– Chow stability and the Projectivisation of Stable Bundles –

Julien Keller
(Aix-Marseille University)
– Chow stability and the Projectivisation of Stable Bundles –

Julien Keller
(Aix-Marseille University)

Joint work with Julius Ross (University of Cambridge)
Set up - CSCK problem

M smooth complex projective manifold, $L \to M$ ample line bundle
Set up - CSCK problem

M smooth complex projective manifold, $L \to M$ ample line bundle
\[\exists h \in \text{Met}(L) \text{ such that } c_1(h) > 0 \]
Set up - CSCK problem

\(M \) smooth complex projective manifold, \(L \to M \) ample line bundle
\(\exists h \in \text{Met}(L) \) such that \(c_1(h) > 0 \)

Yau-Tian-Donaldson’s conjecture
\(\exists \omega \in c_1(L) \) Constant Scalar \(\iff \) \((M, L)\) is “stable”
Curvature Kähler metric on \(M \)
Set up - CSCK problem

\[M \] smooth complex projective manifold, \(L \to M \) ample line bundle
\[\exists h \in \text{Met}(L) \] such that \(c_1(h) > 0 \)

Yau-Tian-Donaldson's conjecture
\[\exists \omega \in c_1(L) \] Constant Scalar \(\iff \) \((M, L) \) is “stable”
Curvature Kähler metric on \(M \)

\(\iff \) Problem : what is the right definition of stability?
Set up - CSCK problem

\(M \) smooth complex projective manifold, \(L \to M \) ample line bundle
\(\exists h \in \text{Met}(L) \) such that \(c_1(h) > 0 \)

Yau-Tian-Donaldson’s conjecture
\(\exists \omega \in c_1(L) \) Constant Scalar \(\iff (M, L) \) is “stable”
Curvature Kähler metric on \(M \)

\(\iff \) Problem : what is the right definition of stability ?
Many candidates : Hilbert stability, Chow stability, asymptotic Hilbert/Chow stability, slope stability, \(K \)-stability, \(\overline{K} \)-stability, \(b \)-stability
Correspondence for vector bundles

E irreducible holomorphic hermitian vector bundle on (M, L), \(\omega \in c_1(L) > 0 \) Kähler. Then

\[\exists h \in Met(E) \text{ such that } \sqrt{-1} \Lambda \omega F_h = Const \times Id_E \iff E \text{ is Mumford-Takemoto stable wrt } L \]
Correspondence for vector bundles

E irreducible holomorphic hermitian vector bundle on (M, L), $\omega \in c_1(L) > 0$ Kähler. Then

$\exists h \in \text{Met}(E)$ such that $\Leftrightarrow E$ is Mumford-Takemoto stable wrt L

$\sqrt{-1} \Lambda_\omega F_h = \text{Const} \times \text{Id}_E$

Definition

E Mumford-Takemoto (semi-)stable if \forall proper subsheaf $\mathcal{F} \subset E,$

$\mu(\mathcal{F}) < \mu(E)$ \quad (\leq)

Here $\text{Const} = \mu(E) = \frac{\deg_L(E)}{\text{rank}(E)}$

\leftrightarrow Many applications
A few words about Chow stability

$L \to M^n$ very ample line bundle. Embed $i : M \to \mathbb{P}^N$, image of degree $d = (L^n)/n!$. Consider the Chow variety

$$Z_M = \{ L \in Gr(N - n - 1, \mathbb{P}^N) \text{ s. t. } L \cap i(M) \neq \emptyset \}$$

Set $Gr' = Gr(N - n - 1, \mathbb{P}^N)$. Z_M has degree d and $Z_M = \{ f_M = 0 \}$ with $f_M \in H^0(Gr', \mathcal{O}_{Gr'}(d))$. Chow form of M is $[f_M] \in \mathbb{P}H^0(Gr', \mathcal{O}_{Gr'}(d))$
A few words about Chow stability

$L \to M^n$ very ample line bundle. Embed $i : M \to \mathbb{P}^N$, image of degree $d = (L^n)/n$! Consider the Chow variety

$$Z_M = \{ L \in Gr(N - n - 1, \mathbb{P}^N) \text{ s. t. } L \cap i(M) \neq \emptyset \}$$

Set $Gr' = Gr(N - n - 1, \mathbb{P}^N)$. Z_M has degree d and $Z_M = \{ f_M = 0 \}$ with $f_M \in H^0(Gr', \mathcal{O}_{Gr'}(d))$. Chow form of M is $[f_M] \in \mathbb{P}H^0(Gr', \mathcal{O}_{Gr'}(d)) \otimes SL(N + 1, \mathbb{C})$

Definition

(M, L) Chow stable if the Chow form G.I.T stable wrt $SL(N + 1, \mathbb{C})$.
A few words about Chow stability

$L \to M^n$ very ample line bundle. Embed $i : M \to \mathbb{P}^N$, image of degree $d = (L^n)/n$!

