, \ldots, X_r be the irreducible components of the fixed locus. They are smooth.

For each i we have a decomposition of the restricted tangent bundle

$$\mathsf{T}_{X|X_i} = \mathsf{T}_i^+ \oplus \mathsf{T}_i^0 \oplus \mathsf{T}_i^-$$

into subbundles on which \mathbb{C}^* acts with positive, zero, negative weights. Denote $p(i) = \operatorname{rank}(\mathsf{T}_i^+)$ and $n(i) = \operatorname{rank}(\mathsf{T}_i^-)$.

Theorem (Homology basis formula)

For any integer m with $0 \le m \le 2 \dim(X)$, we have a decomposition

$$\mathsf{H}_m(X,\mathbb{Z})\simeq \bigoplus_{1\leq i\leq r} \mathsf{H}_{m-2p(i)}(X_i,\mathbb{Z})\simeq \bigoplus_{1\leq i\leq r} \mathsf{H}_{m-2n(i)}(X_i,\mathbb{Z}).$$

Reason: we have a decomposition of X into *plus cells*

$$X = X_1^+ \cup \ldots \cup X_r^+, \quad X_i^+ = \{x \in X \mid \lim_{t \to 0} tx \in X_i\}$$

and a decomposition into minus cells

$$X = X_1^- \cup \ldots \cup X_r^-, \quad X_i^- = \{x \in X \mid \lim_{t \to \infty} tx \in X_i\}$$

 X_i^+ and X_i^- are topological fiber bundles over X_i with fiber $\mathbb{C}^{p(i)}$ and $\mathbb{C}^{n(i)}$ Thus, the Poincaré polynomial of X is

$$P_X(x) = \sum_{i=1}^r P_{X_i}(x) x^{2p(i)} = \sum_{i=1}^r P_{X_i}(x) x^{2n(i)}$$

イロト イポト イヨト イヨト

The Homology Basis Formula respects the Hodge decomposition:

$$\mathsf{H}^{p}(X,\Omega^{q}) = \bigoplus_{1 \le i \le r} \mathsf{H}^{p-p(i)}(X_{i},\Omega^{q-p(i)}_{X_{i}}) = \bigoplus_{1 \le i \le r} \mathsf{H}^{p-n(i)}(X_{i},\Omega^{q-n(i)}_{X_{i}})$$

If $h^{pq}(X_i) = 0$ for all $1 \le i \le r$ and $p \ne q$, then $h^{pq}(X) = 0$ for $p \ne q$.

The \mathbb{C}^* -action on $M_{\mathbb{P}^2}(4,1)$ will be induced by a one-parameter subgroup $\lambda \colon \mathbb{C}^* \to \mathcal{T}$. We will choose λ such that the sets of fixed points coincide: $M_{\mathbb{P}^2}(4,1)^{\lambda} = M_{\mathbb{P}^2}(4,1)^{\mathcal{T}}$. This is equivalent to

$$\langle \chi, \lambda \rangle \neq 0$$

for all $\chi \in \chi^*(T)$ that appear in the weight-decomposition of T_i^+ and T_i^- for all $1 \le i \le r$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Action of T on the tangent spaces at the fixed points

 $[\mathcal{F}] \in M_0$ is *T*-fixed, $\mathcal{F} = Coker(\varphi)$, $\varphi \in W_0$. Assume that there are morphisms of groups

$$u \colon (\mathbb{C}^*)^3 \to \operatorname{Aut}(3\mathcal{O}(-2)), \quad v \colon (\mathbb{C}^*)^3 \to \operatorname{Aut}(2\mathcal{O}(-1) \oplus \mathcal{O})$$

such that $t\varphi = v(t)\varphi u(t)$ for all $t \in (\mathbb{C}^*)^3$. Let $\rho \colon W_0 \to M_0$ be the quotient map, $W = \mathsf{T}_{\varphi} W_0 = \mathsf{Hom}(3\mathcal{O}(-2), 2\mathcal{O}(-1) \oplus \mathcal{O}), \theta \colon W \to W$ the map $\psi \mapsto v(t)\psi u(t)$. Then:

$$\begin{split} d(\mu_t)_{[\mathcal{F}]}(d\rho_{\varphi}(w)) &= d\rho_{(t\varphi)}(d(\mu_t)_{\varphi}(w)) & \text{ because } \mu_t \circ \rho = \rho \circ \mu_t \\ &= d\rho_{(\theta\varphi)}(tw) & \text{ because } \mu_t \colon W \to W \text{ is linear} \\ &= d\rho_{\varphi}(d(\theta^{-1})_{(\theta\varphi)}(tw)) & \text{ because } \rho \circ \theta = \rho \\ &= d\rho_{\varphi}(\theta^{-1}(tw)) & \text{ because } \theta^{-1} \colon W \to W \text{ is linear} \end{split}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

