# The homology of the moduli spaces of plane sheaves of multiplicity 4 and 5 

Mario Maican

VBAC 2014

## My set-up

$\mathcal{F}$ will be a coherent semi-stable sheaf on $\mathbb{P}^{n}(\mathbb{C})$ with support an algebraic curve.

The Hilbert polynomial of $\mathcal{F}$ is $P_{\mathcal{F}}(m)=r m+\chi$
$p(\mathcal{F})=\chi / r$ is the slope of $\mathcal{F}$
Gieseker semi-stability (stability) means:
(1) $\mathcal{F}$ is pure, i.e. there are no proper subsheaves with support of dimension zero;
(2) for any proper subsheaf $\mathcal{F}^{\prime} \subset \mathcal{F}$ we have $p\left(\mathcal{F}^{\prime}\right) \leq(<) p(\mathcal{F})$.

Fix integers $r>0$ and $\chi$. Denote $\mathrm{M}_{\mathbb{P}^{n}}(r, \chi)=\mathrm{M}_{\mathbb{P}^{n}}(r m+\chi)$
Motivation for studying $\mathrm{M}_{\mathbb{P}^{2}}(r, 1)$. Let $X$ be a Calabi-Yau threefold. Fix $\beta \in \mathrm{H}_{2}(X, \mathbb{Z})$. Let $\mathrm{M}_{X}(\beta)$ be the moduli space of semi-stable sheaves $\mathcal{F}$ on $X$ supported on a curve of class $\beta$ and such that $\chi(\mathcal{F})=1$. S. Katz defined the genus-zero BPS invariant $n_{\beta}(X)=\operatorname{deg}\left[\mathrm{M}_{X}(\beta)\right]^{v i r}$. J. Choi noted that when $X$ is the local $\mathbb{P}^{2}$, that is the total space of $\mathcal{O}_{\mathbb{P}^{2}}(-3)$, then $n_{r}(X)=(-1)^{r^{2}+1} \chi_{\text {top }}\left(\mathrm{M}_{\mathbb{P}^{2}}(r, 1)\right)$

If $\operatorname{gcd}(r, \chi)=1$, then $\mathrm{M}_{\mathbb{P}^{n}}(r, \chi)=\mathrm{M}_{\mathbb{P}^{n}}^{s}(r, \chi)$ is a fine moduli space. The map $[\mathcal{F}] \mapsto[\mathcal{F} \otimes \mathcal{O}(1)]$ gives an isomorphism $\mathrm{M}_{\mathbb{P}^{n}}(r, \chi) \simeq \mathrm{M}_{\mathbb{P}^{n}}(r, r+\chi)$, hence we may assume $\chi=1, \ldots, r$.

Theorem (J. Le Potier)
The moduli space $\mathrm{M}_{\mathbb{P}^{2}}(r, \chi)$ is an irreducible projective variety of dimension $r^{2}+1$, locally factorial, and smooth at all points given by stable sheaves.

I have classified the sheaves giving points in $\mathrm{M}_{\mathbb{P}^{2}}(r, \chi)$ in the following cases: $r=4$ (with J.-M. Drézet, 2010), $r=5$ (2011), and $r=6$ (2013).

This makes possible the investigation of the geometry of these moduli spaces. I have computed the Hodge numbers for the following: $\mathrm{M}_{\mathbb{P}^{2}}(4,1)$ and $\mathrm{M}_{\mathbb{P}^{2}}(4,3)\left(2014\right.$, joint work with J. Choi), $\mathrm{M}_{\mathbb{P}^{2}}(5,1)(2013)$, and $M_{\mathbb{P}^{2}}(5,3)$.

## Duality

## Theorem

The map $[\mathcal{F}] \mapsto\left[\mathcal{E} x t^{n-1}\left(\mathcal{F}, \omega_{\mathbb{P}^{n}}\right)\right]$ gives an isomorphism $\mathrm{M}_{\mathbb{P}^{n}}(r, \chi) \simeq \mathrm{M}_{\mathbb{P}^{n}}(r,-\chi)$.

M . Woolf has computed the nef cones of $\mathrm{M}_{\mathbb{P}^{2}}(r, \chi)$ and, as a consequence, has shown that $\mathrm{M}_{\mathbb{P}^{2}}\left(r, \chi_{1}\right)$ is not isomorphic to $\mathrm{M}_{\mathbb{P}^{2}}\left(r, \chi_{2}\right)$ if $\chi_{1} \neq \pm \chi_{2}$ mod $r$.