Consider the Chow variety

$$Z_M = \{ L \in Gr(N-n-1, \mathbb{P}^N) \text{ s. t. } L \cap i(M) \neq \emptyset \}$$

Set $Gr' = Gr(N-n-1, \mathbb{P}^N)$.

Z_M has degree d and $Z_M = \{ f_M = 0 \}$ with $f_M \in H^0(Gr', \mathcal{O}_{Gr'}(d))$.

\rightarrow Chow form of M is $[f_M] \in \mathbb{P}H^0(Gr', \mathcal{O}_{Gr'}(d)) \otimes SL(N+1, \mathbb{C})$

Definition

(M, L) Chow stable if the Chow form G.I.T stable wrt $SL(N+1, \mathbb{C})$.

Denote $L^k = L \otimes^k$. $N = N_k = h^0(M, L^k)$.

Definition

(M, L) Asymptotically Chow stable (A-Chow stable) if $\forall k \gg 0$,

(M, L^k) Chow stable.

\rightarrow Difficult to check / Few examples
A few words about K-stability

Definition
A test-configuration $(\mathcal{M}, \mathcal{L})$ is an equivariant flat family $\mathcal{M} \to \mathbb{C}$ of schemes with a fibrewise ample line bundle \mathcal{L} and a \mathbb{C}^* action on \mathcal{M} such that for $\forall t \neq 0$, $(\mathcal{M}_t, \mathcal{L}_t) \simeq (M, L)$.

$\mathcal{L}_0 \to \mathcal{M}_0$.

\mathbb{C}^* action on the central fiber $\mathcal{L}_0 \to \mathcal{M}_0$.
A few words about K-stability

Definition
A test-configuration $(\mathcal{M}, \mathcal{L})$ is an equivariant flat family $\mathcal{M} \to \mathbb{C}$ of schemes with a fibrewise ample line bundle \mathcal{L} and a \mathbb{C}^* action on \mathcal{M} such that for $\forall t \neq 0$, $(\mathcal{M}_t, \mathcal{L}_t) \simeq (\mathcal{M}, \mathcal{L})$.

$\mapsto \mathbb{C}^*$ action on $\tilde{V}_k = H^0(\mathcal{M}_0, \mathcal{L}_0^k)$ that has dimension d_k. Let w_k the induced weight on $\Lambda^{d_k} \tilde{V}_k$.

\mapsto Equivariant Riemann-Roch gives w_k, d_k.

One can write: $\frac{w_k}{kd_k} = F_0 + k^{-1} F_1 + k^{-2} F_2 + ...$

Definition (Tian, Donaldson, Stoppa)
(M, L) K-stable if \forall non trivial test-configuration $(\mathcal{M}, \mathcal{L})$, the Futaki-Donaldson invariant F_1 is > 0.
A few words about K-stability

Definition
A test-configuration $(\mathcal{M}, \mathcal{L})$ is an equivariant flat family $\mathcal{M} \to \mathbb{C}$ of schemes with a fibrewise ample line bundle \mathcal{L} and a \mathbb{C}^* action on \mathcal{M} such that for $\forall t \neq 0$, $(\mathcal{M}_t, \mathcal{L}_t) \simeq (M, L)$.

$\leftarrow \mathbb{C}^*$ action on $\tilde{V}_k = H^0(\mathcal{M}_0, \mathcal{L}_0^k)$ that has dimension d_k. Let w_k the induced weight on $\Lambda^{d_k} \tilde{V}_k$.

\leftarrow Equivariant Riemann-Roch gives w_k, d_k.
One can write: $\frac{w_k}{kd_k} = F_0 + k^{-1} F_1 + k^{-2} F_2 + ...$

Definition
(M, L) K-stable if \forall non trivial test-configuration $(\mathcal{M}, \mathcal{L})$, the Futaki-Donaldson invariant F_1 is > 0.

Theorem (Donaldson -2005)

$$\inf_{\omega \in \mathfrak{c}_1(L)} \| \text{scal}(\omega) - \overline{\text{scal}} \|_{L^2} \geq \sup_{\text{test-configs}} (-F_1)$$
A few words about K-stability

Definition
A test-configuration $(\mathcal{M}, \mathcal{L})$ is an equivariant flat family $\mathcal{M} \to \mathbb{C}$ of schemes with a fibrewise ample line bundle \mathcal{L} and a \mathbb{C}^* action on \mathcal{M} such that for $\forall t \neq 0$, $(\mathcal{M}_t, \mathcal{L}_t) \simeq (\mathcal{M}, \mathcal{L})$.

