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Homological Algebra

As a motivating example, we review the definition ofsingular homologyof a topological
spaceX ([29], Chapter 4; [30],§III.9). Let n ∈ N and

∆n :=
{
(a0, ..., an) ∈ R

n+1 | ai ≥ 0, i = 0, ..., n, a0 + · · · + an = 1 }

the standard n-simplex. As a subset ofRn+1, it inherits a topology from the euclidean
topology ofRn. Setting

ei := (0, ..., 0, 1, 0, ..., 0), 1 occupying thei-th entry, i = 0, ..., n,

we may describe∆n as theconvex hull ([9], Definition I.1.4)

[e0, ..., en]

of e0, ..., en. This description involves anorientation of ∆n. Theboundary of ∆n may be
viewed as a union of oriented simplices

∂∆n =

n∑

i=0

(−1)i · [e0, ..., ei−1, ei+1, ..., en]. (I.1)

b
e0

b
e1

b
e2

Now, asingular n-simplexin X is simply a continuous map

σ : ∆n −→ X.
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Homological Algebra

The free abelian groupCn(X,Z) generated by all singularn-simplices is thegroup of
singular n-chains. The boundary in (I.1) induces a homomorphism

∂n : Cn(X,Z) −→ Cn−1(X,Z), n ∈ N.

One checks that
∀n ∈ N : ∂n ◦ ∂n+1 = 0. (I.2)

We set

Zn(X,Z) := Ker(∂n) ⊂ Cn(X,Z) and Bn(X,Z) := Im(∂n+1) ⊂ Cn(X,Z), n ∈ N.

Condition (I.2) implies
Bn(X,Z) ⊂ Zn(X,Z),

so that we may define then-th homology group

Hn(X,Z) := Zn(X,Z)/Bn(X,Z)

of X, n ∈ N. The homology groups are very importanttopological invariants of X. They
cannot be computed from the above definition. The propertieswhich characterize them
and at the same time provide tools for their computation are laid down in theEilenberg–
Steenrod axioms([29], Chapter 4, Section 8).

One of the axioms concerns thelong exact sequence of homology. The collection
Cn(X,Z), n ∈ N, of free abelian groups together with the boundary maps∂n, n ∈ N, will be
denoted by (C•(X,Z), ∂•) and called thesingular chain complexof X. SupposeA ⊂ X is a
subspace. Then, for everyn ∈ N, Cn(A,Z) is a subgroup ofCn(X,Z), and the inclusions

Cn(A,Z) ⊂ Cn(X,Z), n ∈ N,

are compatible with the boundary maps. So, (C•(A,Z), ∂•) is asubcomplexof (C•(X,Z),
∂•), and we may form thequotient complex

(C•(X,A;Z), ∂•) := (C•(X,Z), ∂•)/(C•(A,Z), ∂•)

with
Cn(X,A;Z) = Cn(X,Z)/Cn(A;Z), n ∈ N.

Associated with the short exact sequence

0 −−−−−→ (C•(A,Z), ∂•) −−−−−→ (C•(X,Z), ∂•) −−−−−→ (C•(X,A;Z), ∂•) −−−−−→ 0

of complexes, there is a long exact sequence1

· · · −−−−−→ Hn+1(X,A) −−−−−→ Hn(A) −−−−−→ Hn(X) −−−−−→ Hn(X,A) −−−−−→ · · ·

...

· · · −−−−−→ H1(X,A) −−−−−→ H0(A) −−−−−→ H0(X) −−−−−→ H0(X,A) −−−−−→ 0

of homology groups. This is one of the most important tools for actually computing
homology groups.

The following questions will be treated in this chapter:
1We omit theZ-coefficients here.
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I.1. Categories

⋆ What is the general framework for the above constructions?

⋆ Do similar constructions exist in other areas of mathematics?

In fact, (co)homology theories play an important role in various mathematical disciplines,
such as group theory [7] and algebraic geometry. Of course, we will be mostly interested
in the latter case. Note that, in singular homology, all the constructions take place within
the realm of abelian groups. It will be important that abelian groups can be replaced by
much more general objects, namely by objects of anabelian category. Before we can
explain this concept, we must develop the basic notions ofcategory theory.

I.1 Categories

In many courses in mathematics, you study certain structures and maps between these
structures. Examples are vector spaces and linear maps, groups and homomorphisms,
topological spaces and continuous maps, differentiable manifolds and differentiable maps,
(affine) algebraic varieties and regular maps and so on. The axioms describing these struc-
tures are obtained by abstracting from a certain source of examples, and the corresponding
maps are those that respect these structures. In a further step of abstraction, we collect
these structures and the maps between them into a larger structure, called a category.
Now, there are “maps” between categories, calledfunctors. Such functors may be used
to relate different categories. For example, for a given natural numbern ∈ N, the assig-
mentX 7−→ Hn(X,Z) which associates with a topological space itsn-th homology group
is a functor from the category of topological spaces to the category of abelian groups. It
relates the complicated structure of a topological space tothe much simpler structure of
an abelian group.

The theory of categories is developed on the background of set theory according to
Neumann, Bernays, and Gödel (NBG) (see [12]; [21], Anhang). In this theory, there
exist sets and classes and an element relation “∈”. Sets are special classes, a set can be
an element of a class, but a class which is not a set cannot be anelement of a class. In
this way, one can form the class of all sets. Russell’s antinomy ([23], 1.2.2) is avoided,
because it is not allowed to form the class of all classes.

A categoryC consists of the following data:

⋆ aclassOb(C ) of objects,

⋆ for an ordered pairA, B ∈ Ob(C ) of objects, asetMorC (A, B),

⋆ for an ordered tripleA, B,C ∈ Ob(C ) of objects, acomposition map

◦ = ◦A,B,C : MorC (A, B) ×MorC (B,C) −→ MorC (A,C)

(α, β) 7−→ β ◦ α,

such thatassociativityholds, i.e., for an ordered quadrupleA, B,C,D ∈ Ob(C ) of
objects the diagram

MorC (A, B) ×MorC (B,C) ×MorC (C,D) MorC (A,C) ×MorC (C,D)

MorC (A, B) ×MorC (B,D) MorC (A,D)
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Homological Algebra

commutes,

⋆ for every elementA ∈ Ob(C ), an element idA ∈ MorC (A,A), such that for every
objectB ∈ Ob(C ), and every morphismα ∈ MorC (A, B),

α ◦ idA = α and idB ◦ α = α.

An elementA ∈ Ob(C ) is anobjectof the categoryC . For objectsA, B ∈ Ob(C ), an
elementα ∈ MorC (A, B) is amorphismfrom A to B. We write this asα : A −→ B. For an
objectA ∈ Ob(C ), the element idA ∈ MorC (A,A) is theidentity morphismof A.

A categoryC is small, if its class Ob(C ) of objects is a set.

I.1.1 Remark.A morphismα : A −→ B need not necessarily be a map from the setA to
the setB. An example is provided by quivers (see Example I.1.2, v), below). The reader
should keep this in mind. All properties we would like our morphisms to have must be
expressed in terms of arrows and diagrams and not in terms of elements of sets. You will
find many examples for this, such as the concept of a mono- and an epimorphism (Section
I.3), in the sequel.

Let C be a category,A, B ∈ Ob(C ) objects ofC , andα : A −→ B a morphism fromA
to B. We say thatα is anisomorphism, if there is a morphismβ : B −→ A with

β ◦ α = idA and α ◦ β = idB.

I.1.2 Examples.i) The category of setsSetsconsists of sets and set theoretic maps, i.e.,
Ob(Sets) = {Sets}2 and, for setsA, B ∈ Ob(C ), MorSets(A, B) = {mapsα : A −→ B }.
Isomorphisms are bijective maps.

ii) Let k be a field. The category Vectk consists ofk-vector spaces and linear maps,
i.e., Ob(Vectk) = { k-vector spaces} and, fork-vector spacesA, B ∈ Ob(Vectk), MorVectk(A,
B) = Homk(A, B) = {α : A −→ B |α is k-linear}. Isomorphisms are bijectivek-linear
maps.

iii) More generally, for a commutative ringR, ModR is the category of modules and
module homomorphisms (see [22], Section III.1). Isomorphisms are bijective homomor-
phisms ([22], Exercise III.1.3).

iv) The category Topis formed of topological spaces together with continuous maps
([24], Abschnitt 1.4, Aufgabe A.4.2). Isomorphisms in Toparehomeomorphisms. Re-
call that not every bijective continuous map is a homeomorphism (see [24], Gegenbeispiel
10.1.5).

v) A quiver is a quadrupleQ = (V,A, t, h) in which V and A are finite sets and
t, h: A −→ V are maps. The elements ofV are thevertices, the elements ofA the ar-
rows. For an arrowa ∈ A, t(a) is thetail of a, andh(a) thehead. A quiver may easily be
visualized:

1 2 3

4

5 .

2This is the so-calledall class. It is a genuine class, i.e., a class which is not a set (see [12], Page 5).
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I.1. Categories

We definepaths in Q:

⋆ for every vertexv ∈ V, we have a pathev of length zero fromv to v,

⋆ for verticesv1, v2 ∈ V andn ≥ 1, apath of length nfrom v1 to v2 is a tuplep =
(a1, ..., an) of arrows witht(a1) = v1, h(ai) = t(ai+1), i = 1, ..., n− 1, h(an) = v2.

There is an obvious composition law “·” for paths, such thatp · ev = p or ev · p = p for
every vertexv ∈ V and every pathp starting or ending atv, respectively.

We form a categoryQ as follows: Ob(Q) = V, for v1, v2 ∈ V,

MorQ(v1, v2) = { paths fromv1 to v2 }.

For everyv ∈ V, idV = eV.
Let Q be the quiver that consists of a single vertexv and an arrow connecting the

arrow to itself. For everyn ∈ N, there is a unique pathpn ∈ MorQ(v, v) of lengthn, such
that

∀n1, n2 : pn1 · pn2 = pn1+n2,

so that we may say

(MorQ(v, v), ·) � (N,+).

We leave it to the reader to figure out what the isomorphisms inQ are for a given
quiverQ.

vi) Given a categoryC , theopposite categoryC opp is obtained byreversing all arrows
in C , i.e., Ob(C opp) = Ob(C ), and

∀A, B ∈ Ob(C opp) : MorC opp(A, B) := MorC (B,A).

Let C be a category. AsubcategoryD of C consists of

⋆ a subclass Ob(D) ⊂ Ob(C ),

⋆ for an ordered pairA, B ∈ Ob(D) of objects inD, a subset MorD(A, B) ⊂ MorC (A,
B), such that

– for every ordered tripleA, B,C ∈ Ob(D), every morphismα ∈ MorD(A, B),
and every morphismβ ∈ MorD(B,C)

β ◦ α ∈ MorD(A,C).3

– for every objectA ∈ Ob(D) of D, idA ∈ MorD(A,A).

3The composition is, of course, formed within the categoryC .

5



Homological Algebra

I.2 Functors

As usual, the theory of categories becomes interesting, because we can study “maps”
between different categories. These maps are calledfunctors and come in two flavors:
covariant and contravariant.

Let C andD be categories. A (covariant) functorfrom C to D consists of

⋆ a mapF : Ob(C ) −→ Ob(D),

⋆ for any ordered pairA, B ∈ Ob(C ), a mapFA,B : MorC (A, B) −→ MorD(F(A),
F(B)), such that

– FA,A(idA) = idF(A), A ∈ Ob(C ),

– FA,C(β ◦ α) = FB,C(β) ◦ FA,B(α), A, B,C ∈ Ob(C ), α ∈ MorC (A, B), β ∈
MorC (B,C).

We will abusively writeF for FA,B, A, B ∈ Ob(C ), and denote the whole functor by
F : C −→ D.

A contravariant functorfrom C to D is a covariant functorF : C
opp −→ D, i.e., a

functor which reverses the arrows. We leave it to the reader to define a contravariant
functor in terms ofC andD.

A new phenomenon in the setting of categories is that we have “maps between maps”:
Let C andD be categories andF,G: C −→ D (covariant) functors. Anatural transfor-
mationΦ : F −→ G consists of morphismsΦ(A) : F(A) −→ G(A) in D, A ∈ Ob(C ), such
that the diagram

F(A)
F(α)

Φ(A)

F(B)

Φ(B)

G(A)
G(α)

G(B)

(I.3)

commutes for allA, B ∈ Ob(C ) and all α ∈ MorC (A, B). A natural transformation
Φ : F −→ G is anisomorphism of functors, if there is a natural transformationΨ : G −→
F, such thatΦ ◦ Ψ andΨ ◦Φ are the identity transformations (compare Remark I.2.1).

I.2.1 Remark.Given asmallcategoryC and a a categoryD, we can construct the category
Fun(C ,D). Its objects are (covariant) functors fromC to D and its morphisms are natural
transformations of functors. For the technical details, werefer to [21], p. 14.

The “category of small categories” is a 2-category, i.e., wehave objects, namely
small categories, morphisms, namely functors, and “morphisms between morphism” or
2-morphisms, namely natural transformation of functors. We refer the reader to [19],
Chapter XII,§3, for more information on this delicate business.

I.2.2 Examples.i) For every categoryC , we have theidentity functoridC : C −→ C that
is defined in the obvious way.

ii) Forgetful functors are very basic functors which just forget a part of the structure
that it is given. Here are two examples: Letk be a field. The functor

F : Ob(Vectk) −→ Ob(Sets)

V 7−→ underlying set

6



I.2. Functors

just forgets the additive group structure onV, i.e., the neutral element, the inverse ele-
ments, and the addition, as well as scalar multiplication. We will denote the set underly-
ing V again byV. Then, the functorF is given on morphisms, fork-vector spacesV,W,
as

F : MorVectk(V,W) −→ MorSets(V,W)

f 7−→ f .

Let k be an algebraically closed field and AffVark the category of affine algebraic
varieties overk ([22], Exercise I.9.8 and III.4.2). Then, we have the forgetful functor

F : Ob(AffVark) −→ Ob(Top)

X 7−→ (underlying set,Zariski topology),

F : MorAffVark(X,Y) −→ MorTop(X,Y)

f 7−→ f , X,Y ∈ Ob(AffVark).

iii) We can also add structures. For example, we can equip anyset with the discrete or
the trivial topology. In this way, we get maps

F : Ob(Sets) −→ Top

A 7−→
(
A,P(A)

)
,

and

G: Ob(Sets) −→ Top

A 7−→
(
A, {∅,A }

)
.