## Summary for $\mathrm{M}_{\mathbb{P}^{2}}(4,1)$

| stratum | cohomological conditions | set $W_{i}$ of morphisms $\varphi$ |  |
| :---: | :---: | :---: | :---: |
| $M_{0}$ | $\begin{aligned} \mathrm{h}^{0}(\mathcal{F}(-1)) & =0 \\ \mathrm{~h}^{1}(\mathcal{F}) & =0 \\ \mathrm{~h}^{0}\left(\mathcal{F} \otimes \Omega^{1}(1)\right) & =0 \end{aligned}$ | $0 \rightarrow 3 \mathcal{O}(-2) \xrightarrow{\varphi} 2 \mathcal{O}(-1) \oplus \mathcal{O} \rightarrow \mathcal{F} \rightarrow 0$ <br> $\varphi_{11}$ has linearly independent maximal minors | 0 |
| $M_{1}$ | $\begin{aligned} \mathrm{h}^{0}(\mathcal{F}(-1)) & =0 \\ \mathrm{~h}^{1}(\mathcal{F}) & =1 \\ \mathrm{~h}^{0}\left(\mathcal{F} \otimes \Omega^{1}(1)\right) & =1 \end{aligned}$ | $0 \rightarrow \mathcal{O}(-3) \oplus \mathcal{O}(-1) \xrightarrow{\varphi} 2 \mathcal{O} \rightarrow \mathcal{F} \rightarrow 0$ <br> $\varphi_{12}$ has linearly independent entries | 2 |

Geometric quotients: $M_{0}=W_{0} / G_{0}, M_{1}=W_{1} / G_{1}$
$\zeta_{1}, \zeta_{2}, \zeta_{3}$ the maximal minors of $\varphi_{11}$
$U \subset M_{0}$ the open subset given by: $\zeta_{1}, \zeta_{2}, \zeta_{3}$ have no common factor This condition is equivalent to: $\left(\zeta_{1}, \zeta_{2}, \zeta_{3}\right)=I_{Z}$ for a zero dimensional subscheme $Z \subset \mathbb{P}^{2}$ of length 3 that is not contained in a line. Denote $\operatorname{Hilb}_{\mathbb{P}^{2}}^{0}(3) \subset \operatorname{Hilb}_{\mathbb{P}^{2}}(3)$ the corresponding open subset in the Hilbert scheme.

The sheaves in $U$ are precisely the non-split extensions

$$
0 \rightarrow \mathcal{O}_{Q} \rightarrow \mathcal{F} \rightarrow \mathcal{O}_{Z} \rightarrow 0
$$

where $Q=\{\operatorname{det}(\varphi)=0\}$. Thus $U$ is a fiber bundle over $\operatorname{Hilb}_{\mathbb{P}^{2}}^{0}(3)$. The fiber over $Z$ is the set of quartics passing through $Z$.

The sheaves in $M_{0} \backslash U$ are precisely the extension sheaves

$$
0 \rightarrow \mathcal{O}_{C} \rightarrow \mathcal{F} \rightarrow \mathcal{O}_{L} \rightarrow 0
$$

satisfying $\mathrm{H}^{1}(\mathcal{F})=0$. Here $C$ is a cubic, $L$ is the line $\{I=0\}$, where $I=\operatorname{gcd}\left(\zeta_{1}, \zeta_{2}, \zeta_{3}\right)$. Denote by $M_{L, C} \subset M_{\mathbb{P}^{2}}(4,1)$ the subset of such extensions.

The sheaves in $M_{1}$ are the twisted ideal sheaves $\mathcal{O}_{Q}(-P) \otimes \mathcal{O}(1)$ of points $P$ on quartic curves $Q$. Thus $M_{1}$ is isomorphic to the universal quartic.

## Torus action on $\mathrm{M}_{\mathbb{P}^{2}}(4,1)$

Torus $T=\left(\mathbb{C}^{*}\right)^{3} /\left\{(c, c, c), c \in \mathbb{C}^{*}\right\}$
$T$ acts on $\mathbb{P}^{2}=\mathbb{P}(V)$ via $\left(t_{0}, t_{1}, t_{2}\right) \cdot\left(x_{0}, x_{1}, x_{2}\right)=\left(t_{0}^{-1} x_{0}, t_{1}^{-1} x_{1}, t_{2}^{-1} x_{2}\right)$
$\mu_{t}: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ map of multiplication by $t \in T$
Induced action on $\mathrm{M}_{\mathbb{P}^{2}}(4,1)$ given by $t[\mathcal{F}]=\left[\mu_{t^{-1}}^{*} \mathcal{F}\right]$
$\{X, Y, Z\}$ basis of $V^{*}$
Induced action of $T$ on the symmetric algebra of $V^{*}$ given by $t X^{i} Y^{j} Z^{k}=t_{0}^{i} t_{1}^{j} t_{2}^{k} X^{i} Y^{j} Z^{k}$

## $T$-fixed points in $\mathrm{M}_{\mathbb{P}^{2}}(4,1)$

$p_{0}=(1,0,0), p_{1}=(0,1,0), p_{2}=(0,0,1)$ fixed points in $\mathbb{P}^{2}$
$p_{i j}=$ double point supported on $p_{i}$ and contained in the line $p_{i} p_{j}$
$q_{i}=$ fixed triple point supported on $p_{i}$
There are 10 fixed zero dimensional schemes $Z$ of length $3, Z$ not contained in a line:
$\left\{p_{0}, p_{1}, p_{2}\right\}$,
$\left\{p_{0}, p_{12}\right\},\left\{p_{0}, p_{21}\right\},\left\{p_{1}, p_{02}\right\},\left\{p_{1}, p_{20}\right\},\left\{p_{2}, p_{01}\right\},\left\{p_{2}, p_{10}\right\}$, $\left\{q_{0}\right\},\left\{q_{1}\right\},\left\{q_{2}\right\}$
$[\mathcal{F}]=\left[\mathcal{O}_{Q}(Z)\right]$ is $T$-fixed precisely if $Q$ is $T$-invariant and $Z$ is $T$-fixed
For each $Z$ there are 12 invariant quartics containing $Z$
Thus we get 120 isolated fixed points in $U$