\leftrightarrow \mathbb{C}^* action on $\tilde{V}_k = H^0(\mathcal{M}_0, \mathcal{L}_0^k)$ that has dimension d_k. Let w_k the induced weight on $\Lambda^{d_k} \tilde{V}_k$.

\leftrightarrow Equivariant Riemann-Roch gives w_k, d_k.
One can write: $\frac{w_k}{kd_k} = F_0 + k^{-1}F_1 + k^{-2}F_2 + ...$

Definition
$(\mathcal{M}, \mathcal{L})$ K-stable if \forall non trivial test-configuration $(\mathcal{M}, \mathcal{L})$, the Futaki-Donaldson invariant F_1 is > 0.

Conjecture (Donaldson -2005)

$$
\inf_{\omega \in c_1(L)} \| \text{scal}(\omega) - \overline{\text{scal}} \|_{L^2} = \sup_{\text{test-configs}} (-F_1)
$$
A few words about K-stability

Some references about stability notions:

K-stability is VERY difficult to check
Examples / stability notions

- Curves (Chow stable by Mumford, K-stable by Odaka)
- Surfaces. Tian’s classification of Fano Kähler-Einstein surfaces ($L =$anti-canonical polarization).
- Homogeneous spaces, abelian varieties, toric manifolds, or more generally manifolds with symmetries (Wang & Zhu, Batyrev & Selivanova, Song, Donaldson, Ono, Podestá & Spiro, Dancer & Wang, Guan, Koiso & Sakane, Kempf, Wang,...)
- Hypersurfaces (Mumford, Lu, Tian,...)
- Projective bundles
Relations between stability notions (general case)

\[
\begin{align*}
\text{K-stable} & \Rightarrow \text{K-semistable} \\
\text{A-Chow stable} & \Rightarrow \text{A-Chow semistable} \\
\downarrow & \\
\text{A-Hilbert stable} & \Rightarrow \text{A-Hilbert semistable}
\end{align*}
\]
Relations between stability notions (general case)

\[\text{K-stable} \Rightarrow \text{K-semistable} \]

\[\text{A-Chow stable} \Rightarrow \text{A-Chow semistable} \]

\[\text{A-Hilbert stable} \Rightarrow \text{A-Hilbert semistable} \]

\[\text{Mabuchi} \]

For singular varieties : more complicated !
Relations between stability notions (general case)

Kähler-Einstein metric

\[\cap \]

CSCK metric

K-stable \implies K-semistable

\[\Downarrow \]

A-Chow

A-Chow stable \implies semistable

\[\Leftrightarrow \]

A-Hilbert

A-Hilbert stable \implies semistable

\[\Downarrow \]

Donaldson (only true for Aut(M, L) discrete)
Relations between stability notions (general case)

Kähler-Einstein metric

\[\cap \]

CSCK metric \(\Rightarrow \) K-stable \(\Rightarrow \) K-semistable

\[\Downarrow \]

A-Chow stable \(\Rightarrow \) semistable

\[\Uparrow \]

A-Hilbert stable \(\Rightarrow \) semistable

\[\Downarrow \]

Donaldson (only true for \(Aut(M, L) \) discrete)

\[\Rightarrow \]

Donaldson, Stoppa, Mabuchi
Relations between stability notions (general case)

Kähler-Einstein metric

\(\cap \)

CSCK metric \(\Rightarrow \) K-stable \(\Rightarrow \) K-semistable

\(\Downarrow \)

A-Chow stable \(\Rightarrow \) semistable

\(\Uparrow \)

A-Hilbert stable \(\Rightarrow \) semistable

\(\Downarrow \) Donaldson (only true for \(Aut(M, L) \) discrete)

\(\Rightarrow \) Donaldson, Stoppa, Mabuchi

\(\Downarrow \) Ono & Sano & Yotsutani, Della Vedova & Zuddas
Relations between stability notions (general case)

Kähler-Einstein metric

\[
\cap \quad \leftrightarrow
\]

CSCK metric \implies K-stable \implies K-semistable

\[
\downarrow \quad \downarrow \quad \uparrow \quad \uparrow
\]

A-Chow

A-Chow stable \implies semistable

\[
\uparrow \quad \uparrow
\]

A-Hilbert

A-Hilbert stable \implies semistable

\[
\downarrow \quad \downarrow
\]

Donaldson (only true for Aut(M, L) discrete)

\[
\implies
\]

Donaldson, Stoppa, Mabuchi

\[
\downarrow \quad \downarrow
\]

Ono & Sano & Yotsutani, Della Vedova & Zuddas

\[
\leftrightarrow
\]

Chen & Donaldson & Sun (L = -K_M)
Projectivisation of bundles

\(B\) is a base manifold of dimension \(n\), polarized by \(L\) \(\pi : E \to B\) holomorphic vector bundle of rank \(r\). Consider the projectivisation \(M = \mathbb{P}(E)\). Define

\[\mathcal{L}_m := \mathcal{O}_M(1) \otimes \pi^* L^m \]

\(\rightarrow\) Problem: Relate existence of metrics with special curvature properties for \(B\) and \(E\) to existence of metrics with special curvature properties on \((M, \mathcal{L}_m)\).