T-action on *W* given by $t \star w = v(t)^{-1}(tw)u(t)^{-1}$ *T*-action on $T_{[\varphi]} M_{\mathbb{P}^2}(4,1) = W/T_{\varphi}(G_0\varphi)$ given by $t[w] = [t \star w]$

 $G_0 \to G_0 \varphi$, $(g, h) \mapsto h \varphi g^{-1}$ is an isomorphism because $\text{Stab}_{G_0}(\varphi) = \{e\}$ Differential of this map at e is $(A, B) \mapsto B \varphi - \varphi A$

* induces the action $t(A,B) = (u(t)(tA)u(t)^{-1}, v(t)^{-1}(tB)v(t))$

For all fixed \mathcal{F} we can choose φ such that u, v exist and are diagonal:

$$u(t) = \begin{bmatrix} u_1 & 0 & 0 \\ 0 & u_2 & 0 \\ 0 & 0 & u_3 \end{bmatrix}, \quad v(t) = \begin{bmatrix} v_1 & 0 & 0 \\ 0 & v_2 & 0 \\ 0 & 0 & v_3 \end{bmatrix}$$

◆□ ▶ ◆冊 ▶ ★ 臣 ▶ ★ 臣 ▶ ○ 臣 ○ の Q @

{
$$x, y, z$$
} standard basis for $\chi^*((\mathbb{C}^*)^3)$
 $s^I = \{ix + jy + kz, i, j, k \in \mathbb{Z}, i + j + k = I, i, j, k \ge 0\}$
Tables of weights for the T-action on W resp. on T. (Geo)

Tables of weights for the ${\mathcal T}$ -action on W, resp. on ${\sf T}_arphi({\mathcal G}_0arphi)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

Example

$$t \begin{bmatrix} Y & 0 & X \\ 0 & Z & X \\ X^{i}Y^{j}Z^{k} & 0 & 0 \end{bmatrix} = \begin{bmatrix} t_{1}Y & 0 & t_{0}X \\ 0 & t_{2}Z & t_{0}X \\ t_{0}^{i}t_{1}^{j}t_{2}^{k}X^{i}Y^{j}Z^{k} & 0 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} t_{0} & 0 & 0 \\ 0 & t_{0} & 0 \\ 0 & 0 & t_{0}^{i+1}t_{1}^{j-1}t_{2}^{k} \end{bmatrix} \varphi \begin{bmatrix} t_{0}^{-1}t_{1} & 0 & 0 \\ 0 & t_{0}^{-1}t_{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$v_1 = v_2 = x$$
, $v_3 = (i+1)x + (j-1)y + kz$, $u_1 = y - x$, $u_2 = z - x$, $u_3 = 0$

Subtracting the second list of weights from the first list we get the list

$$\{-(1+i)x-jy-(1+k)z+\{3x+y, 2x+2y, x+3y, 3x+z, 2x+2z, x+3z, x+3z,$$

$$3y + z$$
, $2y + 2z$, $y + 3z$, $2x + y + z$, $x + 2y + z$, $x + y + 2z$ },

$$x - y, x - z, y - x, y - z, z - x, z - y \} \setminus \{0\}$$

< ∃ >

 $[\mathcal{F}] \in M_1$ is T-fixed, $\mathcal{F} = Coker(\varphi)$, $\varphi \in W_1$. We can choose φ such that there are diagonal morphisms of groups

$$u \colon (\mathbb{C}^*)^3 \to \operatorname{Aut}(\mathcal{O}(-3) \oplus \mathcal{O}(-1)), \quad v \colon (\mathbb{C}^*)^3 \to \operatorname{Aut}(2\mathcal{O})$$

with $t\varphi = v(t)\varphi u(t)$ for all t. Weights for the action of T on $\mathsf{T}_{\varphi} W_1$

$$\begin{array}{ccc} -v_1 - u_1 + s^3 & -v_1 - u_2 + s^1 \\ -v_2 - u_1 + s^3 & -v_2 - u_2 + s^1 \end{array}$$

Weights for the action of T on $T_{\varphi}(G_1\varphi)$

$$\begin{array}{cccc} 0 & & -v_1+v_2 & & 0 \\ -v_2+v_1 & & 0 & & u_2-u_1+s^2 \end{array}$$

The normal space to M_1 at φ is isomorphic to $H^0(\mathcal{F})^* \otimes H^1(\mathcal{F})$ and has weights $u_1 + v_1 - x - y - z$, $u_1 + v_2 - x - y - z$.