Example: if $Z=\left\{p_{0}, p_{1}, p_{2}\right\}$, then $I(Z)=(X Y, X Z, Y Z)$ and $[\mathcal{F}]$ is represented by the matrices

$$
\left[\begin{array}{ccc}
Y & 0 & X \\
0 & Z & X \\
X^{i} Y^{j} Z^{k} & 0 & 0
\end{array}\right],\left[\begin{array}{ccc}
Y & 0 & X \\
0 & Z & X \\
0 & X^{i} Y^{j} & 0
\end{array}\right],\left[\begin{array}{ccc}
Y & 0 & X \\
0 & Z & X \\
0 & 0 & Y^{j} Z^{k}
\end{array}\right]
$$

Likewise, we get 42 fixed points in $M_{1}$ of the form $\left[\mathcal{O}_{Q}(-P)(1)\right]$, where $P$ is one of the $p_{i}$ and $Q$ is a $T$-invariant quartic passing through $P$.

Example: if $P=p_{2}$, then $\mathcal{F}$ is represented by the matrices

$$
\left[\begin{array}{cc}
X^{i} Y^{j} Z^{k} & X \\
0 & Y
\end{array}\right], \quad\left[\begin{array}{cc}
0 & X \\
X^{i} Z^{k} & Y
\end{array}\right]
$$

$M_{L, C}$ contains fixed points only if $L$ and $C$ are $T$-invariant. We claim that in this case $M_{L, C} \simeq \mathbb{A}^{2}$. For instance, if $L=\{X=0\}$ and
$C=\left\{X^{i} Y^{j} Z^{k}=0\right\}$, then $M_{L, C}$ has parametrisation

$$
\left[\begin{array}{ccc}
X & 0 & -Y \\
0 & X & -Z \\
q_{1}-(b Y+c Z) Z & q_{2}+(b Y+c Z) Y & q_{3}
\end{array}\right], \quad a, b \in \mathbb{C}
$$

where $q_{1}, q_{2}, q_{3}$ are fixed quadratic forms satisfying $q_{1} Y+q_{2} Z+q_{3} X=X^{i} Y^{j} Z^{k}$.

Action on $M_{L, C}$ given by $t(a, b)=\left(t_{0}^{-i} t_{1}^{2-j} t_{2}^{1-k} a, t_{0}^{-i} t_{1}^{1-j} t_{2}^{2-k} b\right)$
We get an isolated fixed point $(0,0)$ unless $(i, j, k)=(0,2,1)$ or $(0,1,2)$, in which case we get an affine line of fixed points $(a, 0), a \in \mathbb{C}$, resp. $(0, b), b \in \mathbb{C}$.

We get 24 isolated fixed points and 3 affine lines of fixed points in $M_{0} \backslash U$

## Topology of $\mathrm{M}_{\mathbb{P}^{2}}(4,1)$

Theorem (J. Choi, M. Maican)
The fixed point locus of $\mathrm{M}_{\mathbb{P}^{2}}(4,1)$ consists of 180 isolated points and 6 one-dimensional components isomorphic to $\mathbb{P}^{1}$. Furthermore, the integral homology of $\mathrm{M}_{\mathbb{P}^{2}}(4,1)$ has no torsion and its Poincaré polynomial is

$$
\begin{aligned}
P_{\mathrm{M}_{\mathbb{P}^{2}}(4,1)}(x)= & 1+2 x^{2}+6 x^{4}+10 x^{6}+14 x^{8}+15 x^{10}+ \\
& 16 x^{12}+16 x^{14}+16 x^{16}+16 x^{18}+16 x^{20}+16 x^{22}+ \\
& 15 x^{24}+14 x^{26}+10 x^{28}+6 x^{30}+2 x^{32}+x^{34}
\end{aligned}
$$

The Hodge numbers $h^{p q}$ are zero if $p \neq q$. The Picard group is $\mathbb{Z}^{2}$. The fundamental group $\pi_{1}$ is trivial. Moreover, $\mathrm{M}_{\mathbb{P}^{2}}(4,1)$ is rational.

## Białynicki-Birula theory

$X=$ smooth projective variety with a $\mathbb{C}^{*}$-action. Let $X_{1}, \ldots, X_{r}$ be the irreducible components of the fixed locus. They are smooth.

For each $i$ we have a decomposition of the restricted tangent bundle

$$
\mathrm{T}_{X \mid X_{i}}=\mathrm{T}_{i}^{+} \oplus \mathrm{T}_{i}^{0} \oplus \mathrm{~T}_{i}^{-}
$$

into subbundles on which $\mathbb{C}^{*}$ acts with positive, zero, negative weights. Denote $p(i)=\operatorname{rank}\left(\mathrm{T}_{i}^{+}\right)$and $n(i)=\operatorname{rank}\left(\mathrm{T}_{i}^{-}\right)$.