\(\rightarrow\) Problem: Do the same but for stability notions.
Projectivisation of bundles

B is a base manifold of dimension n, polarized by $L \pi : E \to B$ holomorphic vector bundle of rank r. Consider the projectivisation $M = \mathbb{P}(E)$. Define

$$\mathcal{L}_m := \mathcal{O}_M(1) \otimes \pi^* L^m$$

↔ Problem: Relate existence of metrics with special curvature properties for B and E to existence of metrics with special curvature properties on (M, \mathcal{L}_m).

↔ Problem: Do the same but for stability notions.

Objective

- Classify unstable/stable ruled manifolds,
- Find polarizations with Kähler-Einstein metrics on 3-Fano bundles (Szurek & Wísniewski),
- Obtain a cartography of different stability notions.
Projectivisation of bundles (over a curve, genus \(\geq 2 \))

\(B \) is a curve.

Theorem (Morrison -1980)

\(E \) Mumford stable/semistable/unstable of rank 2. Then \((M, \mathcal{L}_m) \) is Chow stable/semistable/unstable for \(m \gg 0 \).

Theorem (Burns & de Bartolomeis -1988)

There exists \(E \) Mumford semistable, non stable of rank 2 such that \(M \) has no CSCK/extremal metric.

\(\rightarrow \) Provides an example of an A-Chow semistable object, not K-stable.
Projectivisation of bundles (over a curve, genus ≥ 2)

B is a curve.
Building on the work of Narashimhan & Seshadri, Fujiki, Lebrun & Simanca, ...

Theorem (Apostolov & Calderbank & Gauduchon & Tønnesen-Friedman -2008)

M admits a CSCK metric in any Kähler class $\iff E$ is Mumford polystable.

\iff Construction of CSCK metric + generalizations to extremal metrics.

To sum up we have over a curve of genus ≥ 2, any rank,

Theorem (Della Vedova & Zuddas -2011)

$M = \mathbb{P}(E)$ has a CSCK metric $\iff M$ is A-Chow stable $\iff E$ Mumford polystable

Related to the work of Rollin & Singer for parabolic structures.
Projectivisation of bundles (over a higher dimensional base)

\(B\) base manifold, polarized by \(L\)
\(\pi : E \to B\) bundle on \(B\) of rank \(r\), \(M = \mathbb{P}(E)\) and \(\mathcal{L}_m := \mathcal{O}_M(1) \otimes \pi^* L^m\).

Assume \(\dim B \geq 1\)
Projectivisation of bundles (over a higher dimensional base)

B base manifold, polarized by L

$\pi : E \to B$ bundle on B of rank r, $M = \mathbb{P}(E)$ and $\mathcal{L}_m := \mathcal{O}_M(1) \otimes \pi^* L^m$.

Assume $\dim B \geq 1$

Theorem (Hong -1999 (weak version))

Assume \exists CSCK metric in $c_1(L)$, $\text{Aut}(B, L)$ discrete, E simple\n
Hermitian-Einstein bundle. Then for $m >> 0$, (M, \mathcal{L}_m) carries a CSCK metric.

Generalizations to extremal metrics by Brönnle, Seyyedali.

\Leftarrow Asymptotically, for $m >> 0$, with $\omega_m = c_1(\hat{h}_E) + m\pi^* \omega$,

$$\text{scal}(\omega_m)([v]) = r(r-1) + \frac{1}{m} \left(\text{scal}(\omega) + 2r \Lambda_\omega \text{tr} \left([F_{h_E}]^0 \frac{v \otimes v^*}{\|v\|^2} \right) \right) + O \left(\frac{1}{m^2} \right)$$
Theorem (Ross-Thomas -2006)

\(E \) Mumford unstable \(\Rightarrow (M, \mathcal{L}_m) \) is K-unstable for \(m \gg 0 \) and thus does not have CSCK metric.

Theorem (Seyyedali -2010)

Assume there is a CSCK in \(c_1(L) \), \(\text{Aut}(B, L) \) discrete, \(E \) Mumford stable. Then \(\mathcal{L}_m \) is Chow stable for \(m \gg 0 \).
Theorem (Ross-Thomas -2006)

\[\text{E Mumford unstable } \Rightarrow (M, \mathcal{L}_m) \text{ is K-unstable for } m >> 0 \text{ and thus does not have CSCK metric.} \]

Theorem (Seyyedali -2010)

Assume there is a CSCK in \(c_1(L) \), \(\text{Aut}(B, L) \) discrete, E Mumford stable. Then \(\mathcal{L}_m \) is Chow stable for \(m >> 0 \).