Let α : A −→ B be a set theoretic map. The mapα is continuous, if we endow bothA and
B with the discrete topology or bothA andB with the trivial topology. In this way, we
extendF andG to functors.

iv) Let k be a field andQ = (V,A, t, h) be a quiver. Arepresentationof Q is a functor

R: Q −→ Vectk.

Note thatR is specified by the following data:

⋆ a vector spaceRv := R(v), v ∈ V,

⋆ ak-linear mapϕa := R(a) : Rt(a) −→ Rh(a), a ∈ A.

In principle, we would need to specifyR(p) for every pathp = ev, v ∈ V, or p = (a1, ..., an)
from v1 to v2, v1, v2 ∈ V. However, the axioms of a functor require

R(ev) = idRv and R(p) = R(an) ◦ · · · ◦R(a1), respectively.

So, we write our representation in the formR= (Rv, v ∈ V, ϕa, a ∈ A).
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Homological Algebra

Given two representationsR = (Rv, v ∈ V, ϕa, a ∈ A) andS = (Sv, v ∈ V, ψa, a ∈ A),
a homomorphismis a natural transformationΦ : R −→ S. It is specified by linear maps
Φ(v) : Rv −→ Sv, v ∈ V, such that the diagram

Rt(a)
ϕa

Φ(t(a))

Rh(a)

Φ(h(a))

St(a)
ψa Sh(a)

(I.4)

commutes for every arrowa ∈ A.4 The notion of a homomorphism induces the notion
of an isomorphism. The classification of quiver representations up to isomorphy is an
interesting and important problem (see [2], Chapter II). For example, suppose thatk is an
algebraically closed field and thatQ is the quiver with one vertex and one arrow. Then,
a representation ofQ is a pair (V, ϕ : V −→ V) which consists of ak-vector spaceV and
an endomorphismϕ : V −→ V. The classification of finite dimensional representations is
achieved by the Jordan normal form ([28],§54; [22], p. 85f).

v) Let k be a field. Then,

(·)∨ : Vectk −→ Vectk
V 7−→ V∨ := Homk(V, k)

f : V −→W 7−→

{
f ∨ : W∨ −→ V∨

λ 7−→ λ ◦ f

is a contravariant functor.
vi) Let k be an algebraically closed field, AffVark the category of affine varieties overk,

and IntAlg
k

the category of finitely generatedk-algebras which are also integral domains.
For an affine algebraic varietyX, letO(X) be thek-algebra of regular functions onX ([22],
Exercise I.9.8). Then,

O : AffVark −→ IntAlg
k

X 7−→ O(X)

ϕ : X −→ Y 7−→

{
f ⋆ : O(Y) −→ O(X)

f 7−→ f ◦ ϕ

is a contravariant functor.

Let C andD be categories andF : C −→ D a functor. Then,F is anisomorphism, if
there is a functorG: D −→ C , such thatG ◦ F is the identity functor onC andF ◦G the
identity functor onD.

It is extremely rare that two categories are isomorphic in the above sense. The reason
is that the notion of equality of objects in a category is not very useful, because it cannot
be verified. It is much more sensible to use the notion of isomorphic objects. For example,
the dualizing functor in Example I.2.2, v), looks pretty harmless. However, the composi-
tion of this functor with itself is not the identity: For a non-zero vector spaceV, we cannot

4This example is good for memorizing the concept of a natural transformation. Representations of
quivers can be easily defined in the language of linear algebra. The resulting notion of a homomorphism is
the one you would have defined yourself for these objects.
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I.2. Functors

say thatV andV∨∨ are equal, although we have a canonical isomorphismV −→ V∨∨.
Note also that, fork-vector spacesV,W, (·)∨ : Homk(V,W) −→ Homk(W∨,V∨) is an iso-
morphism. We will now introduce the appropriate notion to deal with this situation.

Let C andD be categories. A functorF : C −→ D is anequivalenceof categories, if
there is a functorG: D −→ C , such thatG◦ F is isomorphic to the identity functor onC
andF ◦G to the identity functor onD. A contravariant functorF : C

opp −→ D which is
an equivalence betweenC opp andD is ananti-equivalencebetweenC andD.

Let us check what this means. First, we have a natural transformationε : idC −→ G◦F
and an inverse transformationη : G ◦ F −→ idC . It follows immediately that

εA := ε(A) : A −→ (G ◦ F)(A)

is an isomorphism inC . Now, for A, B ∈ Ob(C ), we obtain the bijection

CA,B : MorC (A, B) −→ MorC

(
(G ◦ F)(A), (G ◦ F)(B)

)

α 7−→ ε−1
B ◦ α ◦ εA.

It is readily verified that

MorC (A, B)
F

−−−−−→ MorD

(
F(A), F(B)

) G
−−−−−→ MorC

(
(G ◦ F)(A), (G ◦ F)(B)

) C−1

−−−−−→

C−1

−−−−−→ MorC (A, B)

is the identity. We infer that the mapF : MorC (A, B) −→ MorD(F(A), F(B)) is injective
and the mapG: MorC (F(A), F(B)) −→ MorC ((G ◦ F)(A), (G ◦ F)(B)) is surjective. The
same reasoning for the functorF ◦G shows that the latter map is also injective. Thus,

F : MorC (A, B) −→ MorD

(
F(A), F(B)

)

is a bijection,A, B ∈ Ob(C ).
Note also thatB is isomorphic toF(G(B)), B ∈ Ob(D). We see thatF induces a

bijection between the class of isomorphy classes in Ob(C ) and the class of isomorphy
classes in Ob(D).

I.2.3 Example(The skeleton of a category). Here, we need the followingaxiom of choice
(see [21], p. 182): If an equivalence relation on a classX is given, then there is a func-
tional class which picks an element in each equivalence class.5 The axiom of choice also
grants the existence of a functional class which assigns to every non-empty set one of its
elements ([21], p. 182, Satz).

Let C be a category. The notion of isomorphy gives an equivalence relation on Ob(C ).
By the axiom of choice, there is a subclassD ⊂ Ob(C ) which contains exactly one element
of every isomorphy class in Ob(C ). We form the full subcategoryD of C with Ob(D) := D
and MorD(A, B) := MorC (A, B), A, B ∈ Ob(D). Let G: D −→ C be the inclusion functor.

We have the mapF : Ob(C ) −→ Ob(D) that assigns to an elementA ∈ Ob(C ) the
unique elementF(A) ∈ Ob(D), such thatA is isomorphic toF(A). We would like to

5In fact, an equivalence class may be a genuine class, i.e., a class which is not a set. Think of an
example.
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Homological Algebra

promote this map to a functor fromC to D. The axiom of choice allows us to pick, for
each objectA ∈ Ob(C ), an isomorphismεA : A −→ F(A). Then, forA, B ∈ Ob(C ), we set

F : MorC (A, B) −→ MorD

(
F(A), F(B)

)

α 7−→ εB ◦ α ◦ ε
−1
A .

It is clear thatF is a functor.
Next, observe

G ◦ F : C −→ C

A 7−→ F(A)

α : A −→ B 7−→ F(α) : F(A) −→ F(B)

and that, for every morphismα : A −→ B in the categoryC , the diagram

A
α

−−−−−→ B

εA

y
yεB

F(A)
F(α)
−−−−−→ F(B)

commutes. From this diagram and the definition ofG, we infer that theεA, A ∈ Ob(C ),
define a natural transformationε : idC −→ G ◦ F. Likewise, the mapsε−1

A : F(A) −→ A
define the inverseε−1 : G ◦ F −→ idC of this natural transformation. This shows that idC

andG ◦ F are isomorphic.
Finally,

F ◦G: D −→ D

A 7−→ F(A) = A

α : A −→ B 7−→ F(α) : F(A) −→ F(B).

Since we have not required thatεA = idA for A ∈ Ob(D), F(α) may be different fromα,
for a morphismα in the categoryD. The same argument as before shows thatF ◦ G is
isomorphic to the identity onD.

I.2.4 Examples.i) The functor (·)∨ : Vectk −→ Vectk from Example I.2.2, v), is an anti-
equivalence.

ii) The functorO : AffAlg
k
−→ IntAlg

k
from Example I.2.2, vi), is an anti-equivalen-

ce.

I.2.5 Exercises(The Yoneda6 lemma). i) Let C be a category andA ∈ Ob(C ). Show that

hA : C −→ Sets

B 7−→ MorC (A, B)

f : B −→ C 7−→ (g: A −→ B) 7−→ ( f ◦ g: A −→ C)

is a covariant functor and that

hA : C −→ Sets

B 7−→ MorC (B,A)

f : B −→ C 7−→ (g: C −→ A) 7−→ (g ◦ f : B −→ A)
6Nobuo Yoneda (1930 - 1996), Japanese mathematician and computer scientist.
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I.3. Monomorphisms and epimorphisms

is a contravariant functor. A functor which is isomorphic toa functor of the formhA for a
suitable objectA ∈ Ob(C ) is called arepresentable functors.

ii) Let F : C −→ Setsbe a (covariant) functor. LetA be an object ofC anda ∈ F (A).
Show that

ha : hA −→ F

f : A −→ B 7−→ F( f )(a)

is a natural transformation of functors.
iii) Let Φ : hA −→ F be a natural transformation of functors. Define

aΦ := Φ(A)(idA) ∈ F(A).

Prove that the assignmentsΦ 7−→ aΦ anda 7−→ ha are inverse to each other and therefore
identify the natural transformations betweenhA andF with the elements ofF(A).

iv) Rewrite this result for contravariant functors.
v) Conclude that two objectsA andB define isomorphic functorshA andhB (hA and

hB) if and only if they are isomorphic.

I.3 Monomorphisms and epimorphisms

In a category, the morphisms need not be maps among the underlying sets. So, in order
to define properties of morphisms, we must not apply them to elements. We rather have
to describe everything in terms of (universal) properties and diagrams. The following
definitions illustrate this fact.

Let C be a category andα : A −→ B a morphism in the categoryC . We say thatα
is a monomorphism, if for every objectC ∈ Ob(C ) and every pairγ1, γ2 : C −→ A, the
implication

α ◦ γ1 = α ◦ γ2 =⇒ γ1 = γ2

holds true. We callα an epimorphism, if, for every objectC ∈ Ob(C ) and every pair
γ1, γ2 : B −→ C, we find

γ1 ◦ α = γ2 ◦ α =⇒ γ1 = γ2.

I.3.1 Remark.Let α : A −→ B be a morphism in the categoryC andαopp: B −→ A
the corresponding morphism in the opposite categoryC

opp. Then,α is a monomorphism
(epimorphism) inC if and only if αopp is an epimorphism (monomorphism) inC opp.

We say that “monomorphism” and “epimorphism” aredual notions. In general, we
get, for every definition in a categoryC , a dual definition, by “reversing” all arrows.

I.3.2 Example.Letα : A −→ Bbe a morphism, such that there exists a morphismπ : B −→
A with π◦α = idA. Then,α is a monomorphism. In fact, letC ∈ Ob(C ) andγ1, γ2 : C −→
A morphisms withα ◦ γ1 = α ◦ γ2. Then,

γ1 = idA ◦ γ1 = (π ◦ α) ◦ γ1 = π ◦ (α ◦ γ1) = π ◦ (α ◦ γ2) = γ2.

Likewise,α is an epimorphism, if there is a morphismι : B −→ A with α ◦ ι = idB.

I.3.3 Exercise.Prove that a mapα : A −→ B in the category Setsis a monomorphism if
and only if it is injective and an epimorphism if and only if itis surjective.

11
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I.4 Additive categories

Let C be a category andA, B ∈ Ob(C ). A triple (A⊕ B, ιA, ιB) which consists of an object
A⊕ B and morphismsιA : A −→ A⊕ B, ιB : B −→ A⊕ B is thedirect sumor coproductof
A andB, if it has the following universal property: For every object C and every pair of
morphismsα : A −→ C andβ : B −→ C, there is a unique morphismα ⊕ β : A⊕ B −→ C
with

α = (α ⊕ β) ◦ ιA and β = (α ⊕ β) ◦ ιB.

We remember this property by the diagram

B
ιB

β
A

ιA

α

A⊕ B

∃!α⊕β

C.

I.4.1 Remark.The direct sum is, if it exists, unique up to unique isomorphy: Given a triple
(D, iA : A −→ D, iB : B −→ D), such that, for every objectC and every pair of morphisms
α : A −→ C andβ : B −→ C, there is a unique morphismγ : D −→ C with α = γ ◦ iA and
β = γ ◦ iB, one has a unique isomorphismf : A⊕B −→ D with ιA = iA ◦ f andιB = iB ◦ f .
In fact, the morphismf exists by the universal property. Likewise, there is a morphism
g: D −→ A ⊕ B with iA = ιA ◦ g and iB = ιB ◦ g. For the compositiong ◦ f , we find
ιA = ιA ◦ (g ◦ f ) andιB = ιB ◦ (g ◦ f ). Thus,g ◦ f = idA⊕B, by the uniqueness requirement
in the universal property. For the same reasonf ◦ g = idD.

I.4.2 Exercise(The direct product). Let C be a category andA, B ∈ Ob(C ). Define the
notion of adirect product A⊓ B that is dual to the notion of a direct sum.

Recall that you have already encountered direct sums and products in the category of
modules over a ringR ([22], Section III.1).

Let C be a category. An object⋆ ∈ Ob(C ) is an initial object, if, for every object
A ∈ Ob(C ), there is a unique morphism⋆ −→ A. We say that⋆ ∈ Ob(C ) is a terminal
object, if, for every objectA ∈ Ob(C ), there is a unique morphismA −→ ⋆. A null object
is an object 0∈ Ob(C ) which is both an initial and a terminal object.

I.4.3 Remark.For two initial objects⋆, ⋆′ ∈ Ob(C ), there is a unique isomorphism⋆ −→
⋆′. This is, because the composition⋆ −→ ⋆′ −→ ⋆ has to be id⋆ and the composition
⋆′ −→ ⋆ −→ ⋆′ has to be id⋆′. The same goes for terminal objects and null objects.