Theorem (Homology basis formula)
For any integer $m$ with $0 \leq m \leq 2 \operatorname{dim}(X)$, we have a decomposition

$$
\mathrm{H}_{m}(X, \mathbb{Z}) \simeq \bigoplus_{1 \leq i \leq r} \mathrm{H}_{m-2 p(i)}\left(X_{i}, \mathbb{Z}\right) \simeq \bigoplus_{1 \leq i \leq r} H_{m-2 n(i)}\left(X_{i}, \mathbb{Z}\right)
$$

Reason: we have a decomposition of $X$ into plus cells

$$
X=X_{1}^{+} \cup \ldots \cup X_{r}^{+}, \quad X_{i}^{+}=\left\{x \in X \mid \lim _{t \rightarrow 0} t x \in X_{i}\right\}
$$

and a decomposition into minus cells

$$
X=X_{1}^{-} \cup \ldots \cup X_{r}^{-}, \quad X_{i}^{-}=\left\{x \in X \mid \lim _{t \rightarrow \infty} t x \in X_{i}\right\}
$$

$X_{i}^{+}$and $X_{i}^{-}$are topological fiber bundles over $X_{i}$ with fiber $\mathbb{C}^{p(i)}$ and $\mathbb{C}^{n(i)}$ Thus, the Poincaré polynomial of $X$ is

$$
P_{X}(x)=\sum_{i=1}^{r} P_{X_{i}}(x) x^{2 p(i)}=\sum_{i=1}^{r} P_{X_{i}}(x) x^{2 n(i)}
$$

The Homology Basis Formula respects the Hodge decomposition:

$$
\mathrm{H}^{p}\left(X, \Omega^{q}\right)=\bigoplus_{1 \leq i \leq r} \mathrm{H}^{p-p(i)}\left(X_{i}, \Omega_{X_{i}}^{q-p(i)}\right)=\bigoplus_{1 \leq i \leq r} \mathrm{H}^{p-n(i)}\left(X_{i}, \Omega_{X_{i}}^{q-n(i)}\right)
$$

If $\mathrm{h}^{p q}\left(X_{i}\right)=0$ for all $1 \leq i \leq r$ and $p \neq q$, then $h^{p q}(X)=0$ for $p \neq q$.
The $\mathbb{C}^{*}$-action on $\mathrm{M}_{\mathbb{P}^{2}}(4,1)$ will be induced by a one-parameter subgroup $\lambda: \mathbb{C}^{*} \rightarrow T$. We will choose $\lambda$ such that the sets of fixed points coincide: $\mathrm{M}_{\mathbb{P}^{2}}(4,1)^{\lambda}=\mathrm{M}_{\mathbb{P}^{2}}(4,1)^{T}$. This is equivalent to

$$
\langle\chi, \lambda\rangle \neq 0
$$

for all $\chi \in \chi^{*}(T)$ that appear in the weight-decomposition of $\mathrm{T}_{i}^{+}$and $\mathrm{T}_{i}^{-}$ for all $1 \leq i \leq r$.

## Action of $T$ on the tangent spaces at the fixed points

$[\mathcal{F}] \in M_{0}$ is $T$-fixed, $\mathcal{F}=\operatorname{Coker}(\varphi), \varphi \in W_{0}$.
Assume that there are morphisms of groups

$$
u:\left(\mathbb{C}^{*}\right)^{3} \rightarrow \operatorname{Aut}(3 \mathcal{O}(-2)), \quad v:\left(\mathbb{C}^{*}\right)^{3} \rightarrow \operatorname{Aut}(2 \mathcal{O}(-1) \oplus \mathcal{O})
$$

such that $t \varphi=v(t) \varphi u(t)$ for all $t \in\left(\mathbb{C}^{*}\right)^{3}$. Let $\rho: W_{0} \rightarrow M_{0}$ be the quotient map, $W=\mathrm{T}_{\varphi} W_{0}=\operatorname{Hom}(3 \mathcal{O}(-2), 2 \mathcal{O}(-1) \oplus \mathcal{O}), \theta: W \rightarrow W$ the map $\psi \mapsto v(t) \psi u(t)$. Then:

$$
\begin{aligned}
d\left(\mu_{t}\right)_{[\mathcal{F}]}\left(d \rho_{\varphi}(w)\right) & =d \rho_{(t \varphi)}\left(d\left(\mu_{t}\right)_{\varphi}(w)\right) & & \text { because } \mu_{t} \circ \rho=\rho \circ \mu_{t} \\
& =d \rho_{(\theta \varphi)}(t w) & & \text { because } \mu_{t}: W \rightarrow W \text { is linear } \\
& =d \rho_{\varphi}\left(d\left(\theta^{-1}\right)_{(\theta \varphi)}(t w)\right) & & \text { because } \rho \circ \theta=\rho \\
& =d \rho_{\varphi}\left(\theta^{-1}(t w)\right) & & \text { because } \theta^{-1}: W \rightarrow W \text { is linear }
\end{aligned}
$$