\(\Rightarrow \) What can be said under weaker assumptions? For Mumford semistable bundle, everything can happen.
Chow stability & differential geometry (general case)

\leftrightarrow Bergman function.

\mathcal{L} very ample on X. Fix $h \in \text{Met}(\mathcal{L})$, $\omega = c_1(h) > 0$ and $(S_i)_{i=1..N}$ orthonormal basis of $H^0(X, \mathcal{L})$ wrt $\int_X h(.,.) \frac{\omega^n}{n!}$. The Bergman function is

$$\rho_h = \sum_i |S_i|_h^2 \in C^\infty(X, \mathbb{R}_+)$$
Chow stability & differential geometry (general case)

→ Bergman function.

\(\mathcal{L} \) very ample on \(X \). Fix \(h \in \text{Met}(\mathcal{L}) \), \(\omega = c_1(h) > 0 \) and \((S_i)_{i=1..N}\) orthonormal basis of \(H^0(X, \mathcal{L}) \) wrt \(\int_X h(.,.) \frac{\omega^n}{n!} \).

The Bergman function is

\[
\rho_h = \sum_i |S_i|^2_h \in C^\infty(X, \mathbb{R}_+) \]

Theorem (Zhang -1996; Luo -1998)

\((X, \mathcal{L})\) Chow polystable \(\iff\) \(\exists h \in \text{Met}(\mathcal{L}) \) balanced, i.e \(\forall x \in X \),

\[
\rho_h(x) = \text{Const} = \frac{h^0(\mathcal{L})}{\text{Vol}_\mathcal{L}(X)}
\]

→ Canonical metrics that can be constructed by iterative process
Fix $h \in \text{Met}(\mathcal{L})$ with curvature $\omega > 0$, and consider the Bergman kernel associated to \mathcal{L}^k then when $k \to +\infty$,

$$\rho_{hk} = k^n + k^{n-1} \frac{\text{scal}(\omega)}{2} + ...$$

studied by Tian, Bouche, Ruan, Catlin, Zelditch, Lu, Ma & Marinescu etc.
Tian-Yau-Zelditch Asymptotic expansion

Fix $h \in Met(\mathcal{L})$ with curvature $\omega > 0$, and consider the Bergman kernel associated to \mathcal{L}^k then when $k \to +\infty$,

$$\rho_{hk} = k^n + k^{n-1} \frac{\text{scal}(\omega)}{2} + \ldots$$

studied by Tian, Bouche, Ruan, Catlin, Zelditch, Lu, Ma & Marinescu etc.

\rightarrow Higher order terms are polynomials expressions in the covariant derivatives of the curvature
Tian-Yau-Zelditch Asymptotic expansion

Fix $h \in Met(\mathcal{L})$ with curvature $\omega > 0$, and consider the Bergman kernel associated to \mathcal{L}^k then when $k \to +\infty$,

$$\rho_{hk} = k^n + k^{n-1} \frac{\text{scal}(\omega)}{2} + ...$$

studied by Tian, Bouche, Ruan, Catlin, Zelditch, Lu, Ma & Marinescu etc.

\rightarrow Higher order terms are polynomials expressions in the covariant derivatives of the curvature

\rightarrow If the metric is real analytic then the asymptotic expansion series converges (Liu-Lu)
Theorem (1)

Set $n = \dim B$. $M = \mathbb{P}(E)$. $\mathcal{L}_m := \mathcal{O}_M(1) \otimes \pi^* L^m$.

Theorem (1)

Assume there is a CSCK metric in $c_1(L)$, $\text{Aut}(B, L)$ discrete, E Gieseker stable with Jordan-Hölder filtration given by subbundles. Then \mathcal{L}_m Chow stable for $m \gg 0$.
Theorem (1)

Set \(n = \dim B \). \(M = \mathbb{P}(E) \). \(\mathcal{L}_m := \mathcal{O}_M(1) \otimes \pi^* L^m \).

Theorem (1)

Assume there is a CSCK metric in \(c_1(L) \), \(\text{Aut}(B, L) \) discrete, \(E \) Gieseker stable with Jordan-Hölder filtration given by subbundles. Then \(\mathcal{L}_m \) Chow stable for \(m \gg 0 \).