Let C be a category which has a null object 0∈ Ob(C ). For objectsA, B ∈ Ob(C ), the
null morphismis the morphism 0:A −→ 0 −→ B. Let α : A −→ B a morphism inC . A
pair (K, ι), consisting of an objectK ∈ Ob(C ) and a morphismι : K −→ A, is akernelof
α, if

⋆ α ◦ ι = 0,7

7Here, we use that we can say what a zero morphism is.
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I.4. Additive categories

⋆ for every objectC ∈ Ob(C ) and every morphismδ : C −→ A with α ◦ δ = 0, there
is a unique morphismκ : C −→ K with δ = ι ◦ κ;

C

δ
α◦δ=0∃!κ

K ι

α◦ι=0

A α B.

As usual, a kernel is, if it exists, determined up to unique isomorphy, i.e., if (K′, ι′) is
another kernel, there is a unique isomorphismκ : K −→ K′ with ι = ι′ ◦ κ. Thus, we
speak ofthe kernel. We will write Ker(α) for K and often omitι from the notation.

I.4.4 Remark.Let α : A −→ B be a morphism inC and ι : K −→ A the kernel. We
claim thatι is a monomorphism. Assume thatγ1, γ2 : C −→ K are two morphisms with
ι ◦ γ1 = ι ◦ γ2 =: g. It is easy to see thatα ◦ g = 0. So, there is aunique morphism
g: C −→ K with g = ι ◦ g. This showsγ1 = g = γ2.

A cokernelof α is a pair (L, p) in which L ∈ Ob(C ) is an object ofC andp: B −→ L
is a morphism, such that

⋆ p ◦ α = 0,

⋆ for every objectC ∈ Ob(C ) and every morphismδ : B −→ C with δ ◦ α = 0, there
is a unique morphismλ : L −→ C with δ = λ ◦ p;

A

δ◦α=0

α

p◦α=0

B

δ

p L

∃!λ

C.

A cokernelis, if it exists, unique up to unique isomorphy, and will be denoted by Coker(α).

I.4.5 Remark.i) As in Remark I.4.4, one checks that a cokernel is an epimorphism.
ii) The notions of kernel and cokernel are dual to each other in the sense of Remark

I.3.1, i.e., the kernel (cokernel) of a morphismα : A −→ B yields the cokernel (kernel) of
the corresponding morphismαopp: B −→ A in the opposite categoryC opp.

An additive categoryC consists of

⋆ a class Ob(C ) of objects,

⋆ for an ordered pairA, B ∈ Ob(C ) of objects, anabelian group MorC (A, B),

⋆ for an ordered tripleA, B,C ∈ Ob(C ) of objects, abilinear composition map

◦ : MorC (A, B) ×MorC (B,C) −→ MorC (A,C)

(α, β) 7−→ β ◦ α,

⋆ for every objectA ∈ Ob(C ), an element idA,

13
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such that

⋆ the axioms of a category are verified (see Page 3),

⋆ there exists a null object 0∈ Ob(C ),

⋆ for any two objectsA, B ∈ Ob(C ), their direct sum exists.

I.4.6 Remark.For an alternative definition of an additive category, see [21], Abschnitt 4.1.

I.4.7 Lemma. LetC be an additive category.
i) An object0 ∈ Ob(C ) is a null object if and only ifMorC (0, 0) = {0}.
ii) Let A, B ∈ Ob(C ). The null morphism A−→ B agrees with the neutral element of

MorC (A, B).

Proof. i) If 0 is a null object, then MorC (0, 0) = {0}, by definition. Now, assume that
0 ∈ Ob(C ) satisfies MorC (0, 0) = {0}. Let A ∈ Ob(C ). By definition of an additive
category, there is a morphism 0: 0−→ A. For every morphismα : 0 −→ A, we have

α = α ◦ id0 = α ◦ 0 = α ◦ (0+ 0) = α ◦ 0+ α ◦ 0 = α + α.

Subtractingα on both sides givesα = 0. So, 0 is an initial object inC . In the same vein,
we see that 0 is a terminal object, too.

ii) Recall that, for objectsA, B ∈ Ob(C ), the null morphism is the unique morphism
A −→ 0 −→ B. Since◦ : MorC (A, 0)×MorC (0, B) −→ MorC (A, B) is bilinear, this is the
zero element of MorC (A, B). �

I.4.8 Remark.Let α : A −→ B be a morphism inC . For an objectC ∈ Ob(C ) and
morphismsγ1, γ2 : C −→ A, we have

α ◦ γ1 = α ◦ γ2 ⇐⇒ α ◦ (γ1 − γ2) = 0.

This shows thatα is a monomorphism if and only if, for every objectC ∈ Ob(C ) and
every morphismγ : C −→ A, the conditionα ◦ γ = 0 impliesγ = 0. In other words,α is
a monomorphism if and only if 0−→ A is the kernel ofα.

Likewise, a morphismα : A −→ B is an epimorphism if and only ifB −→ 0 is its
cokernel.

Let C andD be additive categories. A functorF : C −→ D is additive, if, for objects
A, B ∈ Ob(D), the map

MorC (A, B) −→ MorD

(
F(A), F(B)

)

is a homomorphism of abelian groups.

I.4.9 Exercises(Direct sums and products). i) Let A be anadditive category. Show
that, for any two objectsA and B of A , the direct sumA ⊕ B comes with morphisms
πA : A⊕ B −→ A andπB : A⊕ B −→ B, such that (A⊕ B, πA, πB) is the direct product ofA
andB.

ii) Let A be an additive category,A, B,C ∈ Ob(A ), andι1 : A −→ C, ι2 : B −→ C,
π1 : C −→ A, andπ2 : C −→ B morphisms. Suppose

πi ◦ ι j =

{
0, if i , j
id, if i = j

, i, j ∈ { 1, 2 }, and ι1 ◦ π1 + ι2 ◦ π2 = id C

Show that (C, ι1, ι2) is the direct sum ofA andB.

14
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I.4.10 Remark.The attentive reader may wonder why there is no requirement regarding
direct sums in the definition of additive functors. The reason is that the respective property
is automatically satisfied, i.e., forA, B ∈ Ob(C ), (F(A⊕ B), F(ιA), F(ιB)) is the direct sum
of F(A) andF(B). This results easily from the characterization of direct sums in Exercise
I.4.9, ii).

Images and coimages

Suppose thatC is an additive category andα : A −→ B is a morphism inC .

⋆ If α has a cokernel and the morphismB −→ Coker(α) has a kernel, then this kernel
is called theimageof α and denoted by Im(α).

⋆ If α has a kernel and the morphism Ker(α) −→ A possesses a cokernel, then this
cokernel is referred to as thecoimageof α and denoted by Coim(α).

I.4.11 Remark.Let α : A −→ B be a morphism inD which admits an image and a coim-
age. Then, the universal properties of kernels and cokernels show that there is an induced
morphism

α : Coim(α) −→ Im(α),

such that

α : A −−−−−→ Coim(α)
α

−−−−−→ Im(α) −−−−−→ B.

I.5 Abelian categories

Recall that thefirst isomorphism theorem in group theory ([26], Satz II.10.1) states that,
for groupsG, H, and a homomorphismα : G −→ H, the induced homomorphism

α : G/Ker(α) −→ Im(α)

is an isomorphism.
Abelian categories are modelled on the category Abof abelian groups. In Ab, all

kernels and cokernels do exist. The image of a homomorphismα : A −→ B coincides
with the set theoretic image, and the coimage ofα with A/Ker(α).

An abelian categoryis anadditive categoryA , such that

⋆ every morphism inA has a kernel and a cokernel,

⋆ for every morphismα : A −→ B, the induced morphismα : Coim(α) −→ Im(α)
(see Remark I.4.11) is an isomorphism.

The latter condition says that the first isomorphism theoremholds inA . Of course, we
use the other assumptions to be able to formulate it. As a firstillustration, we show:

I.5.1 Lemma. LetC be an abelian category. Then, a morphismα : A −→ B is an isomor-
phism if and only if it is both a mono- and an epimorphism.

15



Homological Algebra

Proof. An isomorphism is clearly both a mono- and an epimorphism (compare Remark
I.4.8). Now, assume thatα is a monomorphism. Then, 0−→ A is the kernel ofα (loc.
cit.) and idA : A −→ A is the coimage ofα. In the same fashion, we see that idB : B −→ B
is the image ofα. Finally,α = α. The axioms of an abelian category require thatα is an
isomorphism. �

I.5.2 Examples.i) The category Abof abelian groups is an abelian category.
ii) Let R be a commutative ring. Then, the category ModR is an abelian category. Ifk

is a field, this category is the category ofk-vector spaces.
iii) Let R be a non-commutative ring. Then, one may form the category ModR of left

R-modules (see [16], Chapter III.1). It is also an abelian category.

I.5.3 Example(Pairs of vector spaces). Let k be a field. We form the categoryC whose
objects are pairs (V,U) consisting of ak-vector spaceU and a sub vector spaceV ⊂ U.
For two such pairs (V1,U1) and (V2,U2), we set

MorC

(
(V1,U1), (V2,U2)

)
:=

{
f : U1 −→ U2 | f is k-linear andf (V1) ⊂ V2

}
.

It is easy to see that this is an additive category in which kernels and cokernels do exist. In
fact, let f : (V1,U1) −→ (V2,U2) be a morphism. Then, (V1∩Ker( f ),Ker( f )) is the kernel
for f , and (V2,Coker(f )), V2 the image ofV2 under the projectionU2 −→ Coker(f ), is
the cokernel.

Now, look at the morphismi : (0, k) −→ (k, k) induced by idk : k −→ k. Its kernel
and cokernel are (0, 0), yet it is not an isomorphism. In particular,C is not an abelian
category.

I.5.4 Convention. Let A be an abelian category. Due to its similarities (see Theorem
I.5.9) with the category Abof abelian groups, we will often refer to morphisms inA as
homomorphismsand write HomA (·, ·) instead of MorA (·, ·).

Diagrams in abelian categories

Let D be asmall category, e.g., the category of a quiver as in Example I.1.2,v), andA

an abelian category. AD-diagramin A is a functorD : D −→ A . According to Remark
I.2.1, theD-diagrams form a category Diag

D
(A ).

I.5.5 Exercise.Show that Diag
D

(A ) is an abelian category.

We will frequently use some examples coming from quivers. Insome cases, we allow
the setV of vertices to be infinite.

⋆ Let n ∈ N be a natural number. We form the quiverAn with verticesV := { 0, ..., n },
arrowsA := { a0, ..., an−1 }, t(ai) = i, andh(ai) = i + 1, i = 0, ..., n− 1:

0
a0
−−−−−→ 1

a1
−−−−−→ 2

a2
−−−−−→ · · ·

an−2
−−−−−→ n− 1

an−1
−−−−−→ n.

The corresponding category will be denoted byAn.

⋆ The infinite quiverA∞ has verticesV = Z, arrowsA = { ak | k ∈ Z }, t(ak) = k, and
h(ak) = k+ 1, k ∈ Z. The resulting category gets the nameA∞.
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⋆ The quiverA3
∞ consists of the verticesV = Z × { 0, 1, 2 }, arrowsA = { ak, bk, dk | k ∈

Z }, t(ak) = (k, 0), t(bk) = (k, 1), t(ck) = (k, 2), h(ak) = (k, 1), h(bk) = (k, 2),
h(ck) = (k+ 1, 0), k ∈ Z:

· · ·
dk−1
−−−−−→ (k, 0)

ak
−−−−−→ (k, 1)

bk
−−−−−→ (k, 2)

dk
−−−−−→ (k+ 1, 0)

ak+1
−−−−−→ · · · .

We get the categoryA 3
∞.

⋆ The quiverA3,⋆
∞ has the verticesV = Z × { 0, 1, 2 }, arrowsA = { ak, bk | k ∈ Z },

t(ak) = (k, 0), t(bk) = (k, 1), h(ak) = (k, 1), h(bk) = (k, 2), k ∈ Z.

I.5.6 Remarks.i) The categoriesA∞ andA
3
∞ are isomorphic.

ii) Let D1 andD2 be small categories andF : D1 −→ D2 a functor. For an abelian
categoryA , it induces a functor Diag(F) : Diag

D2
(A ) −→ Diag

D1
(A ). For example, we

have an obvious functorA 3,⋆
∞ −→ A

3
∞.

Let n ∈ N be a natural number and

A0
α0
−−−−−→ A1

α1
−−−−−→ · · ·

αn−2
−−−−−→ An−1

αn−1
−−−−−→ An

anAn-diagram. It is anAn-sequence, if

⋆ αk ◦ αk−1 = 0,

⋆ the induced morphism Im(αk−1) −→ Ker(αk) is an isomorphism,k = 1, ..., n.

We will abbreviate this condition as “Im(αk−1) = Ker(αk)”, k = 1, ..., n.
Likewise, anA∞ diagramD : A∞ −→ A is exact, if

∀k ∈ Z : Im
(
D(ak)

)
= Ker

(
D(ak+1)

)
.

This notion of exactness yields a notion of exactness forA
3
∞-diagrams: AnA 3

∞-diagram
D : A

3
∞ −→ A is exact, if

∀k ∈ Z : Im
(
D(ak)

)
= Ker

(
D(bk)

)
, Im

(
D(bk)

)
= Ker

(
D(dk)

)
, Im

(
D(dk)

)
= Ker

(
D(ak+1)

)
.

We will refer to an exactA 3
∞-diagram as along exact cohomology sequence. The full

subcategory of Diag
A

3
∞

(A ) of long exact cohomology sequences will also be denoted by

LECS(A ).
An exactA4-sequence of the form

0 −−−−−→ A
α

−−−−−→ B
β

−−−−−→ C −−−−−→ 0

will be called ashort exact sequence. This means thatα is a monomorphism,β is an
epimorphism, and Im(α) = Ker(β). The full subcategory of Diag

A4
(A ) formed by the

short exact sequences inA will be written as SES(A ).
Let A andB be abelian categories andF : A −→ B a functor. We say thatF is exact,

if, for every short exact sequence

0 −−−−−→ A −−−−−→ B −−−−−→ C −−−−−→ 0
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in A ,
0 −−−−−→ F(A) −−−−−→ F(B) −−−−−→ F(C) −−−−−→ 0

is a short exact sequence inB. The functorF is left exact, if, for every sequence

0 −−−−−→ A −−−−−→ B −−−−−→ C

in A , the sequence

0 −−−−−→ F(A) −−−−−→ F(B) −−−−−→ F(C)

is exact, too. We callF is right exact, if, for every sequence

A −−−−−→ B −−−−−→ C −−−−−→ 0

in A , the sequence

F(A) −−−−−→ F(B) −−−−−→ F(C) −−−−−→ 0

is exact. We say thatF is half exact, if it is left or right exact or both.