$T$-action on $W$ given by $t \star w=v(t)^{-1}(t w) u(t)^{-1}$
$T$-action on $\mathrm{T}_{[\varphi]} \mathrm{M}_{\mathbb{P}^{2}}(4,1)=W / \mathrm{T}_{\varphi}\left(G_{0} \varphi\right)$ given by $t[w]=[t \star w]$
$G_{0} \rightarrow G_{0} \varphi,(g, h) \mapsto h \varphi g^{-1}$ is an isomorphism because $\operatorname{Stab}_{G_{0}}(\varphi)=\{e\}$
Differential of this map at $e$ is $(A, B) \mapsto B \varphi-\varphi A$
$\star$ induces the action $t(A, B)=\left(u(t)(t A) u(t)^{-1}, v(t)^{-1}(t B) v(t)\right)$
For all fixed $\mathcal{F}$ we can choose $\varphi$ such that $u, v$ exist and are diagonal:

$$
u(t)=\left[\begin{array}{ccc}
u_{1} & 0 & 0 \\
0 & u_{2} & 0 \\
0 & 0 & u_{3}
\end{array}\right], \quad v(t)=\left[\begin{array}{ccc}
v_{1} & 0 & 0 \\
0 & v_{2} & 0 \\
0 & 0 & v_{3}
\end{array}\right]
$$

$\{x, y, z\}$ standard basis for $\chi^{*}\left(\left(\mathbb{C}^{*}\right)^{3}\right)$
$s^{\prime}=\{i x+j y+k z, i, j, k \in \mathbb{Z}, i+j+k=I, i, j, k \geq 0\}$
Tables of weights for the $T$-action on $W$, resp. on $\mathrm{T}_{\varphi}\left(G_{0} \varphi\right)$

$$
\begin{array}{lll}
-v_{1}-u_{1}+s^{1} & -v_{1}-u_{2}+s^{1} & -v_{1}-u_{3}+s^{1} \\
-v_{2}-u_{1}+s^{1} & -v_{2}-u_{2}+s^{1} & -v_{2}-u_{3}+s^{1} \\
-v_{3}-u_{1}+s^{2} & -v_{3}-u_{2}+s^{2} & -v_{3}-u_{3}+s^{2}
\end{array}
$$

| 0 | $u_{1}-u_{2}$ | $u_{1}-u_{3}$ | 0 | $-v_{1}+v_{2}$ |
| :--- | :--- | :--- | :--- | :--- |
| $u_{2}-u_{1}$ | 0 | $u_{2}-u_{3}$ | $-v_{2}+v_{1}$ | 0 |
| $u_{3}-u_{1}$ | $u_{3}-u_{2}$ | 0 | $-v_{3}+v_{1}+s^{1}$ | $-v_{3}+v_{2}+s^{1}$ |

## Example


$v_{1}=v_{2}=x, v_{3}=(i+1) x+(j-1) y+k z, u_{1}=y-x, u_{2}=z-x, u_{3}=0$
Subtracting the second list of weights from the first list we get the list
$\{-(1+i) x-j y-(1+k) z+\{3 x+y, 2 x+2 y, x+3 y, 3 x+z, 2 x+2 z, x+3 z$,
$3 y+z, 2 y+2 z, y+3 z, 2 x+y+z, x+2 y+z, x+y+2 z\}$,
$x-y, x-z, y-x, y-z, z-x, z-y\} \backslash\{0\}$
$[\mathcal{F}] \in M_{1}$ is $T$-fixed, $\mathcal{F}=\operatorname{Coker}(\varphi), \varphi \in W_{1}$.
We can choose $\varphi$ such that there are diagonal morphisms of groups

$$
u:\left(\mathbb{C}^{*}\right)^{3} \rightarrow \operatorname{Aut}(\mathcal{O}(-3) \oplus \mathcal{O}(-1)), \quad v:\left(\mathbb{C}^{*}\right)^{3} \rightarrow \operatorname{Aut}(2 \mathcal{O})
$$

with $t \varphi=v(t) \varphi u(t)$ for all $t$. Weights for the action of $T$ on $\mathrm{T}_{\varphi} W_{1}$

$$
\begin{array}{ll}
-v_{1}-u_{1}+s^{3} & -v_{1}-u_{2}+s^{1} \\
-v_{2}-u_{1}+s^{3} & -v_{2}-u_{2}+s^{1}
\end{array}
$$

Weights for the action of $T$ on $\mathrm{T}_{\varphi}\left(G_{1} \varphi\right)$

$$
\begin{array}{lll}
0 & -v_{1}+v_{2} & 0 \\
-v_{2}+v_{1} & 0 & u_{2}-u_{1}+s^{2}
\end{array}
$$

The normal space to $M_{1}$ at $\varphi$ is isomorphic to $H^{0}(\mathcal{F})^{*} \otimes \mathrm{H}^{1}(\mathcal{F})$ and has weights $u_{1}+v_{1}-x-y-z, u_{1}+v_{2}-x-y-z$.