Definition

\(E \) Gieseker stable (semistable) wrt \(L \) stable if for \(\forall \) proper subsheaf \(\mathcal{F} \),

\[
\frac{h^0(\mathcal{F} \otimes L^k)}{\text{rank}(\mathcal{F})} < \frac{h^0(E \otimes L^k)}{\text{rank}(E)}, \quad k \gg 0 \quad (\leq)
\]

Mumford stable \(\Rightarrow \) Gieseker stable \(\Rightarrow \) Mumford semistable

\Rightarrow \) Gieseker semistable.
Proof of Theorem (1)

(1) Leung’s equation. For $k \gg 0$, $\exists h_k \in \text{Met}(E)$

$$[e^{F_{h_k} + k\omega \text{Id}} \wedge \text{Todd}(B)]^{(n,n)} = \frac{h^0(E \otimes L^k)}{r} \text{Id}_E \frac{\omega^n}{n!}$$
Proof of Theorem (1)

(1) Leung’s equation. For $k >> 0$, $\exists h_k \in Met(E)$

$$\left[e^{F_{h_k} + k\omega Id} \land Todd(B) \right]^{(n,n)} = \frac{h^0(E \otimes L^k)}{r} Id_E \frac{\omega^n}{n!}$$

(2) Bergman kernel for E over (B, L) vs Bergman function for \mathcal{L}_m. V vector space. Then $V \sim H^0(\mathbb{P}(V^*), \mathcal{O}_{\mathbb{P}(V^*)}(1))$. Hence $h_V \sim \hat{h}_V \in Met(\mathcal{O}_{\mathbb{P}(V^*)}(1))$

$$\langle \alpha, \beta \rangle_{h_V} = \text{Cst} \int_{\mathbb{P}(V^*)} \langle \hat{\alpha}, \hat{\beta} \rangle_{\hat{h}_V} \omega_{FS}^{\dim V - 1}$$

At $[v] \in \mathbb{P}(E)$, with $B_{h_E \otimes h_L^m}$ Bergman kernel for $E \otimes L^m$, $c_1(h_L) = \omega$,

$$\rho_{\mathcal{L}_m}([v]) = \text{tr} \left(B_{h_E \otimes h_L^m} \Psi_m \frac{v \otimes v^*}{\|v\|^2} \right)$$
Proof of Theorem (1)

(1) Leung’s equation. For $k \gg 0$, $\exists h_k \in \text{Met}(E)$

$$[e^{F_{h_k}+k\omega Id} \wedge \text{Todd}(B)]^{(n,n)} = \frac{h^0(E \otimes L^k)^{\omega^n}}{r} \text{Id}_E \frac{\omega^n}{n!}$$

(2) Bergman kernel for E over (B, L) vs Bergman function for \mathcal{L}_m. V vector space. Then $V \sim H^0(\mathbb{P}(V^*), \mathcal{O}_{\mathbb{P}(V^*)}(1))$.

Hence $h_V \sim \hat{h}_V \in \text{Met}(\mathcal{O}_{\mathbb{P}(V^*)}(1))$

$$\langle \alpha, \beta \rangle_{h_V} = \text{Cst} \int_{\mathbb{P}(V^*)} \langle \hat{\alpha}, \hat{\beta} \rangle_{\hat{h}_V} \omega_{FS}^{\dim V-1}$$

At $[v] \in \mathbb{P}(E)$, with $B_{h_E \otimes h_L^m}$ Bergman kernel for $E \otimes L^m$, $c_1(h_L) = \omega$,

$$\rho_{\mathcal{L}_m}([v]) = \text{tr} \left(B_{h_E \otimes h_L^m} \Psi_m \frac{v \otimes v^*}{\|v\|^2} \right)$$

(3) Ψ_m encodes the difference of volume forms between ω^n and $(c_1(h_E) + m\pi^* \omega)^{n+r-1}$.
Proof of Theorem (1)

(1) Leung’s equation. For \(k >> 0 \), \(\exists h_k \in Met(E) \)

\[
\left[e^{F_{h_k} + k\omega Id} \wedge Todd(B) \right]^{(n,n)} = \frac{h^0(E \otimes L^k)}{r} \Id_E \frac{\omega^n}{n!}
\]

(2) Bergman kernel for \(E \) over \((B, L)\) vs Bergman function for \(\mathcal{L}_m \).

V vector space. Then \(V \sim H^0(\mathbb{P}(V^*), \mathcal{O}_\mathbb{P}(V^*)(1)) \).

Hence \(h_V \sim \hat{h}_V \in Met(\mathcal{O}_\mathbb{P}(V^*)(1)) \)

\[
\langle \alpha, \beta \rangle_{h_V} = \text{Cst} \int_{\mathbb{P}(V^*)} \langle \hat{\alpha}, \hat{\beta} \rangle_{\hat{h}_V} \omega^{\text{dim} V - 1}_{\text{FS}}
\]

At \([v] \in \mathbb{P}(E)\), with \(B_{h_E \otimes h_L^m} \) Bergman kernel for \(E \otimes L^m \), \(c_1(h_L) = \omega \),

\[
\rho_{\mathcal{L}_m}([v]) = \text{tr} \left(B_{h_E \otimes h_L^m} \Psi_m \frac{v \otimes v^*}{\|v\|^2} \right)
\]

(3) \(\Psi_m \) encodes the difference of volume forms between \(\omega^n \) and \((c_1(h_E) + m\pi^*\omega)^{n+r-1} \).