I.5.7 Exercises(Direct sums in abelian categories). i) Let A be anabeliancategory and

0 −−−−−→ A
ι

−−−−−→ B −−−−−→ C −−−−−→ 0

a short exact sequence inA . Suppose that there exists a morphismπ : B −→ A with
π ◦ ι = idA. Prove thatB is isomorphic to the direct sum ofA andC.

ii) Let G,H be not necessarily abelian groups,ιG : G −→ G × H, g 7−→ (g, e),
ιH : H −→ G × H, h 7−→ (e, h), pG : G × H −→ G, (g, h) 7−→ g, pH : G × H −→ H,
(g, h) 7−→ h. Show that (G × H, pG, pH) is a direct product in the category Groupsof
groups. Show by means of an example that (G × H, iG, iH) is, in general, not a direct
sum in the category Groups.8 (Hint . Let C be a group andη : G −→ C, ϑ : H −→ C
homomorphisms. Check that there is an induced homomorphismκ : G × H −→ C with
κ ◦ ιG = η, κ ◦ ιB = ϑ if and only if, for all g ∈ G, h ∈ H, η(g) · ϑ(h) = ϑ(h) · η(g).)

I.5.8 Proposition. A half exact functor is additive.

Proof. We first note thatF takes direct sums to direct sums. In fact, letA, B be objects in
A . The direct sumC of A andB is given by an exact sequence (see Exercise I.5.7, i)

0 −−−−−→ A
ιA
−−−−−→ C

πB
−−−−−→ B −−−−−→ 0,

such that there are mapsιB : B −→ C andπA : C −→ A with πA◦ ιA = idA andπB◦ ιB = idB.
Now, applyingF gives the exact sequence

F(A)
F(ιA)
−−−−−→ F(C)

F(πB)
−−−−−→ F(B).

SinceF(πA) ◦ F(ιA) = F(πA ◦ ιA) = F(idA) = idF(A) andF(πB) ◦ F(ιB) = idF(B), it follows
thatF(ιA) is a monomorphism (Remark I.4.8),F(πB) is an epimorphism, andF(C) is the
direct sum ofF(A) andF(B), by Exercise I.5.7, i).

8The direct sum exists in the category of groups. For groupsG, H, it is usually denoted byG⋆ H and
called thefree product([1], Exercise 27.11).
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Now, letA be an object ofA . SinceA⊕A is also the direct product (Exercise I.4.9, ii),
idA : A −→ A and idA : A −→ A give a morphism∆A : A −→ A ⊕ A. It is readily verified
thatF(∆A) = ∆F(A). Next, letB be another object ofA and f , g: A −→ B morphisms. By
the universal property of the direct sum, we find an induced map f ⊕ g: A⊕ A −→ B. We
leave it to the reader to verify that

f + g = ( f ⊕ g) ◦ ∆A

and
F( f ⊕ g) = F( f ) ⊕ F(g).

These facts together yield the claim. For more details, we refer the reader to [21], Ab-
schnitt 4.6.9 �

The Freyd–Mitchell theorem

The axioms for an abelian category hold certainly true in thecategory Abof abelian
groups and, more generally, in the category ModR of left R-modules,R a not necessarily
commutative ring. We state (without proof) that these axioms in a certain sense charac-
terize the category ModR.

I.5.9 Theorem (Freyd10, Mitchell 11). Let A be asmall abelian category. Then, there
exist a not necessarily commutative ring and anexactfunctor

F : A −→ ModR

with the property that, for all objects A, B ∈ Ob(A ), the map

F : HomA (A, B) −→ HomR
(
F(A), F(B)

)
(I.5)

is an isomorphism of groups.

Proof. [21], Abschnitt 4.14. �

I.5.10 Remark.A functor which satisfies (I.5) is said to befully faithful. Observe that
the definition of a fully faithful functor does not imply thatF : Ob(A ) −→ Ob(ModR)
is injective. However, as on Page 9, one sees that a fully faithful functor induces an
injection from the set of isomorphy classes in Ob(A ) to the class of isomorphy classes in
Ob(ModR).

I.5.11 Exercise(Abelian categories). Let A be an abelian category, andC ⊂ Ob(A ) a
subsetof objects. Show that there exists asmall full abelian subcategoryB of A , such
thatC ⊆ Ob(B).

Instructions. This reduces to the fact that certain operations on sets lead again to sets.
The following two axioms of set theory might be helpful.

• (Axiom of replacement) IfF : C −→ D is a map between classes andA ⊂ C is a
set, thenF(A) ⊂ D is also a set.

9The notation is slightly different there.
10Peter J. Freyd (*1936), U.S. American mathematician.
11Barry Mitchell
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• (Axiom of union) For a setA, there also exists the set

C =
⋃

B∈A

B,

i.e.,C is a set, such that a setD is a member ofC if and only if there is a setB such
thatD is a member ofB andB is a member ofA.

Theorem I.5.9 and Exercise I.5.11 show that, for a statementin an abelian category
which involves, for example, only finitely many objects and morphisms between them, we
can pretend to be in a category of the form ModR. The results provide “local coordinates”
for abelian categories.

I.6 Complexes and cohomology

Let A be an abelian category and (C•, ∂•) an A∞-diagram inA . Here,C• stands for a
family (Ck, k ∈ Z) of objects inA and∂• for a family of homomorphisms (∂k : Ck −→

Ck+1, k ∈ Z). The diagram (C•, ∂•) is acomplex, if

∀k ∈ Z : ∂k+1 ◦ ∂k = 0.

The complexes ofA form a full abelian subcategory of Diag
A∞

(A ). It will be denoted by

Compl(A ).
Let (C•, ∂•) be a complex inA . We set

Bk(C•, ∂•) := Im(∂k−1) and Zk(C•, ∂•) := Ker(∂k), k ∈ Z.

Since∂k ◦ ∂k−1 = 0, there is an induced homomorphismBk(C•, ∂•) −→ Zk(C•, ∂•), k ∈ Z.
The cokernel of this homomorphism is written asHk(C•, ∂•), or, more suggestively,

Hk(C•, ∂•) := Zk(C•, ∂•)/Bk(C•, ∂•), k ∈ Z.

It is called thek-th cohomologyof the complex (C•, ∂•).
For complexes (C•, ∂•C) and (D•, ∂•D) in A , a homomorphismϕ• : (C•, ∂•C) −→ (D•, ∂•D)

consists of homomorphisms
ϕk : Ck −→ Dk,

such that the diagram

Ck
∂k

C
−−−−−→ Ck+1

ϕk

y
yϕk+1

Dk
∂k

D
−−−−−→ Dk+1

commutes, i.e.,
ϕk+1 ◦ ∂k

C = ∂
k
D ◦ ϕ

k, k ∈ Z.

This implies
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⋆ The composition

Zk(C•, ∂•C) −→ Ck ϕk

−→ Dk
∂k

D
−→ Dk+1

is zero,k ∈ Z. By the universal property of the kernel (Page 12), there is an induced
homomorphism

ϕ̃k : Zk(C•, ∂•C) −→ Zk(D•, ∂•D), k ∈ Z.

⋆ The composition

Bk(C•, ∂•C) −→ Zk(C•, ∂•C)
ϕ̃k

−→ Zk(D•, ∂•D) −→ Hk(D•, ∂•D)

is zero,k ∈ Z. By the universal property of the cokernel (Page 12), we get an
induced homomorphism

Hk(ϕ•) : Hk(C•, ∂•C) −→ Hk(D•, ∂•D), k ∈ Z.

We callϕ• a quasi-isomorphism(qism, for short), if Hk(ϕ•) is an isomorphism,k ∈ Z.
The construction shows that we indeed get functors

Hk : Compl(A ) −→ A , k ∈ Z.

We will view the collection (Hk, k ∈ Z) as a functor

H• : SES
(
Compl(A )

)
−→ Diag

A
3,⋆
∞

(A ).

It associates with a short exact sequence

0 −−−−−→ (A•, ∂•A)
α•

−−−−−→ (B•, ∂•B)
β•

−−−−−→ (C•, ∂•C) −−−−−→ 0

in Compl(A ) the diagrams

Hk(A•, ∂•A)
Hk(α•)
−−−−−→ Hk(B•, ∂•B)

Hk(β•)
−−−−−→ Hk(C•, ∂•C)

in A , k ∈ Z.
Let (C•, ∂•C) and (D•, ∂•D) be complexes inA andϕ• : (C•, ∂•C) −→ (D•, ∂•D) a homo-

morphism. We say thatϕ• is homotopic to zero,12 if there are homomorphismshk : Ck −→

Dk−1 with
ϕk = hk+1 ◦ ∂k

C + ∂
k−1
D ◦ hk, k ∈ Z;

Ck−1
∂k−1

C Ck

hk

ϕk

∂k
C Ck+1

hk+1

Dk−1
∂k−1

D Dk
∂k

D Dk+1.

Two homomorphismsϕ•, ψ• : (C•, ∂•C) −→ (D•, ∂•D) of complexes arehomotopic, if their
differenceϕ• − ψ• is homotopic to zero. A homomorphismϕ• : (C•, ∂•C) −→ (D•, ∂•D) is a
homotopy equivalence, if there is a homomorphismψ• : (D•, ∂•D) −→ (C•, ∂•C), such that
ψ• ◦ ϕ• is homotopic to id(C• ,∂•C) andϕ• ◦ ψ• to id(D•,∂•D). Two complexes arehomotopic, if
there exists a homotopy equivalence between them.

12This terminology has its origins in topology where homotopies between continuous maps lead to
homotopies between the induced homomorphisms of complexesof singular (co)chains.
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I.6.1 Proposition. Let (C•, ∂•C) and(D•, ∂•D) be complexes inA andϕ•, ψ• : (C•, ∂•C) −→
(D•, ∂•D) homomorphisms of complexes. Ifϕ• andψ• are homotopic, then

∀k ∈ Z : Hk(ϕ•) = Hk(ψ•).

Proof. By additivity, it is sufficient to establish the assertion forψ• = 0. The assumption
means that there are homomorphismshk : Ck −→ Dk−1 with

ϕk = hk+1 ◦ ∂k
C + ∂

k−1
D ◦ hk, k ∈ Z.

This implies13

ϕk
|Zk(C• ,∂•C) = (∂k−1

D ◦ hk)|Zk(C•,∂•C),

so that
Im(ϕk

|Zk(C• ,∂•C)) ⊂ Bk(D•, ∂•D), k ∈ Z.

It follows thatHk(ϕ•) = 0 as claimed,k ∈ Z. �

I.7 The long exact sequence of cohomology

We now present one of the main tools of homological algebra.

I.7.1 Theorem. The functor

H• : SES
(
Compl(A )

)
−→ Diag

A
3,⋆
∞

(A )

extends to a functor

(H•, δ•) : SES
(
Compl(A )

)
−→ LECS(A ).

This means:
i) For every short exact sequence

0 −−−−−→ (A•, ∂•A)
α•

−−−−−→ (B•, ∂•B)
β•

−−−−−→ (C•, ∂•C) −−−−−→ 0

of complexes inA :
a) The sequences

Hk(A•, ∂•A)
Hk(α•)
−−−−−→ Hk(B•, ∂•B)

Hk(β•)
−−−−−→ Hk(C•, ∂•C)

are exact, k∈ Z.
b) There areconnecting homomorphisms

δk : Hk(C•, ∂•C) −→ Hk+1(A•, ∂•A),

such that the sequences

Hk(B•, ∂•B)
Hk(β•)
−−−−−→ Hk(C•, ∂•C)

δk

−−−−−→ Hk+1(A•, ∂•A)
Hk+1(α•)
−−−−−−→ Hk+1(B•, ∂•B)

13Here, we slightly abuse notation.

22



I.7. The long exact sequence of cohomology

are exact, k∈ Z.

ii) Given a morphism

0 −−−−−→ (A•, ∂•A)
α•

−−−−−→ (B•, ∂•B)
β•

−−−−−→ (C•, ∂•C) −−−−−→ 0
∥∥∥∥ ϕ•

y ψ•
y τ•

y
∥∥∥∥

0 −−−−−→ (A
′•, ∂•A′)

α
′•

−−−−−→ (B
′•, ∂•B′)

β
′•

−−−−−→ (C
′•, ∂•C′) −−−−−→ 0

between short exact sequences of complexes inA , the diagram14

Hk(C•, ∂•C)
δk

−−−−−→ Hk+1(A•, ∂•A)

Hk(τ•)

y
yHk+1(ϕ•)

Hk(C
′•, ∂•C′)

δk

−−−−−→ Hk+1(A
′•, ∂•A′)

(I.6)

commutes, for every k∈ Z.

Proof. We will abbreviateA := (A•, ∂•A), B := (B•, ∂•B), C := (C•, ∂•C), α := α•, β := β•.
Let k ∈ Z be an integer. The composition

Ak−1
∂k−1

A
−−−−−→ Ak

∂k
A

−−−−−→ Ak+1

is zero. Therefore, there is an induced morphism

∂
k

A : Coker(∂k−1
A ) −→ Ak+1.

Note that Im(∂
k

A) = Im(∂k
A), and there is an induced monomorphism Im(∂

k

A) −→ Ker(∂k+1
A ).

By definition, we have the exact sequence

0 −−−−−→ Hk(A)
iA
−−−−−→ Coker(∂k−1

A )
∂

k
A

−−−−−→ Ker(∂k+1
A )

pA
−−−−−→ Hk+1(A) −−−−−→ 0.

There are corresponding sequences for the complexesB andC. We form the commutative

14We have refrained from putting the short exact sequence as anindex of the connecting homomor-
phisms. It should be clear to the reader that, in the following diagram, the connecting homomorphisms
above and below are associated with the upper and lower shortexact sequence in the former diagram,
respectively.
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diagram

0 0 0

Hk(A)

iA

Hk(α)
Hk(B)

iB

Hk(β)
Hk(C)

iC

Coker(∂k−1
A ) αk

∂
k
A

Coker(∂k−1
B )

β
k

∂
k
B

Coker(∂k−1
C )

∂
k
C

0.