We can choose $\lambda: \mathbb{C}^{*} \rightarrow T, \lambda(c)=\left(1, c, c^{5}\right)$
$p(i)=$ number of characters $\chi$ appearing in the weight decomposition of $\mathrm{T}_{i}^{+} \oplus \mathrm{T}_{i}^{-}$such that $\langle\chi, \lambda\rangle>0$

$$
P_{\mathrm{M}_{\mathbb{P}^{2}}(4,1)}(x)=\sum_{X_{i}=\text { point }} x^{2 p(i)}+\sum_{x_{i}=\text { line }}\left(1+x^{2}\right) x^{2 p(i)}
$$

It turns out that the source $S$, i.e. the $X_{i}$ for which $n(i)=0$, is a point, hence the moduli space contains an open subset isomorphic to an affine space, so it is rational. Also, $\pi_{1} \simeq \pi_{1}(S)$, so $\pi_{1}=\{1\}$. We have the exact sequence

$$
0 \rightarrow \mathbb{Z}^{b_{2}} \rightarrow \operatorname{Pic}\left(\mathrm{M}_{\mathbb{P}^{2}}(4,1)\right) \rightarrow \operatorname{Pic}(S) \rightarrow 0
$$

hence $\operatorname{Pic}\left(\mathrm{M}_{\mathbb{P}^{2}}(4,1)\right) \simeq \mathbb{Z}^{2}$.

## Summary for $\mathrm{M}_{\mathbb{P}^{2}}(5,1)$

| stratum | cohomological conditions | subset $W_{i}$ of morphisms $\varphi$ |  |
| :---: | :---: | :---: | :---: |
| $M_{0}$ | $\begin{aligned} \mathrm{h}^{0}(\mathcal{F}(-1)) & =0 \\ \mathrm{~h}^{1}(\mathcal{F}) & =0 \\ \mathrm{~h}^{0}\left(\mathcal{F} \otimes \Omega^{1}(1)\right) & =0 \end{aligned}$ | $\begin{gathered} 4 \mathcal{O}(-2) \xrightarrow{\varphi} 3 \mathcal{O}(-1) \oplus \mathcal{O} \\ \varphi \text { is injective } \\ \varphi_{11} \text { is semi-stable } \end{gathered}$ | 0 |
| $M_{1}$ | $\begin{aligned} \mathrm{h}^{0}(\mathcal{F}(-1)) & =0 \\ \mathrm{~h}^{1}(\mathcal{F}) & =1 \\ { }^{0}\left(\mathcal{F} \otimes \Omega^{1}(1)\right) & =0 \end{aligned}$ | $\mathcal{O}(-3) \oplus \mathcal{O}(-2) \xrightarrow{\varphi} 2 \mathcal{O}$ <br> $\varphi$ is injective <br> $\varphi_{12}$ and $\varphi_{22}$ are <br> linearly independent two-forms | 2 |
| $M_{2}$ | $\begin{aligned} \mathrm{h}^{0}(\mathcal{F}(-1)) & =0 \\ \mathrm{~h}^{1}(\mathcal{F}) & =1 \\ \mathrm{~h}^{0}\left(\mathcal{F} \otimes \Omega^{1}(1)\right) & =1 \end{aligned}$ | $\begin{gathered} \mathcal{O}(-3) \oplus \mathcal{O}(-2) \oplus \mathcal{O}(-1) \xrightarrow{\varphi} \mathcal{O}(-1) \oplus 2 \mathcal{O} \\ \varphi \text { is injective } \\ \varphi_{13}=0 \\ \varphi_{12} \neq 0, \varphi_{12} \nmid \varphi_{11} \end{gathered}$ <br> $\varphi_{23}$ has linearly independent entries | 3 |
| $M_{3}$ | $\begin{aligned} \mathrm{h}^{0}(\mathcal{F}(-1)) & =1 \\ \mathrm{~h}^{1}(\mathcal{F}) & =2 \\ \mathrm{~h}^{0}\left(\mathcal{F} \otimes \Omega^{1}(1)\right) & =3 \end{aligned}$ | $2 \mathcal{O}(-3) \xrightarrow{\varphi} \mathcal{O}(-2) \oplus \mathcal{O}(1)$ <br> $\varphi$ is injective <br> $\varphi_{11}$ has linearly independent entries | 5 |

Kronecker moduli space

$$
\mathrm{N}(m, p, q)=\operatorname{Hom}\left(\mathbb{C}^{p}, \mathbb{C}^{m} \otimes \mathbb{C}^{q}\right)^{s s} / / \mathrm{GL}(p, \mathbb{C}) \times \mathrm{GL}(q, \mathbb{C})
$$

$M_{0}$ is a proper open subset inside a fibre bundle with base $N(3,4,3)$ and fibre $\mathbb{P}^{14}$
$M_{1}$ is a proper open subset inside a fibre bundle with base $\operatorname{Grass}\left(2, \mathbb{C}^{6}\right)$ and fibre $\mathbb{P}^{16}$
$M_{2}$ is a proper open subset inside a fibre bundle with fibre $\mathbb{P}^{17}$ and base $\operatorname{Hilb}_{\mathbb{P}^{2}}(2) \times \mathbb{P}^{2}$,
$M_{3}$ is the universal quintic in $\mathbb{P}^{2} \times \mathbb{P}\left(S^{5} V^{*}\right)$
Geometric quotients: $M_{i}=W_{i} / G_{i}$