(4) \(\bar{\mathcal{B}} := B_{h_E \otimes h_L^m} \Psi_m \), distorted Bergman kernel.
Proof of Theorem (1)

Then \tilde{B} has an asymptotic expansion for $k >> 0$,

$$\tilde{B} = k^n Id_E + k^{n-1} \left(\left[\Lambda \omega F_{h_E} \right]^0 + \frac{r + 1}{2r} \text{scal}(\omega) Id_E \right) + O(k^{n-2})$$
Proof of Theorem (1)

Then \tilde{B} has an asymptotic expansion for $k \gg 0$,

$$
\tilde{B} = k^n Id_E + k^{n-1} \left([\Lambda_{\omega} F_{h_E}]^0 + \frac{r+1}{2r} \text{scal}(\omega) Id_E \right) + O(k^{n-2})
$$

(5) Deform recursively the metrics h_E on E and h_L on L to obtain \tilde{B} almost constant. Linearization at $(\omega + \sqrt{-1} \partial \bar{\partial} \phi, h_E(1 + \Phi))$:

$$
\frac{r+1}{2r} \text{Lic}(\phi) Id_E + \left[\sqrt{-1} \Lambda_{\omega} \partial \bar{\partial} \Phi + \Lambda_{\omega}^2 F_{h_E} \wedge \partial \bar{\partial} \phi - \Delta_{\omega} \phi \Lambda_{\omega} F_{h} \right]^0
$$
Proof of Theorem (1)

Then \tilde{B} has an asymptotic expansion for $k \gg 0$,

$$\tilde{B} = k^n \text{Id}_E + k^{n-1} \left(\left[\Lambda_\omega F_{h_E} \right]^0 + \frac{r+1}{2r} \text{scal}(\omega) \text{Id}_E \right) + O(k^{n-2})$$

(5) Deform recursively the metrics h_E on E and h_L on L to obtain \tilde{B} almost constant. Linearization at $(\omega + \sqrt{-1} \partial \bar{\partial} \phi, h_E(1 + \Phi))$:

$$\frac{r+1}{2r} \mathcal{L}ic(\phi) \text{Id}_E + \left[\sqrt{-1} \Lambda_\omega \partial \bar{\partial} \Phi + \Lambda_\omega^2 F_{h_E} \wedge \partial \bar{\partial} \phi - \Delta_\omega \phi \Lambda_\omega F_{h} \right]^0$$

\rightarrow Invertible if $\text{Aut}(B, L)$ discrete + ω CSCK + E simple.
Proof of Theorem (1)

Then \widetilde{B} has an asymptotic expansion for $k \gg 0$,

$$\widetilde{B} = k^n \text{Id}_E + k^{n-1} \left([\Lambda_\omega F_{h_E}]^0 + \frac{r + 1}{2r} \text{scal(}\omega\text{)Id}_E \right) + O(k^{n-2})$$

(5) Deform recursively the metrics h_E on E and h_L on L to obtain \widetilde{B} almost constant. Linearization at $(\omega + \sqrt{-1}\partial\bar{\partial}\phi, h_E(1 + \Phi))$:

$$\frac{r + 1}{2r} \text{Lic}(\phi) \text{Id}_E + \left[\sqrt{-1}\Lambda_\omega \partial\bar{\partial}\Phi + \Lambda^2_\omega F_{h_E} \land \partial\bar{\partial}\phi - \Delta_\omega \phi \Lambda_\omega F_h \right]^0$$

\leftrightarrow Invertible if $\text{Aut}(B, L)$ discrete $+$ ω CSCK $+$ E simple.
The solution is not selfadjoint:

$$\left(\Lambda_\omega \partial\bar{\partial}\Phi^{*_{h_E}} \right) = \left(\sqrt{-1}\Lambda_\omega \partial\bar{\partial}\Phi - [\Lambda_\omega F_h, \Phi] \right)^{*_{h_E}}$$

\leftrightarrow From almost constant Bergman function ρ_{L_m}, obtain a balanced metric by using moment map framework (Donaldson’s method).
Theorem (2)

Consider a non split extension $0 \to F \to E \to G \to 0$.
\to a family of bundles with general fibre E and central fibre $F \oplus G$ at 0.
\to provides a test configuration $\mathcal{M} : \mathbb{P}(\mathcal{E}) \to \mathbb{C}$.
Theorem (2)

Consider a non split extension $0 \to F \to E \to G \to 0$.
\mathcal{E} family of bundles with general fibre E and central fibre $F \oplus G$ at 0.
\mathcal{E} provides a test configuration $\mathcal{M} : \mathbb{P}(\mathcal{E}) \to \mathbb{C}$.