0 Ker(∂k+1
A )

pA

αk+1

Ker(∂k+1
B )

pB

βk+1

Ker(∂k+1
C )

pC

Hk+1(A)
Hk+1(α)

Hk+1(B)
Hk+1(β)

Hk+1(C)

0 0 0

(I.7)

The columns of this diagram are exact, and it is also clear that the third and the fourth row
are exact. We will first show that the second and fifth row are exact, too.

For this, we apply Exercise I.5.11 and the Freyd–Mitchell embedding theorem I.5.9
and assume that Diagram (I.7) is a diagram in the category ModR, for some ringR. The
technique we will employ in the proofs and constructions is calleddiagram chasing.

Exactness atH k(B). By functoriality, we have

Hk(β) ◦ Hk(α) = Hk(β ◦ α) = 0, so that Im
(
Hk(α)

)
⊂ Ker

(
Hk(β)

)
.

Let h ∈ Hk(B) be an element15 with Hk(β)(h) = 0. The commutativity of (I.7) im-

plies β
k
(iB(h)) = 0. Using the exactness of the third row, there exists an element h′ ∈

Coker(∂k−1
A ), such thatαk(h′) = iB(h). We compute

αk+1(∂k

A(h′)
)
= ∂

k

B

(
α

k(h′)
)
= ∂

k

B

(
iB(h)

)
= 0.

Sinceαk+1 is injective, it follows that∂
k

A(h′) = 0. By exactness of the first column, there
is an elementh′′ ∈ Hk(A) with iA(h′′) = h′. We find

iB
(
Hk(α)(h′′)

)
= α

k(iA(h′′)
)
= α

k(h′) = iB(h).

The injectivity of iB givesHk(α)(h′′) = h. Thus, Im(Hk(α)) ⊃ Ker(Hk(β)).
Definition of δk. Let h ∈ Hk(C). We choose an elementh′ ∈ Coker(∂k−1

B ), such that

β
k
(h′) = iC(h). We find

βk+1(∂k

B(h′)
)
= ∂

k

C

(
β

k
(h′)

)
= ∂

k

C

(
iC(h)

)
= 0.

The exactness of the fourth row shows that there is aunique elementh′′ ∈ Ker(∂k+1
A ) with

αk+1(h′′) = ∂
k

B(h′). Now, we set
δk(h) = pA(h′′). (I.8)

15Recall that we assume that we are in the category ModR, so that we may speak of elements.
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In order to see that this is well-defined, pick another element h̃′ ∈ Coker(∂k−1
B ) with

β
k
(̃h′) = iC(h). Then,h̃′ − h′ ∈ Ker(β

k
). So, there is an elementh

′
∈ Coker(∂k−1

A ) with

α
k(h
′
) = h̃′ − h′. Diagram (I.7) shows

h̃′′ = h′′ + ∂
k

A(h
′
),

and we inferpA(̃h′′) = pA(h′′).
Exactness atH k(C). For h ∈ Hk(B), the elementiB(h) is a lift of iC(Hk(β))(h). Since

the second column is exact,∂
k
(B)(iB(h)) = 0. This givesδk ◦ Hk(β) = 0.

Next, leth ∈ Hk(C) be an element withpA(h′′) = δk(h) = 0. This implies that there

exists an elementh′′′ ∈ Coker(∂k−1
A ), such that∂

k

A(h′′′) = h′′. We may replaceh′ by

h′−αk(h′′′). This shows that we may assume without loss of generality∂
k

B(h′) = 0. Under
this assumption, there exists an elementh̃ with iB(̃h) = h′, and we compute

iC
(
Hk(β)(̃h)

)
= β

k(
iB(̃h)

)
= β

k
(h′) = iC(h).

The injectivity of iC finally yieldsh = Hk(β)(̃h).
Exactness atH k+1(A). Forh ∈ Hk(C), we have

Hk+1(α)
(
δk(h)

)
= pB

(
αk+1(h′′)

)
= pB

(
∂

k

B(h′)
)
= 0.

Now, let h̃ ∈ Hk+1(A) be an element withHk+1(α)(̃h) = 0. Fix an elementh′′ ∈
Ker(∂k+1

A ) with pA(h′′) = h̃. The commutativity of (I.7) shows

pB
(
αk+1(h′′)

)
= Hk+1(α)

(
pA(h′′)

)
= Hk+1(α)(̃h) = 0.

By the exactness of the second column, there is an elementh′ ∈ Coker(∂k−1
B ) with ∂

k

B(h′) =
αk+1(h′′). Then,

∂
k

C

(
β

k
(h′)

)
= βk+1(∂k

B(h′)
)
= βk+1(αk+1(h′′)

)
= 0,

and we find an elementh ∈ Hk(C) with iC(h) = β
k
(h′). The construction givesδk(h) = h̃.

Functoriality. Diagram (I.7) is a diagram in the categoryA in the sense defined
on Page 16. It is readily verified that this diagram depends functorially on the short exact
sequence. Given a morphism from Diagram (I.7) to the corresponding diagram associated
with

0 −−−−−→ A′ −−−−−→ B′ −−−−−→ C′ −−−−−→ 0,

it is straightforward to check with the definitions that (I.6) commutes. �

I.7.2 Exercise(The snake lemma). Let A be an abelian category and

0 −−−−−→ A −−−−−→ B −−−−−→ C −−−−−→ 0
∥∥∥∥

y f

yg
yh

∥∥∥∥
0 −−−−−→ A′ −−−−−→ B′ −−−−−→ C′ −−−−−→ 0

a commutative diagram inA with exact rows. Show that it induces an exact sequence

0 −→ Ker( f ) −→ Ker(g) −→ Ker(h) −→ Coker(f ) −→ Coker(g) −→ Coker(h) −→ 0.

Theorem I.7.1 gives a general framework for long exact cohomology sequences which
includes the long exact sequence in the singular (co)homology of topological spaces. The
next question we would like to address is how we get interesting complexes of which we
would like to take the cohomology.
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I.8 Resolutions

In this section, we will explain how we can associate in certain abelian categories with
any object a complex, calledresolution, in a canonical way. First, we look at two half
exact functors which exist on any abelian category.

I.8.1 Lemma. LetA be an abelian category and A∈ Ob(A ) an object ofA .
i) The functorHomA (A, ·) is left exact.
ii) The contravariant functorHomA (·,A) is left exact.

Proof. Since
HomA (·,A) = HomA opp(A, ·)

andA
opp is also an abelian category (Remark I.4.5, ii), Exercise I.4.9), it suffices to prove

Part i).
Given a short exact sequence

0 −−−−−→ B1
β1
−−−−−→ B2

β2
−−−−−→ B3 −−−−−→ 0

in A , we look at the sequence

0 −−−−−→ HomA (A, B1) −−−−−→ HomA (A, B2) −−−−−→ HomA (A, B3)

of abelian groups.
Exactness at HomA (A,B1). This means that, for any homomorphismα : A −→ B1,

the conditionβ1 ◦ α = 0 impliesα = 0. This results from the fact thatβ1 is a monomor-
phism (Page 11).

Exactness at HomA (A,B2). The composition

HomA (A, B1) −→ HomA (A, B3)

is
α 7−→ (β2 ◦ β1) ◦ α

and, thus, zero.
Now, assume thatα ∈ HomA (A, B2) is a homomorphism withβ2 ◦ α = 0. Then,α

factorizes over Ker(β2). There are induced isomorphisms

B1
β̃1
−→ Im(β1)

β2
−→ Ker(β2).

This implies that there is a unique homomorphismα′ : A −→ B1 with β1 ◦ α
′ = α. �

I.8.2 Exercise(Hom is not right exact). Give an example of an abelian categoryA and an
objectA of A , such that the functor HomA (A,−) is not right exact.

An objectA ∈ Ob(A ) is projective, if the functor HomA (A, ·) is exact, andinjective,
if the functor HomA (·,A) is exact.

I.8.3 Remark.Projective objects inA correspond to injective objects inA opp. So, for
general statements and investigations, we may restrict to projective or injective objects.
In the sequel, we will mainly speak about injective objects.
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The following example shows that projective and injective objects in an abelian cate-
gory might look quite different.

I.8.4 Example.i) Recall that, for an abelian groupA,

HomAb(Z,A) −→ A

ϕ 7−→ ϕ(1)

is an isomorphism of abelian groups. Using this fact, it is easy to see thatZ is a projective
object in the category Abof abelian groups. In the same vein, one checks that any free
abelian group is projective.

ii) Suppose thatA is aninjective abelian group, and letn ≥ 1. We apply HomAb(·,A)
to the exact sequence

0 −−−−−→ Z
k→n·k
−−−−−→ Z −−−−−→ Z/〈n〉 −−−−−→ 0.

Using the observation from Part i), the homomorphism

HomAb(Z,A) −→ HomAb(Z,A)

corresponds to

A −→ A

a 7−→ n · a.

This is surjective if and only if

∀a ∈ A∃b ∈ A : n · b = a.

Informally speaking, this means that every elementa ∈ A may be divided byn. A group
A satisfying

∀a ∈ A∀n ≥ 1∃b ∈ A : n · b = a. (I.9)

is said to bedivisible.
Our discussion shows that every injective abelian group is divisible. The converse

will be established in Theorem I.12.2. The groupZ is not divisible and, therefore, not
injective. The abelian group (Q,+) is divisible.

An abelian categoryA hasenough injectives, if, for every objectA ∈ Ob(A ), there
are aninjective objectI ∈ Ob(A ) and a monomorphismi : A −→ I .

I.8.5 Remark.We can form the category whose objects are triples (A, I , i) which consist
of an objectA ∈ Ob(A ), an injective objectI ∈ Ob(A ), and a monomorphismi : A −→ I .
Let (A, I , i) and (A′, I ′, i′) be triples as above. There is no morphism from (A, I , i) to
(A′, I ′, i′), if A , A′. If A = A′, a morphismfrom (A, I , i) to (A, I ′, i′) is a morphism
f : I −→ I ′ with i′ = f ◦ i;

A

i′

i I

f

I ′.

We use the axiom of choice as in Example I.2.3. IfA is a category with enough injectives,
we fix in this way, for every objectA ∈ Ob(A ), an injective objectI (A) ∈ Ob(A ) and a
monomorphismiA : A −→ I (A).
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Let A be an abelian category andA ∈ Ob(A ) an object. A complex (I •, ∂•I ) in A is an
injective resolutionof A, if

⋆ I k = 0, for k < 0,

⋆ In is an injective object inA , n ∈ N,

⋆ Ker(∂0
I ) is isomorphic toA,

⋆ Im(∂n
I ) = Ker(∂n+1

I ), n ∈ N.16

We will frequently write an injective resolution ofA in the form

0 −−−−−→ A
i

−−−−−→ I0
∂0

I
−−−−−→ I1

∂1
I

−−−−−→ · · ·

and even suppress the names of the morphisms.

I.8.6 Lemma. Suppose that the abelian categoryA hasenough injectives. Then, every
object ofA has an injective resolution.

Proof. We defineI k := 0, k < 0, andI0 := I (A). The remaining injective objects and
derivatives will be defined by recursion:

⋆ C0 := Coker(iA), I1 := I (C0), and∂0
I : I0 −→ C0

iC0

−→ I1,

⋆ Cn+1 := Coker(∂n
I ), In+2 := I (Cn+1), and∂n+1

I : In+1 −→ Cn+1
iCn+1

−→ In+2, n ∈ N.

It is immediate from the construction that the result is an injective resolution ofA. �

I.8.7 Remark.Let A ∈ Ob(A ) be an object ofA and (I •, ∂•I ) an injective resolution ofA.
We complete this to a complex, also denoted by (I •, ∂•I ), by setting

I k := 0 and ∂k
I := 0, k < 0.

Then,

Hk(I •, ∂•I ) =

{
A, if k = 0
0, if k , 0

.

On the other hand, we may form the complex (A•, ∂•A) with

Ak =

{
A, if k = 0
0, if k , 0

and the obvious differentials∂k
A, k ∈ Z. The monomorphismA0 = A −→ I0 from the

injective resolution and the zero homomorphismsAk = 0 −→ I k, k , 0, form a homomor-
phism (A•, ∂•A) −→ (I •, ∂•I ) of complexes which is obviously a quasi-isomorphism (see
Page 21).

16This is abusive notation, coming from abelian categories ofthe form ModR, R a not necessarily com-
mutative ring. We leave it to the reader to define this condition in exact categorical language.
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We will denote the injective resolution ofA from Lemma I.8.6 by (I •(A), ∂•I(A)). The
injective resolution we have just constructed depends on several choices. We will next
demonstrate that, when it comes to cohomology, it is canonical.

I.8.8 Proposition. Let A, B ∈ Ob(A ) be objects and

0 −−−−−→ A −−−−−→ I0
∂0

I
−−−−−→ I1

∂1
I

−−−−−→ · · · ,

0 −−−−−→ B −−−−−→ J0
∂0

J
−−−−−→ J1

∂1
J

−−−−−→ · · ·

injective resolutions of A and B, respectively. For every homomorphismα ∈ HomA (A, B),
there is a homomorphismα• : (I •, ∂•I ) −→ (J•, ∂•J) of complexes, such that17

(A•, ∂•A)

α

(I •, ∂•I )

α•

(B•, ∂•B) (J•, ∂•J)

is a commutative diagram in the category of complexes inA . The homomorphismα• is
unique up to homotopy.

Proof. We first explain how the homomorphismα• is constructed. First, we obtain the
diagram

A

α

I0

α0

B J0.

Note thatα0 exists, becauseJ0 is an injective object. The diagram

A

α

I0

α0

∂0
I I1

B J0
∂0

J J1

induces
I0

α0

I0/A

α0

I1

α1

J0 J0/B J1.

Here,α1 exists, becauseJ1 is an injective object. The construction may clearly be iterated.
Next, we explain how we obtain the homotopy. Here, we may obviously assume that

α = 0. In this case, we have to explain whyα• is homotopic to zero. The diagram

A

0

I0

α0

∂0
I I1

B J0
∂0

J J1

17We use the notation of Remark I.8.7.
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yields

I0/A
∂

0
I I1

h1

J0
∂0

J J1.