We can choose $\lambda \colon \mathbb{C}^* o {\mathsf{T}}$, $\lambda(c) = (1, c, c^5)$

p(i) = number of characters χ appearing in the weight decomposition of $T_i^+ \oplus T_i^-$ such that $\langle \chi, \lambda \rangle > 0$

$$P_{\mathsf{M}_{\mathbb{P}^2}(4,1)}(x) = \sum_{X_i = \text{point}} x^{2p(i)} + \sum_{X_i = \text{line}} (1+x^2) x^{2p(i)}$$

It turns out that the source S, i.e. the X_i for which n(i) = 0, is a point, hence the moduli space contains an open subset isomorphic to an affine space, so it is rational. Also, $\pi_1 \simeq \pi_1(S)$, so $\pi_1 = \{1\}$. We have the exact sequence

$$0 o \mathbb{Z}^{b_2} o \mathsf{Pic}(\mathsf{M}_{\mathbb{P}^2}(4,1)) o \mathsf{Pic}(S) o 0$$

hence $\operatorname{Pic}(M_{\mathbb{P}^2}(4,1)) \simeq \mathbb{Z}^2$.

< 回 ト < 三 ト < 三 ト

 $M_{\mathbb{P}^2}(5,1)$

Summary for $M_{\mathbb{P}^2}(5,1)$

stratum	cohomological conditions	subset W_i of morphisms $arphi$			
M ₀	$h^0(\mathcal{F}(-1))=0$	$4\mathcal{O}(-2) \stackrel{arphi}{\longrightarrow} 3\mathcal{O}(-1) \oplus \mathcal{O}$	0		
	$h^1(\mathcal{F})=0$	arphi is injective			
	$h^0(\mathcal{F}\otimes \Omega^1(1))=0$	$arphi_{11}$ is semi-stable			
<i>M</i> ₁	$h^{0}(\mathcal{F}(-1)) = 0$	$\mathcal{O}(-3)\oplus\mathcal{O}(-2)\stackrel{arphi}{\longrightarrow}2\mathcal{O}$			
	$h^{1}(\mathcal{F}) = 0$	arphi is injective	2		
	$h^{0}(\mathcal{T} \otimes \Omega^{1}(1)) = 0$	$arphi_{12}$ and $arphi_{22}$ are			
	$(J \otimes J (1)) = 0$	linearly independent two-forms			
<i>M</i> ₂	_	$\mathcal{O}(-3)\oplus\mathcal{O}(-2)\oplus\mathcal{O}(-1)\stackrel{arphi}{\longrightarrow}\mathcal{O}(-1)\oplus2\mathcal{O}$			
	$h^0(\mathcal{F}(-1))=0$	φ is injective			
	$h^1(\mathcal{F}) = 1$	$arphi_{13}=0$	3		
	$h^0(\mathcal{F}\otimes \Omega^1(1))=1$	$arphi_{12} eq 0$, $arphi_{12} eq arphi_{11}$			
		$arphi_{ m 23}$ has linearly independent entries			
M ₃	$h^0(\mathcal{F}(-1)) = 1$	$2\mathcal{O}(-3) \stackrel{arphi}{\longrightarrow} \mathcal{O}(-2) \oplus \mathcal{O}(1)$			
	$h^1(\mathcal{F})=2$	φ is injective	5		
	$h^0(\mathcal{F}\otimes \Omega^1(1))=3$	$arphi_{11}$ has linearly independent entries			

VBAC 2014 22 / 30

Kronecker moduli space

 $\mathsf{N}(m,p,q) = \mathsf{Hom}(\mathbb{C}^p,\mathbb{C}^m\otimes\mathbb{C}^q)^{ss}/\!/\operatorname{\mathsf{GL}}(p,\mathbb{C}) imes\mathsf{GL}(q,\mathbb{C})$

 M_0 is a proper open subset inside a fibre bundle with base N(3,4,3) and fibre \mathbb{P}^{14}

 M_1 is a proper open subset inside a fibre bundle with base Grass $(2, \mathbb{C}^6)$ and fibre \mathbb{P}^{16}

 M_2 is a proper open subset inside a fibre bundle with fibre \mathbb{P}^{17} and base ${
m Hilb}_{\mathbb{P}^2}(2) imes \mathbb{P}^2$,

 M_3 is the universal quintic in $\mathbb{P}^2 \times \mathbb{P}(\mathsf{S}^5 V^*)$