Theorem (2)

Assume E of rank 2 and $\dim B = 2$. The Futaki-Donaldson invariant of the test configuration $(\mathcal{M}, \mathcal{O}_{\mathbb{P}(\mathcal{E})}(1) \otimes \pi^* L^m)$ is

$$F_1 = \text{Cst}(\mu(E) - \mu(F)) m^3 \left\{ \left(\frac{c_1(E)}{2} - c_1(F) \right) c_1(B) + 4 \left(\frac{ch_2(E)}{2} - ch_2(F) \right) \right. $$
$$+ \left(\mu(E) - \mu(F) \right)(\star) \left. \right\} m^2 + O(m)$$

Lower order terms are known.
Proof of Theorem (2)

Proof.
\[d_k = \chi(S^k E^* \otimes L^{km}) = a_0 k^3 + a_1 k^2 + \ldots \]
Proof of Theorem (2)

Proof.

→ Equivariant Riemann-Roch theorem.

\[
d_k = \chi(S^k E^* \otimes L^{km}) = a_0 k^3 + a_1 k^2 + ...
\]

\[
H^0(\mathbb{P}(F \oplus G), \mathcal{L}_m^k) = \bigoplus_{i=0}^{k} H^0(B, F^i \otimes G^{k-i} \otimes L^{km})
\]

so the weight of the \(\mathbb{C}^* \) action is

\[
w(k) = \sum_i -ih^0(F^i \otimes G^{k-i} \otimes L^{km}) = b_0 k^4 + b_1 k^3 + ...
\]

Finally

\[
F_1 = b_0 a_1 - b_1 a_0.
\]
Applications

Consider E Mumford semistable with $F \subset E$ such that $\mu(F) = \mu(E)$. If \[
\left(\frac{c_1(E)}{2} - c_1(F) \right) c_1(B) + 4 \left(\frac{ch_2(E)}{2} - ch_2(F) \right) < 0 \]
then $(\mathbb{P}(E), \mathcal{L}_m)$ is K-unstable for $m >> 0$.

Applying Theorem 1 + Theorem 2 with a well chosen Gieseker stable bundle E, we obtain the following corollary:

There exist examples of ruled manifolds $(\mathbb{P}(E), \mathcal{L}_m)$ such that \mathcal{L}_m is Chow stable and asymptotically Chow unstable.

Define $L_{q,m} = O_{\mathbb{P}(E)}(q) \otimes \pi^* \mathcal{L}_m$. There exist Mumford stable bundles $E \to B$ over CSCK surfaces (B, \mathcal{L}) such that $L_{q,m}$ is K-stable and admits a CSCK metric for $m >> 0$ and is K-unstable for $q >> 0$.
Consider E Mumford semistable with $F \subset E$ such that $\mu(F) = \mu(E)$. If \(\left(\frac{c_1(E)}{2} - c_1(F) \right) c_1(B) + 4 \left(\frac{ch_2(E)}{2} - ch_2(F) \right) < 0 \) then \((\mathbb{P}(E), \mathcal{L}_m)\) is K-unstable for \(m >> 0\).

Applying Theorem 1 + Theorem 2 with a well chosen Gieseker stable bundle E, we obtain

Corollary

There exist examples of ruled manifolds \((\mathbb{P}(E), \mathcal{L}_m)\) such that \(\mathcal{L}_m\) is Chow stable and asymptotically Chow unstable.
Applications

Consider E Mumford semistable with $F \subset E$ such that $\mu(F) = \mu(E)$. If \(\left(\frac{c_1(E)}{2} - c_1(F) \right) c_1(B) + 4 \left(\frac{ch_2(E)}{2} - ch_2(F) \right) < 0 \) then \((\mathbb{P}(E), \mathcal{L}_m)\) is K-unstable for $m >> 0$.

Applying Theorem 1 + Theorem 2 with a well chosen Gieseker stable bundle E, we obtain

Corollary

There exist examples of ruled manifolds \((\mathbb{P}(E), \mathcal{L}_m)\) such that \mathcal{L}_m is Chow stable and asymptotically Chow unstable.

Corollary

Define $\mathcal{L}_{q,m} = \mathcal{O}_{\mathbb{P}(E)}(q) \otimes \pi^* \mathcal{L}_m$. There exist Mumford stable bundles $E \to B$ over CSCK surfaces (B, L) such that $\mathcal{L}_{q,m}$ is K-stable and admits a CSCK metric for $m >> 0$ and is K-unstable for $q >> 0$.
Conjecture

There exist a rank 2 vector bundle $E \to B$ and a polarized surface B such that $(\mathbb{P}(E), \mathcal{L}_m)$ is A-Chow stable, $\text{Aut}(\mathbb{P}(E), \mathcal{L}_m)$ discrete and not K-stable.
Thank you!
Dziękuję!