The existence ofh1 follows from the injectivity ofJ0. Next, the diagram

I0
∂0

I I1

α1−∂0
J◦h

1

∂1
I I2

J0
∂0

J J1

leads to

Coker(∂0
I )

(α1−∂0
J◦h

1)

∂
1
I I2

h2

J1.

The homomorphismh2 exists, becauseJ1 is injective. The construction implies

α1 = ∂
0
J ◦ h1 + h2 ◦ ∂1

I .

Again, we may iterate this construction. �

As usual, all the choices involved in the constructions above may be made uniformly.

I.8.9 Corollary. Let A∈ Ob(A ) be an object and

0 −−−−−→ A −−−−−→ I0
∂0

I
−−−−−→ I1

∂1
I

−−−−−→ · · · ,

0 −−−−−→ A −−−−−→ J0
∂0

J
−−−−−→ J1

∂1
J

−−−−−→ · · ·

injective resolutions of A. Then, there are homomorphismsα• : (I •, ∂•I ) −→ (J•, ∂•J) and
β• : (J•, ∂•J) −→ (I •, ∂•I ) of complexes, such that the diagram

I •

α•

A I •

J• A J•

β•

commutes, and bothβ• ◦ α• andα• ◦ β• are homotopic to the identity.

I.9 Derived functors

In this section, we will look at abelian categoriesA andB and at anadditive functor
F : A −→ B.

I.9.1 Lemma. Let (C•, ∂•C) and(D•, ∂•D) be complexes inA . If they are homotopic inA ,
then the complexes F(C•, ∂•C) and F(D•, ∂•D) are homotopic inB.
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Proof. This is obvious. �

For the rest of this section, we assume that the abelian category A hasenough injec-
tives.

For an objectA ∈ Ob(A ), an injective resolution (I •, ∂•I ) of A, and a natural number
n ∈ N, we set

RnF(I •, ∂•I ) := Hn(F(I •, ∂•I )
)
.

I.9.2 Comments.i) Let (I •, ∂•I ) and (J•, ∂•J) be two resolutions of the objectA. By Corol-
lary I.8.9, there are maps of complexesα• : (I •, ∂•I ) −→ (J•, ∂•J) and β• : (J•, ∂•J) −→
(I •, ∂•I ) which are unique up to homotopy, such thatβ• ◦ α• andα• ◦ β• are homotopic to
the identity.

By Lemma I.9.1,F(α•) : F(I •, ∂•I ) −→ F(J•, ∂•J) andF(β•) : F(J•, ∂•J) −→ F(I •, ∂•I )
have similar properties, and we getcanonical isomorphisms

RnF(I •, ∂•I ) −→ RnF(J•, ∂•J), n ∈ N.

ii) In a similar fashion, given objectsA, B ∈ Ob(A ), a homomorphismϕ : A −→ B,
and injective resolutions (I •, ∂•I ) and (J•, ∂•J) of A andB, respectively, there are canonically
induced homomorphisms

RnF(I •, ∂•I ) −→ RnF(J•, ∂•J), n ∈ N.

We now set
RnF(A) := RnF

(
I •(A), ∂•I(A)

)
, n ∈ N.

The comments show that, forn ∈ N,

RnF : A −→ B

is a functor. It is called then-th right derived functor of F.

I.9.3 Lemma. i) Let F: A −→ B be aleft exact functor.18 Then, there is a canonical
isomorphism

F −→ R0F.

ii) If the object I∈ Ob(I ) is injective, then

∀n ≥ 1 : RnF(I ) = 0.

Proof. i) Since the functorF is left exact, the sequence

0 −−−−−→ F(A) −−−−−→ F
(
I0(A)

)
−−−−−→ F

(
I1(A)

)
−−−−−→ · · ·

is exact atF(A). This gives i).
ii) We apply Comment I.9.2, i), and use the injective resolution

(J•, ∂•J) := (0 −−−−−→ J0 := I −−−−−→ 0)

of I to compute the derived functors. �

18Recall from Proposition I.5.8 thatF is an additive functor.
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I.9.4 Theorem. LetA andB be an abelian category whereA has enough injectives and
F : A −→ B a left exact functor. For every short exact sequence

0 −−−−−→ A −−−−−→ B −−−−−→ C −−−−−→ 0,

there exist connecting homomorphisms

δn : RnF(C) −→ RFn+1(A), n ∈ N,

such that the sequence

· · ·
δn−1

−−−−−→ RnF(A) −−−−−→ RnF(B) −−−−−→ RnF(C)
δn

−−−−−→ Rn+1F(A) −−−−−→ · · ·

is exact, n∈ N. More precisely, the functor from short exact sequences inA to A
3
∞-

diagrams inB defined by F extends to a functorSES(A ) −→ LECS(B).

Proof. We use the injective resolutions (I •(A), ∂•I(A)) and (I •(C), ∂•I(C)) for A andC, respec-
tively, but we will work with another injective resolution (J•, ∂•J) for B (keep Comment
I.9.2, i), in mind). This injective resolution is constructed as follows: We set

Jn := In(A) ⊕ In(C), n ∈ N.

Using the injectivity of the objectI0(A), we pick a homomorphismj1 : B −→ I0(A), such
that the diagram

A

iA

B

j1

I0(A)

commutes, and set

j2 : B C
iC I0(C).

Then,
j := j1 ⊕ j2 : B −→ J0

is a monomorphism. Next, we find the commutative diagram

0 0 0

0 A

iA

B

j

C

iC

0

0 I0(A)

∂0
I (A)

J0 I0(C)

∂0
I (C)

0

0 Coker(iA) Coker(j)

∂
0
J

Coker(iC) 0

0 I1(A) J1 I1(C) 0.

In this diagram,∂
0

J is constructed asj.
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Inductively, we construct

∂n
J : Jn −→ Jn+1, n ∈ N.

In this way, we obtain the exact sequence

0 −−−−−→ (I •(A), ∂•I(A)) −−−−−→ (J•, ∂•J) −−−−−→ (I •(C), ∂•I(C)) −−−−−→ 0

of complexes inA . Note that the sequence

0 −−−−−→ F(I •(A), ∂•I(A)) −−−−−→ F(J•, ∂•J) −−−−−→ F(I •(C), ∂•I(C)) −−−−−→ 0 (I.10)

of complexes inB is exact, too. This is true, because, for everyn ∈ N, we have a
homomorphismIn(C) −→ Jn in A , such that the composition

In(C) −→ Jn −→ In(C)

is the identity.19 Thus, we have a homomorphismF(In(C)) −→ F(Jn), such that the
composition

F
(
In(C)

)
−→ F(Jn) −→ F

(
In(C)

)

is the identity,n ∈ N. This shows that (I.10) is exact. The long exact cohomology
sequence (Theorem I.7.1) associated with (I.10) gives the sequence of the theorem.

Finally, we prove the statement about functoriality. For this, we start with a commu-
tative diagram

0 −−−−−→ A −−−−−→ B −−−−−→ C −−−−−→ 0
∥∥∥∥

y
y

y
∥∥∥∥

0 −−−−−→ A′ −−−−−→ B′ −−−−−→ C′ −−−−−→ 0
in which the rows are exact. We obtain homomorphismsI •(A) −→ I •(A′) andI •(C) −→
I •(C′) of complexes. For everyn ∈ N, we get

Jn = In(A) ⊕ In(C) −→ In(A′) ⊕ In(C′) = J′n.

It is readily verified that these homomorphisms commute withthe differentials of the
complexes (J•, ∂•J) and (J′•, ∂•J′). This means that

0 −−−−−→ (I •(A), ∂•I(A)) −−−−−→ (J•, ∂•J) −−−−−→ (I •(C), ∂•I(C)) −−−−−→ 0
∥∥∥∥

y
y

y
∥∥∥∥

0 −−−−−→ (I •(A′), ∂•I(A′)) −−−−−→ (J′•, ∂•J′) −−−−−→ (I •(C′), ∂•I(C′)) −−−−−→ 0

is a commutative diagram of complexes inA . Applying the functorF, we find a similar
diagram of complexes inB. So, our statement becomes an application of the functoriality
statement in Theorem I.7.1. �

We will denote the functor from SES(A ) to LECS(B) in Theorem I.9.4 by{R•F, δ• }.
A functor SES(A ) −→ LECS(B) will be referred to as aδ-functor. The δ-functor
{R•F, δ• } is characterized by the following property:

19It is important to note that, in general, the homomorphismsIn(C) −→ Jn, n ∈ N, do not combine to a
homomorphismI •(C) −→ J• of complexes.
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I.9.5 Proposition. Let {G•, δ•G } : SES(A ) −→ LECS(B) be aδ-functor and

Φ : F −→ G0

an isomorphism. Assume that
Gn(I ) = 0

holds true for every injective object I∈ Ob(A ) and every n> 0. Then, there is an induced
isomorphism

Φ• : {R•F, δ• } −→ {G•, δ•G }

of δ-functors.

Proof. Let A ∈ Ob(A ) be an object andI0 := I0(A). We form the exact sequence

0 −−−−−→ A −−−−−→ I0 −−−−−→ K1 := I0/A −−−−−→ 0.

This sequence gives rise to the commutative diagram

0 −−−−−→ R0F(A) −−−−−→ R0F(I0) −−−−−→ R0F(K1) −−−−−→ R1F(A) −−−−−→ 0
∥∥∥∥

x
x

x
∥∥∥∥

0 −−−−−→ F(A) −−−−−→ F(I0) −−−−−→ F(K1) −−−−−→ R1F(A) −−−−−→ 0
∥∥∥∥ Φ(A)

y Φ(I0)

y Φ(K1)

y
0 −−−−−→ G0(A) −−−−−→ G0(I0) −−−−−→ G0(K1) −−−−−→ G1(A) −−−−−→ 0

with exact rows. (Recall thatI0 is injective.) SinceΦ(·) is an isomorphism, we can define
an isomorphism

Φ1(A) : R1F(A) −→ G1(A)

by this diagram. The fact thatΦ is a natural transformation of functors implies thatΦ1 is
also a natural transformation of functors.

We continue by recursion. Assume that, forn ≥ 2, Φ0 := Φ, Φ1,..., andΦn−1 have
already been defined. Using the diagram

0 −−−−−→ Rn−1(K1)
δn−1

−−−−−→ RnF(A) −−−−−→ 0
∥∥∥∥ Φn−1(K1)

y�
∥∥∥∥

0 −−−−−→ Gn−1(K1)
δn−1

G
−−−−−→ Gn(A) −−−−−→ 0,

we define the isomorphism

Φn(A) : RnF(A) −→ Gn(A),

for every objectA ∈ Ob(A ). In this way, we get a natural transformation

Φn : RnF −→ Gn

of functors. It remains to show that this isomorphism commutes with coboundary maps.
Let

0 −−−−−→ A −−−−−→ B −−−−−→ C −−−−−→ 0
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be an exact sequence inA . We complete it to the commutative diagram

0 −−−−−→ A −−−−−→ B −−−−−→ C −−−−−→ 0
∥∥∥∥

∥∥∥∥
y

y
∥∥∥∥

0 −−−−−→ A −−−−−→ I0 −−−−−→ K1 −−−−−→ 0.

Now, study the diagram

RnF(C)

Φn(C)

δn

Rn+1F(A)

Φn+1(A)

RnF(K1)

Φn(K1)

δn

Rn+1F(A)

Φn+1(A)

Gn(K1)
δn

G Gn+1(A)

Gn(C)
δn

G Gn+1(A).

The right hand square trivially commutes. The upper square commutes, because{R•F, δ• }
is a δ-functor. Likewise, the bottom square commutes, because{G•, δ•G } is a δ-functor.
The left hand square is commutative, becauseΦn is a natural transformation of functors.
Finally, the inner square commutes by construction ofΦn andΦn+1. Therefore, also the
outer square commutes. �

I.9.6 Exercise(Degree shift). Let F : A −→ B be a left exact functor between abelian
categories, and

0 −−−−−→ A −−−−−→ I1 −−−−−→ · · · −−−−−→ Ir −−−−−→ B −−−−−→ 0

an exact sequence inA . Suppose thatI1, ..., Ir are injective objects. Show that

RnF(B) � Rn+r F(A), n ≥ 1.

I.10 Acyclic resolutions

The formalism of injective resolutions is not suited for explicitly computing derived func-
tors. For this reason, we will develop some other tools. LetA , B be abelian categories,
F : A −→ B a left exact functor, and suppose thatA has enough injectives. Anacyclic
resolutionof an objectA ∈ Ob(A ) is a complex (J•, ∂•J), such that

⋆ A � Ker(∂0
J) and 0−→ A −→ J0 −→ J1 −→ · · · is an exact complex,

⋆ RnF(Jk) = 0, k ∈ N, n ≥ 1.

I.10.1 Proposition. If (J•, ∂•J) is an acyclic resolution of A, then the n-th derived functor
RnF(A) of F evaluated at A is isomorphic to the n-th cohomology of thecomplex F(J•, ∂•J).
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Proof. i) The fact thatF is left exact implies

F(A) � H0(F(J•, ∂•J)
)
.

ii) We prove the statement on the cohomology by induction onn. In the proof, we use
the exact short sequence

0 −−−−−→ A −−−−−→ J0 −−−−−→ B := J0/A −−−−−→ 0. (I.11)

Note that the complex (J′•, ∂•J′) with J′n := Jn+1 and∂n
J′ := ∂n+1

J , n ∈ N, is an acyclic
resolution ofB.

n = 1.We have the exact sequences

F(J0) −−−−−→ F(B) −−−−−→ R1F(A) −−−−−→ 0 = R1F(J0)

and
0 −−−−−→ F(B) −−−−−→ F(J1) −−−−−→ F(J2).

The second sequence showsF(B) = Z1(F(J•, ∂•J)), and, with the first one, we find

R1F(A) � H1(F(J•, ∂•J)
)
.

n −→ n+ 1. The long exact cohomology sequence associated with (I.11) and the fact
thatJ0 is acyclic yield an isomorphism

RnF(B)
�

−→ Rn+1F(A).

By induction hypothesis,

RnF(B) � Hn(F(J′•, ∂•J′)
)
= Hn+1(F(J•, ∂•J)

)
.

This finishes the argument. �

I.11 The Ext functors

Let A be an abelian category which has enough injectives. For every objectA ∈ Ob(A )
the functor

HomA (A, ·) : A −→ Ab

is left exact (Lemma I.8.1, i). We can look at its right derived functors

Extn
A

(A, ·) := RnHomA (A, ·), n ∈ N.