## Theorem

The $T$-fixed locus of $\mathrm{M}_{\mathbb{P}^{2}}(5,1)$ consists of 1407 isolated points, 132 projective lines and six irreducible components of dimension two that are isomorphic to $\mathbb{P}^{1} \times \mathbb{P}^{1}$. The integral homology groups of $\mathrm{M}_{\mathbb{P}^{2}}(5,1)$ have no torsion and its Poincaré polynomial is

$$
\begin{aligned}
P(x)= & x^{52}+2 x^{50}+6 x^{48}+13 x^{46}+26 x^{44}+45 x^{42}+68 x^{40}+87 x^{38}+ \\
& 100 x^{36}+107 x^{34}+111 x^{32}+112 x^{30}+ \\
& 113 x^{28}+113 x^{26}+113 x^{24}+ \\
& 112 x^{22}+111 x^{20}+107 x^{18}+100 x^{16}+ \\
& 87 x^{14}+68 x^{12}+45 x^{10}+26 x^{8}+13 x^{6}+6 x^{4}+2 x^{2}+1 .
\end{aligned}
$$

The Euler characteristic of $\mathrm{M}_{\mathbb{P}^{2}}(5,1)$ is 1695 and its Hodge numbers satisfy the relation $\mathrm{h}^{p q}=0$ if $p \neq q$. The Picard group is $\mathbb{Z}^{2}$. The fundamental group $\pi_{1}$ is trivial. Moreover, $\mathrm{M}_{\mathbb{P}^{2}}(5,1)$ is rational.

## Summary for $\mathrm{M}_{\mathbb{P}^{2}}(5,3)$

| stratum | cohomological conditions | subset $W_{i}$ of morphisms $\varphi$ | codim. |
| :---: | :---: | :---: | :---: |
| $M_{0}$ | $\begin{aligned} \mathrm{h}^{0}(\mathcal{F}(-1)) & =0 \\ \mathrm{~h}^{1}(\mathcal{F}) & =0 \\ \mathrm{~h}^{0}\left(\mathcal{F} \otimes \Omega^{1}(1)\right) & =1 \end{aligned}$ | $2 \mathcal{O}(-2) \oplus \mathcal{O}(-1) \xrightarrow{\varphi} 3 \mathcal{O}$ <br> $\varphi$ is injective <br> $\varphi$ is not equivalent to $\left[\begin{array}{lll} \star & \star & \star \\ \star & \star & 0 \\ \star & \star & 0 \end{array}\right] \text { or }\left[\begin{array}{lll} \star & \star & \star \\ \star & \star & \star \\ \star & 0 & 0 \end{array}\right]$ | 0 |
| $M_{1}$ | $\begin{aligned} \mathrm{h}^{0}(\mathcal{F}(-1)) & =0 \\ \mathrm{~h}^{1}(\mathcal{F}) & =0 \\ \mathrm{~h}^{0}\left(\mathcal{F} \otimes \Omega^{1}(1)\right) & =2 \end{aligned}$ | $2 \mathcal{O}(-2) \oplus 2 \mathcal{O}(-1) \xrightarrow{\varphi} \mathcal{O}(-1) \oplus 3 \mathcal{O}$ <br> $\varphi$ is injective, $\varphi_{12}=0, \varphi_{11}$ has <br> linearly independent entries, $\varphi_{22}$ has linearly independent maximal minors | 2 |
| $M_{2}$ | $\begin{aligned} \mathrm{h}^{0}(\mathcal{F}(-1)) & =1 \\ \mathrm{~h}^{1}(\mathcal{F}) & =0 \\ \mathrm{~h}^{0}\left(\mathcal{F} \otimes \Omega^{1}(1)\right) & =3 \end{aligned}$ | $3 \mathcal{O}(-2) \xrightarrow{\varphi} 2 \mathcal{O}(-1) \oplus \mathcal{O}(1)$ <br> $\varphi$ is injective, $\varphi_{11}$ has <br> linearly independent maximal minors | 3 |
| $M_{3}$ | $\begin{aligned} \mathrm{h}^{0}(\mathcal{F}(-1)) & =1 \\ \mathrm{~h}^{1}(\mathcal{F}) & =1 \\ \mathrm{~h}^{0}\left(\mathcal{F} \otimes \Omega^{1}(1)\right) & =4 \end{aligned}$ | $\mathcal{O}(-3) \oplus \mathcal{O}(-1) \xrightarrow{\varphi} \mathcal{O} \oplus \mathcal{O}(1)$ <br> $\varphi$ is injective, $\varphi_{12} \neq 0, \varphi_{12} \nmid \varphi_{22}$ | 4 |

$M_{1}$ is a proper open subset inside a fibre bundle over $\mathbb{P}^{2} \times N(3,2,3)$ with fibre $\mathbb{P}^{16}$
$M_{2}$ is a proper open subset inside a fibre bundle over $N(3,3,2)$ with fibre $\mathbb{P}^{17}$
$M_{3}$ is isomorphic to the Hilbert flag scheme of quintic curves in $\mathbb{P}^{2}$ containing zero-dimensional subschemes of length 2