Geometric quotients: $M_i = W_i/G_i$

= 900

・ 何 ト ・ ヨ ト ・ ヨ ト

Theorem

The T-fixed locus of $M_{\mathbb{P}^2}(5,1)$ consists of 1407 isolated points, 132 projective lines and six irreducible components of dimension two that are isomorphic to $\mathbb{P}^1 \times \mathbb{P}^1$. The integral homology groups of $M_{\mathbb{P}^2}(5,1)$ have no torsion and its Poincaré polynomial is

$$P(x) = x^{52} + 2x^{50} + 6x^{48} + 13x^{46} + 26x^{44} + 45x^{42} + 68x^{40} + 87x^{38} + 100x^{36} + 107x^{34} + 111x^{32} + 112x^{30} + 113x^{28} + 113x^{26} + 113x^{24} + 112x^{22} + 111x^{20} + 107x^{18} + 100x^{16} + 87x^{14} + 68x^{12} + 45x^{10} + 26x^8 + 13x^6 + 6x^4 + 2x^2 + 1.$$

The Euler characteristic of $M_{\mathbb{P}^2}(5,1)$ is 1695 and its Hodge numbers satisfy the relation $h^{pq} = 0$ if $p \neq q$. The Picard group is \mathbb{Z}^2 . The fundamental group π_1 is trivial. Moreover, $M_{\mathbb{P}^2}(5,1)$ is rational.

 $M_{\mathbb{P}^2}(5,3)$

Summary for $M_{\mathbb{P}^2}(5,3)$

stratum	cohomological conditions	subset W_i of morphisms $arphi$	codim.
M ₀	$egin{aligned} h^0(\mathcal{F}(-1)) &= 0 \ h^1(\mathcal{F}) &= 0 \ h^0(\mathcal{F}\otimes\Omega^1(1)) &= 1 \end{aligned}$	$2\mathcal{O}(-2) \oplus \mathcal{O}(-1) \xrightarrow{\varphi} 3\mathcal{O}$ $\varphi \text{ is injective}$ $\varphi \text{ is not equivalent to}$ $\begin{bmatrix} \star & \star & \star \\ \star & \star & 0 \\ \star & \star & 0 \end{bmatrix} \text{ or } \begin{bmatrix} \star & \star & \star \\ \star & \star & \star \\ \star & \star & 0 \end{bmatrix}$	0
<i>M</i> ₁	$egin{aligned} h^0(\mathcal{F}(-1)) &= 0 \ h^1(\mathcal{F}) &= 0 \ h^0(\mathcal{F}\otimes\Omega^1(1)) &= 2 \end{aligned}$	$\begin{array}{l} 2\mathcal{O}(-2) \oplus 2\mathcal{O}(-1) \xrightarrow{\varphi} \mathcal{O}(-1) \oplus 3\mathcal{O} \\ \varphi \text{ is injective, } \varphi_{12} = 0, \ \varphi_{11} \text{ has} \\ \text{linearly independent entries, } \varphi_{22} \text{ has} \\ \text{linearly independent maximal minors} \end{array}$	2
<i>M</i> ₂	$egin{aligned} h^0(\mathcal{F}(-1)) &= 1\ &\ h^1(\mathcal{F}) &= 0\ &\ h^0(\mathcal{F}\otimes\Omega^1(1)) &= 3 \end{aligned}$	$\begin{array}{c} 3\mathcal{O}(-2) \xrightarrow{\varphi} 2\mathcal{O}(-1) \oplus \mathcal{O}(1) \\ \varphi \text{ is injective, } \varphi_{11} \text{ has} \\ \text{linearly independent maximal minors} \end{array}$	3
<i>M</i> ₃	$egin{aligned} h^0(\mathcal{F}(-1)) &= 1\ &\ h^1(\mathcal{F}) &= 1\ &\ h^0(\mathcal{F}\otimes\Omega^1(1)) &= 4 \end{aligned}$	$\mathcal{O}(-3) \oplus \mathcal{O}(-1) \xrightarrow{\varphi} \mathcal{O} \oplus \mathcal{O}(1)$ φ is injective, $\varphi_{12} \neq 0, \varphi_{12} \nmid \varphi_{22}$	4

Mario Maican ()

The homology of the moduli spaces of plane :

 M_1 is a proper open subset inside a fibre bundle over $\mathbb{P}^2\times\mathsf{N}(3,2,3)$ with fibre \mathbb{P}^{16}

 M_2 is a proper open subset inside a fibre bundle over N(3,3,2) with fibre \mathbb{P}^{17}

 M_3 is isomorphic to the Hilbert flag scheme of quintic curves in \mathbb{P}^2 containing zero-dimensional subschemes of length 2