I.11.1 Proposition. i) For every object B∈ Ob(A ), we have

Ext0
A

(A, B) � HomA (A, B).

ii) For an injective object B∈ Ob(A ), it follows that

Extn
A

(A, B) = 0, n ≥ 1.
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iii) A short exact sequence

0 −−−−−→ B1 −−−−−→ B2 −−−−−→ B3 −−−−−→ 0

in A gives rise to a long exact sequence

0 −−−−−→ HomA (A, B1) −−−−−→ HomA (A, B2) −−−−−→

−−−−−→ HomA (A, B3) −−−−−→ Ext1
A

(A, B1) −−−−−→ · · ·

· · ·

· · · −−−−−→ Extn
A

(A, B1) −−−−−→ Extn
A

(A, B2) −−−−−→

−−−−−→ Extn
A

(A, B3) −−−−−→ Extn+1
A

(A, B1) −−−−−→ · · ·

in the category of abelian groups.
iv) If A is projective, then, for any object B∈ Ob(A ) and any n≥ 1,

Extn
A

(A, B) = 0.

v) For a short exact sequence

0 −−−−−→ A1 −−−−−→ A2 −−−−−→ A3 −−−−−→ 0

in A and an object B∈ Ob(A ), one finds a long exact sequence

0 −−−−−→ HomA (A3, B) −−−−−→ HomA (A2, B) −−−−−→

−−−−−→ HomA (A1, B) −−−−−→ Ext1
A

(A3, B) −−−−−→ · · ·

· · ·

· · · −−−−−→ Extn
A

(A3, B) −−−−−→ Extn
A

(A2, B) −−−−−→

−−−−−→ Extn
A

(A1, B) −−−−−→ Extn+1
A

(A3, B) −−−−−→ · · ·

in the category of abelian groups.

Proof. The assertions i) - iii) are specializations of the general results (Lemma I.9.3, i),
and Theorem I.9.4) to the functor HomA (A, ·).

iv) If A is projective, then the functor HomA (A, ·) is exact. So, ifB ∈ Ob(A ) is an
object, then the complex

0 −−−−−→ HomA (A, B) −−−−−→ HomA

(
A, I0(B)

)
−−−−−→ HomA

(
A, I1(B)

)
−−−−−→ · · ·

is exact. Since, by definition, the Ext’s are the cohomology objects of this complex, the
claim follows.

v) Let (I •(B), ∂•I(B)) be the usual injective resolution ofB. By definition, the con-
travariant functor HomA (·, I ) : A −→ Ab is exact, if I ∈ Ob(A ) is an injective object.
Therefore,

0 −→ HomA

(
A3, I

•(B)
)
−→ HomA

(
A2, I

•(B)
)
−→ HomA

(
A1, I

•(B)
)
−→ 0

is an exact sequence of complexes of abelian groups, and the displayed sequence is the
long exact cohomology sequence (Theorem I.7.1) associatedwith it. �
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I.11.2 Remarks.i) It is important to note that Part v) of the proposition holds even, if the
categoryA hasnot enough projectives.

ii) Assume thatA has enough projectives. This means that the opposite category A
opp

has enough injectives. By definition,

HomA (·, B) = HomA opp(B, ·).

In this case, we set

Extn
A

(A, B) := Extn
A opp(B,A) := Extn

A opp(B, ·)(A), n ∈ N.

Now, if the categoryA has both enough injectives and projectives, then Part iv) and
v) of the proposition and the universality ofδ-functors (Proposition I.9.5) imply that both
possible definitions of Ext-objects yield canonically isomorphic results.

I.11.3 Exercises(Double complexes and Ext). Let A be an abelian category. Adouble
complex inA consists of

• objectsK i j , i, j ∈ Z

• horizontal differentialsd′i j : K i j −→ K i+1 j , i, j ∈ Z,

• vertical differentialsd′′i j : K i j −→ K i j+1, i, j ∈ Z,

such that

• d′i+1 j ◦ d′i j = 0, i, j ∈ Z,

• d′′i j+1 ◦ d′′i j = 0, i, j ∈ Z,

• d′′i+1 j ◦ d′i j = d′i j+1 ◦ d′′i j , i, j ∈ Z.

...
...

...

· · ·
d′′i+1 j−2

K i+1 j−1

d′i+1 j−1

d′′i+1 j−1
K i+1 j

d′i+1 j

d′′i+1 j
K i+1 j+1

d′i+1 j+1

d′′i+1 j+1
· · ·

· · ·
d′′i j−2

K i j−1

d′i j−1

d′′i j−1
K i j

d′i j
d′′i j

K i j+1

d′i j+1

d′′i j+1
· · ·

· · ·
d′′i−1 j−2

K i−1 j−1

d′i−1 j−1

d′′i−1 j−1
K i−1 j

d′i−1 j

d′′i−1 j
K i−1 j+1

d′i−1 j+1

d′′i−1 j+1
· · ·

...

d′i−2 j−1

...

d′i−2 j

...

d′i−2 j+1

.

i) Assume

• Ki j = 0 for i < −1 or j < −1,

• the complex (K• j , d′
• j) is exact for all j ≥ 0,

• the complex (K i•, d′′i•) is exact for alli ≥ 0.
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Prove that
Hn(K•−1, d′•−1) � Hn(K−1•, d′′−1•), n ≥ 0.

ii) Use this result to show that

ExtnModR
(M,N) � Extn

Modop
R

(N,M)

for all n and allR-modulesM andN. (Use an injective resolution ofN and a projective
resolution ofM in order to produce a double complex as in i).)

I.12 Injective and projective objects in categories of
modules

Let R be a ring (commutative with identity element). In this section, we will prove that
the category ModR of R-modules has both enough injectives and projectives.

Injective objects

I.12.1 Proposition (Baer)20]. An R-module I is an injective object in the categoryModR
if and only if, for every ideala ⊂ R and every homomorphism f: a −→ I of R-modules,
there is a homomorphism F: R−→ I with F|a = f .

Proof. If I is an injectiveR-module, then it has the stated property, by definition. For
the converse direction, assume thatI has the stated property. Letϕ : M −→ N be an
injective homomorphism ofR-modules, i.e., a monomorphism in ModR, and f : M −→ I a
homomorphism. We have to extend this homomorphism toN. For simplicity, we assume
that M is a submodule ofN, andϕ is the inclusion. We look at all pairs (P, fP) which
consist of anR-submoduleM ⊂ P ⊂ N and a homomorphismfP : P −→ I with fP|M = f .
The setΣ of all such pairs is non-empty, because it contains (M, f ). We introduce a partial
ordering onΣ: (P1, fP1) � (P2, fP2), if P1 ⊂ P2 and fP2|P1 = fP1. If (Pt, fPt)t∈T is a chain in
Σ, we set

P :=
⋃

t∈T

Pt

and

fP : P −→ I

p 7−→ fPt(p), if p ∈ Pt, t ∈ T.

By definition of “�”, this is well-defined. Zorn’s lemma ([22], I.4.7) states thatΣ contains
a maximal element (Q, fQ). We have to prove thatQ = N. If Q ( N, pick x ∈ N \ Q.
Then,

a :=
{
r ∈ R | r · x ∈ Q

}

is an ideal ofR, and

ψ : a −→ I

r 7−→ fQ(r · x)
20Reinhold Baer (1902 - 1979), German mathematician.
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is a homomorphism ofR-modules. By the property which we assume, there is a homo-
morphismΨ : R−→ I with Ψ|a = ψ.

For r ∈ a andq := r · x, we have

ψ(r) = fQ(q),

so that

f̃ : Q+ R · x −→ I

q+ r · x 7−→ fQ(q) + ψ(r)

is a well-defined homomorphism. It satisfiesf̃|Q = fQ, i.e., (Q, fQ) � (Q+ R · x, f̃ ). Since
Q ( Q+ R · x, this contradicts the maximality of (Q, fQ). �

Let us apply this criterion to the ringZ. Then, Mod
Z
= Ab is the category of abelian

groups. We know already that an injective abelian group has to be divisible. Now, assume
thatA is a divisible abelian group. The ideals ofZ are of the form〈n〉, n ∈ N. Forn = 0,
the zero homomorphism〈0〉 −→ A extends to a homomorphismZ −→ A. For n ≥ 1, a
homomorphismϕ : 〈n〉 −→ A, anda := ϕ(n), we have

∀k ∈ Z : ϕ(k · n) = k · a.

Since the groupA is divisible, there exists an elementb ∈ A with n · b = a. Set

Ψ : Z −→ A

k 7−→ k · b.

This homomorphism extendsψ. So, in view of Baer’s criterion I.12.1, we have proved:

I.12.2 Theorem. An abelian group A is injective if and only if it is divisible.

I.12.3 Example.The groupQ/Z is divisible and, therefore, injective.

I.12.4 Proposition. The categoryAb of abelian groups has enough injectives.

Proof. Let A be an abelian group. Set

I (A) :=
∏

f∈HomAb(A,Q/Z)

Q/Z.

This is an injective abelian group, and

iA : A −→ I (A)

a 7−→
(
f (a), f ∈ HomAb(A,Q/Z)

)

is a homomorphism. We have to verify thatiA is injective. Leta ∈ A \ {0} and〈a〉 ⊂ A the
subgroup generated bya ([26], Definition II.4.11). Denote by ord(a) theorder of a, i.e.,
ord(a) := #〈a〉, if 〈a〉 is finite, and ord(a) = ∞, else. Then,

ga : 〈a〉 −→ Q/Z

a 7−→



[
1
n

]
, if ord(a) = n ∈ N

[
1
2

]
, if ord(a) = ∞
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is a homomorphism withga(a) , 0. SinceQ/Z is injective,ga extends to a homomor-
phism fa : A −→ Q/Z with fa(a) = ga(a) , 0. �

Now, letRbe a ring,A anR-module, andB an abelian group. Define

· : R× HomAb(A, B) −→ HomAb(A, B)

(r, f ) 7−→
(
r · f : a 7−→ f (r · a)

)
.

This defines the structure of anR-module on HomAb(A, B). In fact,

• 1 · f = f , f ∈ HomAb(A, B),

• (r · ( f1+ f2))(a) = ( f1+ f2)(r · a) = f1(r · a)+ f2(r · a) = (r · f1)(a)+ (r · f2)(a), r ∈ R,
f1, f2 ∈ HomAb(A, B), a ∈ A,

• ((r1 + r2) · f )(a) = f ((r1 + r2) · a) = f (r1 · a + r2 · a) = f (r1 · a) + f (r2 · a) =
(r1 · f )(a) + (r2 · f )(a), r1, r2 ∈ R, f ∈ HomAb(A, B), a ∈ A.

Let A be anR-module andB an abelian group. Then,

Φ : HomModR

(
A,HomAb(R, B)

)
−→ HomAb(A, B)

f 7−→
(
a 7−→ f (a)(1)

)

is an isomorphism ofR-modules. Indeed,

⋆ Φ is injective. For a non-zero homomorphismf : A −→ HomAb(R, B), there is
an elementa ∈ A with f (a) , 0. Let r ∈ R with f (a)(r) , 0. Since f (a)(r) =
(r · f (a))(1) = f (r · a)(1), we seeΦ( f ) , 0.

⋆ Φ is surjective. As above, one sees that, for a homomorphismϕ : A −→ Bof abelian
groups,

f : A −→ HomAb(R, B)

a 7−→
(
r 7−→ (r · ϕ)(a)

)

is a homomorphism ofR-modules withΦ( f ) = ϕ.

⋆ Φ( f1+ f2)(a) = ( f1+ f2)(a)(1) = ( f1(a)+ f2(a))(1) = f1(a)(1)+ f2(a)(1) = Φ( f1)(a)+
Φ( f2)(a), f1, f2 : A −→ HomAb(R, B), a ∈ A.

⋆ Φ(r · f )(a) = (r · f )(a)(1) = f (r ·a)(1) = (r ·Φ( f ))(a), r ∈ R, f : A −→ HomAb(R, B),
a ∈ A.

This construction can be promoted to an isomorphism

HomModR

(
·,HomAb(R, B)

)
−→ HomAb(·, B)

of contravariant functors from ModR to ModR.

I.12.5 Proposition. For every injective abelian group I, the R-moduleHomAb(R, I ) is an
injective object inModR.

I.12.6 Example.TheR-module HomAb(R,Q/Z) is injective.

I.12.7 Corollary. The categoryModR has enough injectives.
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Projective objects

Let S be a set. Recall from [22], Page 76, that thefree R-modulegenerated byS is

F(S) :=
⊕

s∈S

R :=
{

f : S −→ R | f (s) = 0 for all but finitely manys ∈ S
}
. (I.12)

There is the injection

S −→ F(S)

s 7−→

(
es : t 7−→

{
1, if s= t
0, if s, t

)

of sets. Then, for anyR-moduleB, the map

HomModR
(F(S), B) −→ MorSets(S, B)

g 7−→
(
s 7−→ g(es)

)

is an isomorphism ofR-modules.

I.12.8 Example.ForS = {1}, we find the isomorphism

HomModR
(R, B) −→ B

f 7−→ f (1).

We infer:

I.12.9 Proposition. For every set S , the free R-module F(S) is projective.

I.12.10 Corollary. The categoryModR has enough projectives.

Proof. Let A be anR-module. The identity idA : A −→ A, viewed as a bijection of sets,
gives rise to a surjectionF(A) −→ A of R-modules. �

I.12.11 Theorem. An R-module A is projective if and only if it is isomorphic to adirect
summand of a free module, i.e., there are a set S and an R-module B with A⊕ B � F(S).

Proof. Let A be a direct summand of a free module,ϕ : M −→ N a surjective homomor-
phism ofR-modules, andf : A −→ N a homomorphism. There are a setS and homo-
morphismsι : A −→ F(S) andπ : F(S) −→ A with π ◦ ι = idA. SinceF(S) is projective
(Proposition I.12.9), there is a homomorphismF : F(S) −→ M with

ϕ ◦ F = f ◦ π;

F(S)

F

π A

f

M
ϕ

N.

Then,
ϕ ◦ (F ◦ ι) = f ◦ (π ◦ ι) = f ,

i.e.,F ◦ ι : A −→ M lifts f .
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Let A be a projectiveR-module. There is a surjectionπ : F(A) −→ A. SinceA is
projective, the identity idA : A −→ A lifts to a homomorphismι : A −→ F(A) with π ◦ ι =
idA. One readily checks that

F(A) � A⊕ Ker(π).

