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Cohomology representation of automorphisms

Let X be a compact complex manifold and Aut(X ) the holomorphic
automorphism group.

The cohomology representation of the automorphism group is

Aut(X )→ Aut(H∗(X ,R))op

where H∗(X ,R) = cohomology ring with coefficients in a ring R.

In this talk, set R = C.

Problem

Study the cohomology representation.

Denote by Aut0(X ) the kernel.
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First examples

Aut(Pn) acts trivially on H∗(Pn,C), so Aut0(Pn) = Aut(Pn).

Let T be a complex torus. Then Aut(T ) = T o G with G the subgroup
of automorphisms fixing the origin.

An automorphism σ acts trivially on H∗(T ,C).

⇔ it acts trivially on H1(T ,C).

⇔ σ is a translation.

So Aut0(T ) = T .

This can be easily explained: both Aut(Pn) and T are the identity
components of the respective automorphism groups, hence act trivially on
cohomology.
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Curves of general type

Let C be a curve of genus g(C ) ≥ 2. Then Aut(C ) is finite.

Fact

Aut(C ) acts faithfully on H∗(C ,C).

Proof I.

Let σ ∈ Aut0(C ).

Then H∗(C/σ,C) = H∗(C ,C)σ = H∗(C ,C), so e(C ) = e(C/σ)
where e(·) is the topological Euler characteristic.

On the other hand, by the Riemann–Hurwitz formula,

e(C ) = |σ|e(C/σ)− deg R

where R is the ramification divisor.

It follows that |σ| = 1, i.e., σ = id.
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Another proof of faithfulness for curves with g ≥ 2

Proof II.

Let σ ∈ Aut0(C ).

Let Γσ be the graph of σ in C × C and ∆ the diagonal. Then

[Γσ] · [∆] = [∆]2 = 2− 2g(C ) < 0.

In particular, Fix(σ) = Γσ ∩∆ 6= ∅.
H1(C ,C) = H1,0(C )⊕ H0,1(C ), so σ acts trivially on H0,1(C ).

Therefore σ acts trivially on J(C ), the Jacobian of C , and we have

C
σ //

p�

α !!

CnN

α}}
J(C )

We infer that σ = id.
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Broughton’s theorem

Let G be a finite group of automorphisms of an algebraic curve C and χ
the character of the G -representation on H1(C ,C). Then

χ = 2χ0 + [2g(C/G )− 2 + t]ρ−
t∑

i=1

ρi

where

χ0 is the principle representation, i.e., χ0(σ) = 1 for any σ ∈ G ,

ρ is the regular representation of G ,

t is the number of branch points of C → C/G ,

ρi is the permutation represenation of G on the orbit over the i-th
branch point for 1 ≤ i ≤ t.
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Known results on surfaces

Theorem (Pjateckǐi-Šapiro–Šafarevič’71, Peters’80)

Let S be a minimal projective surface. Then Aut0(S) = Aut0(S), the
identity component of Aut(S), except when S is

1 a bi-elliptic surface

2 an Enriques surface

3 a properly elliptic surface with χ(OS) = 0 or pg (S) = 0

4 a surface of general type

Moreover, exceptions in 1 , 2 and 3 are constructed.

Theorem (Mukai–Namikawa’84)

Let S be an Enriques surface. Then |Aut0(S)| ≤ 4 with equality if and
only if the surface is as contructed in an example.
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A non-example of surface of general type

Let S = C × D, where C and D are curves of genera ≥ 2. Then

Aut0(S) = {id}.

Look at the Albanese map S → Alb(S) = J(C )× J(D), which is an
embedding. For any σ ∈ Aut0(S) we have a commutative diagram

S
σ //

q�

α ""

SmM

α||
Alb(S)

from which follows σ = id.
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Surfaces isogenous to a product

Definition

A surface of general type S is isogenous to a product if there exists an
étale cover C × D → S , where C and D are curves of genera ≥ 2.

Lemma (Catanese)

The étale cover C × D → S can be chosen to be Galois so that
S = (C × D)/G where G < Aut(C × D) acts freely.

If G < Aut(C )×Aut(D) then the second cohomology of S decomposes:

H2(S ,C) = H2(C × D,C)G = W
⊕

[⊕χH1(C ,C)χ ⊗ H1(D,C)χ̄]G

where

W = [H2(C ,C)⊗ H0(D,C)]
⊕

[H0(C ,C)⊗ H2(D,C)],

χ runs through all irreducible characters of G .
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Surfaces of general type: the main results

Theorem (Cai–Liu–Zhang’13, Cai–Liu’13, Liu’15)

Let S be a minimal surface of general type.

If q(S) ≥ 3 then Aut0(S) is trivial.

If q(S) = 2 then |Aut0(S)| ≤ 2 with equality if and only if S is
certain explicitly constructed surface isogenous to a product.

If q(S) = 1 then |Aut0(S)| ≤ 4 with equality only if S is a surface
isogenous to a product.

Remember q(S) := dimC H1(S ,OS) is the irregularity of the surface.
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Idea of the proof

Find reference spaces for the action of Aut0(S):

S

��

��
ϕ|KS |

��

X

|| ""
Alb(S) Ppg−1

where
I X = S/Aut0(S) is the quotient surface,
I ϕ|KS | : S 99K Ppg−1 is the canonical map.

Analyze(!) these maps, using Lefschetz fixed point formula, generic
vanishing theory, BMY inequality, Severi inequality etc.
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Explanation for the non-trivial Aut0(S)?

Let S be a minimal surface of general type.

Fact

The identity component of Aut(S) is trivial.

Question

Does Aut0(S) live in Diff0(S), the identity component of the
diffeomorphism group?
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Surfaces isogenous to a product are rigidified

Definition (Catanese’13)

A compact complex manifold X is rigidified if Diff0(X ) does not contain
any non-trivial (holomorphic) automorphisms.

Proposition (Cai–Liu–Zhang’13)

Let S be smooth projective surface. Assume that the universal cover of S
is a bounded domain in C2. Then S is rigidified. In particular, surfaces
isogenous to a product are rigidified.

Corollary

For those surfaces with

q(S) = 2 and |Aut0(S)| = 2, or

q(S) = 1 and |Aut0(S)| = 4

the group Aut0(S) is not contained in Diff0(S).
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Thank you!
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