Geometric quotients: $M_i = W_i/G_i$

A (10) A (10) A (10)

Theorem

The T-fixed point locus of $M_{\mathbb{P}^2}(5,3)$ consists of 1329 isolated points, 174 projective lines, and 3 irreducible components of dimension two that are isomorphic to the surface obtained by blowing up $\mathbb{P}^1 \times \mathbb{P}^1$ at three points on the diagonal, then blowing down the strict transform of the diagonal. The integral homology groups of $M_{\mathbb{P}^2}(5,3)$ have no torsion and its Poincaré polynomial is

$$\begin{split} P(x) = & x^{52} + 2x^{50} + 6x^{48} + 13x^{46} + 26x^{44} + 45x^{42} + 68x^{40} + 87x^{38} + \\ & 100x^{36} + 107x^{34} + 111x^{32} + 112x^{30} + \\ & 113x^{28} + 113x^{26} + 113x^{24} + \\ & 112x^{22} + 111x^{20} + 107x^{18} + 100x^{16} + \\ & 87x^{14} + 68x^{12} + 45x^{10} + 26x^8 + 13x^6 + 6x^4 + 2x^2 + 1. \end{split}$$

The Euler characteristic of $M_{\mathbb{P}^2}(5,3)$ is 1695 and its Hodge numbers satisfy the relation $h^{pq} = 0$ if $p \neq q$. The Picard group is \mathbb{Z}^2 . The fundamental group π_1 is trivial. Moreover, $M_{\mathbb{P}^2}(5,3)$ is rational.

Mario Maican ()

The open stratum $M_0 \subset M_{\mathbb{P}^2}(r,r-1)$ looks as in the examples above: cokernels of

 $\varphi\colon \mathcal{O}(-2)\oplus (r-2)\mathcal{O}(-1)\to (r-1)\mathcal{O}, \quad \varphi \text{ injective, } \varphi_{12} \text{ semistable.}$

 $\operatorname{Hilb}_{\mathbb{P}^2}(l,r) = \operatorname{relative}$ Hilbert scheme of l points on a curve of degree rl = (r-2)(r-1)/2

 $\operatorname{Hilb}_{\mathbb{P}^2}^0(I, r) = \operatorname{open} \operatorname{subset}$ given by the condition that the points do not lie on a curve of degree r - 3. It is a projective bundle over $\operatorname{Hilb}_{\mathbb{P}^2}^0(I)$ (subset defined by the same condition), so it is rational.

The open subset of M_0 given by the condition that the maximal minors of φ_{11} have no common factor is isomorphic to $\text{Hilb}_{\mathbb{P}^2}^0(l, r)$

Proposition

 $M_{\mathbb{P}^2}(r, r-1)$ and $Hilb_{\mathbb{P}^2}(l, r)$ are birational so $M_{\mathbb{P}^2}(r, r-1)$ is rational.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Assume $2 \le r \le n$. $M_0 \subset M(n+r, n)$ is the open subset of sheaves \mathcal{F} that have smooth schematic support and that satisfy the conditions

$$H^{0}(\mathcal{F}(-1)) = 0,$$
 $H^{1}(\mathcal{F} \otimes \Omega^{1}(1)) = 0,$ $H^{1}(\mathcal{F}) = 0$
 $= \frac{1}{2}(n+r)(n+r-1) - n$

 $H_0 \subset \operatorname{Hilb}(I, n + r)$ is the set of pairs (Z, C) such that C is smooth and $\mathcal{I}_Z \subset \mathcal{O}_{\mathbb{P}^2}$ satisfies the cohomological conditions

$$H^{0}(\mathcal{I}_{Z}(n+r-3)) = 0, \quad H^{1}(\mathcal{I}_{Z}(n+r-1)\otimes\Omega^{1}) = 0, \quad H^{1}(\mathcal{I}_{Z}(n+r-2)) = 0.$$

 \mathcal{J}_Z = the ideal sheaf of Z in C

Proposition

Assume that
$$2 \leq r < rac{n(\sqrt{5}-1)}{2}$$
. Then $\mathsf{M}_{\mathbb{P}^2}(n+r,n)$ is stably rational.

Proof.

We have a surjective morphism $H_0 \to M_0$ given by $(Z, C) \mapsto [\mathcal{J}_Z \otimes \mathcal{O}(n+r-2)]$. Its generic fiber is \mathbb{P}^{r-1} .

Mario Maican ()

The homology of the moduli spaces of plane :

VBAC 2014

29 /

Thank you!

<ロ> (日) (日) (日) (日) (日)