Geometric quotients: $M_{i}=W_{i} / G_{i}$

## Theorem

The $T$-fixed point locus of $\mathrm{M}_{\mathbb{P}^{2}}(5,3)$ consists of 1329 isolated points, 174 projective lines, and 3 irreducible components of dimension two that are isomorphic to the surface obtained by blowing up $\mathbb{P}^{1} \times \mathbb{P}^{1}$ at three points on the diagonal, then blowing down the strict transform of the diagonal. The integral homology groups of $\mathrm{M}_{\mathbb{P}^{2}}(5,3)$ have no torsion and its Poincaré polynomial is

$$
\begin{aligned}
P(x)= & x^{52}+2 x^{50}+6 x^{48}+13 x^{46}+26 x^{44}+45 x^{42}+68 x^{40}+87 x^{38}+ \\
& 100 x^{36}+107 x^{34}+111 x^{32}+112 x^{30}+ \\
& 113 x^{28}+113 x^{26}+113 x^{24}+ \\
& 112 x^{22}+111 x^{20}+107 x^{18}+100 x^{16}+ \\
& 87 x^{14}+68 x^{12}+45 x^{10}+26 x^{8}+13 x^{6}+6 x^{4}+2 x^{2}+1 .
\end{aligned}
$$

The Euler characteristic of $\mathrm{M}_{\mathbb{P}^{2}}(5,3)$ is 1695 and its Hodge numbers satisfy the relation $\mathrm{h}^{p q}=0$ if $p \neq q$. The Picard group is $\mathbb{Z}^{2}$. The fundamental group $\pi_{1}$ is trivial. Moreover, $\mathrm{M}_{\mathbb{P}^{2}}(5,3)$ is rational.

The open stratum $M_{0} \subset \mathrm{M}_{\mathbb{P}^{2}}(r, r-1)$ looks as in the examples above: cokernels of

$$
\varphi: \mathcal{O}(-2) \oplus(r-2) \mathcal{O}(-1) \rightarrow(r-1) \mathcal{O}, \quad \varphi \text { injective, } \varphi_{12} \text { semistable. }
$$

$\operatorname{Hilb}_{\mathbb{P}^{2}}(I, r)=$ relative Hilbert scheme of $I$ points on a curve of degree $r$
$I=(r-2)(r-1) / 2$
$\operatorname{Hilb}_{\mathbb{P}^{2}}^{0}(I, r)=$ open subset given by the condition that the points do not lie on a curve of degree $r-3$. It is a projective bundle over $\operatorname{Hilb}_{\mathbb{P}^{2}}^{0}(/)$ (subset defined by the same condition), so it is rational.

The open subset of $M_{0}$ given by the condition that the maximal minors of $\varphi_{11}$ have no common factor is isomorphic to $\operatorname{Hilb}_{\mathbb{P}^{2}}^{0}(I, r)$

## Proposition

$\mathrm{M}_{\mathbb{P}^{2}}(r, r-1)$ and $\operatorname{Hilb}_{\mathbb{P}^{2}}(I, r)$ are birational so $\mathrm{M}_{\mathbb{P}^{2}}(r, r-1)$ is rational.

Assume $2 \leq r \leq n . M_{0} \subset \mathrm{M}(n+r, n)$ is the open subset of sheaves $\mathcal{F}$ that have smooth schematic support and that satisfy the conditions

$$
\mathrm{H}^{0}(\mathcal{F}(-1))=0, \quad \mathrm{H}^{1}\left(\mathcal{F} \otimes \Omega^{1}(1)\right)=0, \quad \mathrm{H}^{1}(\mathcal{F})=0
$$

$I=\frac{1}{2}(n+r)(n+r-1)-n$
$H_{0} \subset \operatorname{Hilb}(I, n+r)$ is the set of pairs $(Z, C)$ such that $C$ is smooth and $\mathcal{I}_{Z} \subset \mathcal{O}_{\mathbb{P}^{2}}$ satisfies the cohomological conditions
$\mathrm{H}^{0}\left(\mathcal{I}_{Z}(n+r-3)\right)=0, \quad \mathrm{H}^{1}\left(\mathcal{I}_{Z}(n+r-1) \otimes \Omega^{1}\right)=0, \quad \mathrm{H}^{1}\left(\mathcal{I}_{Z}(n+r-2)\right)=0$.
$\mathcal{J}_{Z}=$ the ideal sheaf of $Z$ in $C$
Proposition
Assume that $2 \leq r<\frac{n(\sqrt{5}-1)}{2}$. Then $\mathrm{M}_{\mathbb{P}^{2}}(n+r, n)$ is stably rational.

## Proof.

We have a surjective morphism $H_{0} \rightarrow M_{0}$ given by $(Z, C) \mapsto\left[\mathcal{J}_{Z} \otimes \mathcal{O}(n+r-2)\right]$. Its generic fiber is $\mathbb{P}^{r-1}$.

## Thank you!