This settles the claim. �

I.12.12 Exercises(Injectives and projectives). Let R be a noetherian ring and fgMod
R

the
abelian category offinitely generatedR-modules.

i) Does fgMod
R

have enough projectives?
ii) Does fgMod

R
have enough injectives? (Consider the special cases thatR is a field

andR= Z.)

I.12.13 Exercises(Projective quiver representations). Determine the projective represen-
tations of the quiver• −→ • in the category Vectk, k a field.

I.13 The tensor product and Tor

Let R be a commutative ring andA, B, andC R-modules. A map

ϕ : A× B −→ C

is said to beR-bilinear, if

⋆ ∀a1, a2 ∈ A, b ∈ B: ϕ(a1 + a2, b) = ϕ(a1, b) + ϕ(a2, b),

⋆ ∀a ∈ A, b1, b2 ∈ B: ϕ(a, b1 + b2) = ϕ(a, b1) + ϕ(a, b2),

⋆ ∀r ∈ R, a ∈ A, b ∈ B: ϕ(r · a, b) = r · ϕ(a, b) = ϕ(a, r · b).

I.13.1 Theorem. Let R be a ring and A, B R-modules. There exist an R-module T and an
R-bilinear map

Φ : A× B −→ T,

such that, for any R-module C and any R-bilinear map

ϕ : A× B −→ C,

there is aunique homomorphismψ : T −→ C of R-modules with

ϕ = ψ ◦Φ.

Proof. Let S := A× B, F(S) the freeR-module generated byS (I.12), andQ ⊂ F(S) the
submodule generated by the following elements

⋆ (a1 + a2, b) − (a1, b) − (a2, b), a1, a2 ∈ A, b ∈ B,

⋆ (a, b1 + b2) − (a, b1) − (a, b2), a ∈ A, b1, b2 ∈ B,

⋆ (r · a, b) − r · (a, b), r ∈ R, a ∈ A, b ∈ B,

⋆ (a, r · b) − r · (a, b), r ∈ R, a ∈ A, b ∈ B.
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We set
T := F(S)/Q.

The class of an element (a, b) in T will be denoted bya⊗ b, (a, b) ∈ A× B. We set

Φ : A× B −→ T

(a, b) 7−→ a⊗ b.

It is easy to see thatΦ is R-bilinear. Now, letC be anR-module andϕ : A × B −→ C an
R-bilinear map. The assignment (a, b) 7−→ ϕ(a, b) extends to a homomorphism

ψ̃ : F(S) −→ C.

Sinceϕ is R-bilinear,ψ̃ vanishes on the generators ofQ and, therefore, onQ. This means
that ψ̃ factorizes over a homomorphismψ : T −→ C. By construction,ϕ = ψ ◦ Φ. The
homomorphism̃ψ is uniquely determined and so isψ. �

As usual, theR-moduleT is unique up to canonical isomorphy. It is called thetensor
productof A andB overR.

Notation. A⊗R B := T.

I.13.2 Remark.It is important to note that not every element ofA⊗R B is of the forma⊗b
with a ∈ A, b ∈ B. The reader should check this, for example, forR2 ⊗R R

2. However,
A⊗R B is generatedas anR-module by the elementsa⊗ b, a ∈ A, b ∈ B.

Let A, B1, B2 R-modules andα : B1 −→ B2 a homomorphism. It induces the homo-
morphism

idA ⊗ α : A⊗R B1 −→ A⊗R B2

a⊗ b 7−→ a⊗ α(b).

Attention. We have defined idA⊗α on a set of generators. So, we will have to verify that
idA ⊗ α is well-defined. To do so, we simply observe that

A× B1 −→ A⊗R B2

(a, b) 7−→ a⊗ α(b)

is anR-bilinear map. By Theorem I.13.1, it induces a unique homomorphismA⊗R B1 −→

A ⊗R B2 that mapsa ⊗ b to a⊗ α(b), (a, b) ∈ A × B1. This is idA ⊗ α. The same remark
will apply to many other homomorphisms which we will introduce in the sequel.

The above constructions provide us with a functor

A⊗R · : ModR −→ ModR.

I.13.3 Remarks.i) The universal property defines the tensor product only up to isomorphy.
In order to get a map Ob(ModR) −→ Ob(ModR), we have to fix oneR-moduleA⊗R B, for
everyR-moduleB. We may take, for example, the moduleF(A× B)/Q from the proof of
Theorem I.13.1.

ii) Let ϕ : R−→ S be a homomorphism of rings andM anR-module. Then,S acts on
M⊗RS by multiplication on the second factor. In this way,M⊗RS becomes anS-module.
We say that it is obtained fromM by extension of the scalarsvia ϕ.
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I.13.4 Proposition. The functor A⊗R · is right exact.

Proof. We look at an exact sequence

B1
α

−−−−−→ B2
β

−−−−−→ B3 −−−−−→ 0

of R-modules. Sinceβ is surjective, the image of idA⊗β contains all elements of the form
a⊗ b, a ∈ A, b ∈ B3. These elements generateA ⊗R B3, so that idA⊗β is surjective. It is
also clear that

(idA ⊗ β) ◦ (idA ⊗ α) =
(
idA ⊗ (β ◦ α)

)
= 0.

For this reason, we obtain the commutative diagram

A⊗R B1
idA⊗α
−−−−−→ A⊗R B2 −−−−−→ L −−−−−→ 0

∥∥∥∥
∥∥∥∥

yσ
∥∥∥∥

A⊗R B1
idA⊗α
−−−−−→ A⊗R B2

idA⊗β
−−−−−→ A⊗R B3 −−−−−→ 0

, L := Coker(idA ⊗ α),

in which the top row is exact. The homomorphismσ is obviously surjective. In order to
see that it is an isomorphism, we define the bilinear map

ϕ : A× B3 −→ L

(a, b) 7−→ [a⊗ b̃].

Here,̃b ∈ B2 is an element withβ(̃b) = b. Note thatϕ is well-defined. In fact, for another
elementb′ ∈ B2 with β(b′) = b, we havẽb− b′ ∈ α(B1). This shows

[a⊗ b̃] − [a⊗ b′] =
[
a⊗ (̃b− b′)

]
= 0.

TheR-bilinear mapϕ defines a homomorphismψ : A⊗R B3 −→ L. Note

∀a ∈ A, b ∈ B2 : ψ
(
σ
(
[a⊗ b]

))
= ψ

[
a⊗ β(b)

]
= [a⊗ b].

Thus,ψ ◦ σ = idL, andσ is injective, too. �

I.13.5 Proposition. i) Let A, B be R-modules. Then,

A⊗R B � B⊗R A.

ii) For every R-module A, we have

R⊗R A � A.

iii) Let (Ai)i∈I be a family of R-modules and B an R-module. Then,

(⊕

i∈I

Ai

)
⊗R B �

⊕

i∈I

(Ai ⊗R B).
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Proof. i) The required isomorphism is

A⊗R B −→ B⊗R A

a⊗ b 7−→ b⊗ a.

ii) Scalar multiplication

R× A −→ A

(r, a) 7−→ r · a

is R-bilinear. So, it givesR⊗R A −→ A, r ⊗a 7−→ r ·a. The inverse to this map is supplied
by

A −→ R⊗R A

a 7−→ 1⊗ a.

iii) The map
(⊕

i∈I

Ai

)
×R B −→

⊕

i∈I

(Ai ⊗R B)

(
(ai, i ∈ I ), b

)
7−→ (ai ⊗ b, i ∈ I )

is R-bilinear and induces a homomorphism

ϕ :
(⊕

i∈I

Ai

)
⊗R B −→

⊕

i∈I

(Ai ⊗R B).

Recall ([22], Exercise III.1.7) that the direct sum comes with inclusion homomorphisms

ι j : A j −→
⊕

i∈I

Ai , j ∈ I ,

and these induce homomorphisms

ψ j := ι j ⊗ idB : A j ⊗R B −→
(⊕

i∈I

Ai

)
⊗R B, j ∈ I .

We form
ψ :=

⊕

i∈I

ψi :
⊕

i∈I

(Ai ⊗R B) −→
(⊕

i∈I

Ai

)
⊗R B,

and this homomorphism is inverse toϕ. �

Let R be a ring andA an R-module. Applying the general theory from Section I.9,
define the functors

TorRn(A, ·) : ModR −→ ModR, n ∈ N,

as the left derived functors ofA⊗R ·. More concretely, given anR-moduleB and a projec-
tive resolution

· · · −−−−−→ Pn −−−−−→ · · · −−−−−→ P1 −−−−−→ P0 −−−−−→ B −−−−−→ 0

of B, theR-module TorRn(A, B) is defined as then-th homology module of the complex

· · · −−−−−→ A⊗R Pn −−−−−→ · · · −−−−−→ A⊗R P1 −−−−−→ A⊗R P0 −−−−−→ 0.

Lemma I.9.3, i), and Theorem I.9.4 specialize to

46



I.13. The tensor product and Tor

I.13.6 Proposition. i) For R-modules A, B, we find

TorR0(A, B) � A⊗R B.

ii) A short exact sequence

0 −−−−−→ B1 −−−−−→ B2 −−−−−→ B3 −−−−−→ 0

of R-modules gives rise to a long exact sequence

· · · −−−−−→ TorRn+1(A, B3) −−−−−→ TorRn(A, B1) −−−−−→ TorRn(A, B2) −−−−−→

−−−−−→ TorRn(A, B3) −−−−−→ TorRn−1(A, B1) −−−−−→ · · ·

· · ·

· · · −−−−−→ TorR1(A, B3) −−−−−→ A⊗R B1 −−−−−→ A⊗R B2 −−−−−→ A⊗R B3 −−−−−→ 0

of Tor-modules.

I.13.7 Remarks.Let A andB beR-modules. The basic symmetryA⊗R B � B⊗R A from
Proposition I.13.5, i), is reflected by the left derived functors.

i) Let

· · · −−−−−→ Mn −−−−−→ · · · −−−−−→ M1 −−−−−→ M0 −−−−−→ A −−−−−→ 0

be a projective resolution ofA. Then, TorRn(A, B) is isomorphic to then-th homology
module of the complex

· · · −−−−−→ Mn ⊗R B −−−−−→ · · · −−−−−→ M1 ⊗R B −−−−−→ M0 ⊗R B −−−−−→ 0.

This is an easy consequence of the universality ofδ-functors (Proposition I.9.5).
ii) For everyn ∈ N, there is an isomorphism

TorRn(A, B) � TorRn(B,A).

With the help of the tensor functor, we can characterize a newclass ofR-modules: An
R-moduleA is flat, if A⊗R · is an exact functor.

I.13.8 Examples.i) Projective modules are flat. Indeed, note that projectivemodules are
acyclic for every right exact functor (see Lemma I.9.3, ii) and apply symmetry (Proposi-
tion I.13.5, i), and Remark I.13.7, ii). Alternatively, youmay apply Part ii) and iii).

ii) Free modules are flat. This follows from Proposition I.13.5, ii) and iii), or the fact
that free modules are projective (Proposition I.12.9).

iii) Direct summands of flat modules are flat, by Proposition I.13.5, iii), and the re-
sulting fact that the Tor-functors commute with direct sums(compare Remark I.13.7).

I.13.9 Proposition. For an R-module A, the following conditions are equivalent:
i) A if flat.
ii) For all R-modules B and all positive natural numbers n> 0, TorRn(A, B) = 0.
iii) For all R-modules B,TorR1(A, B) = 0.
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Proof. The implication “ii)=⇒iii)” is trivial. The conclusion “iii)=⇒i)” results from the
long exact Tor-sequence (Proposition I.13.6, ii). Finally, we address “i)=⇒ii)”. Let B be
anR-module and

· · · −−−−−→ Pn −−−−−→ · · · −−−−−→ P1 −−−−−→ P0 −−−−−→ B −−−−−→ 0

a projective resolution ofB. The flatness ofA implies that the complex

· · · −−−−−→ A⊗R Pn −−−−−→ · · · −−−−−→ A⊗R P0 −−−−−→ A⊗R B −−−−−→ 0

is also exact, and this gives the claim. �

I.13.10 Exercises(Examples of tensor products). i) Let n be a natural number. Compute
the tensor products

Q ⊗Z
(
Z/〈n〉

)
and (Q/Z) ⊗Z

(
Z/〈n〉

)
.

ii) Let mandn be natural numbers. Determine the tensor product

(
Z/〈m〉

)
⊗Z

(
Z/〈n〉

)
.

iii) Is the tensor product of the exact sequence

0 −−−−−→ Z
n7−→2n
−−−−−→ Z −−−−−→ Z/〈2〉 −−−−−→ 0

with Z/〈2〉 exact?

I.13.11 Exercise(The tensor product of algebras). Let Rbe a commutative ring andA and
B R-algebras. Show that there is anR-algebra structure onA⊗R B with

(a⊗ b) · (a′ ⊗ b′) = (aa′) ⊗ (bb′), ∀a, a′ ∈ A, b, b′ ∈ B.

I.13.12 Exercises(Tor). Let Rbe a commutative ring.
i) Show that21

TorRn(M,−) � Ln(− ⊗R M), n ∈ N, M anR-module.

(This means that Tor may be computed by taking projective resolutions in the first vari-
able.)

ii) Verify that

TorRn(M,N) � TorRn(N,M)

holds for alln ∈ N and allR-modulesM andN.

21Here,Ln stands for then-th left derived functor of a right exact functor defined in analogy ton-th
right derived functor of a left exact functor (Section I.9),n ∈ N.
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Relations between Hom and⊗

Let R be a ring andA anR-module. We say thatA has afinite presentation, if there are
natural numbersm, n and an exact sequence

R⊕n −−−−−→ R⊕m −−−−−→ A −−−−−→ 0.

I.13.13 Remark.By definition, the moduleA is finitely presented if and only if it can
be written as a quotient of a free module in such a way that the kernel is also finitely
generated. Thus, if the ringR is noetherian, a module overR has a finite presentation if
and only if it is finitely generated ([22], Proposition III.1.30).

I.13.14 Proposition. Let R be a ring, S aflat R-algebra, and B an R-module. There is a
natural transformation

h: HomR(·, B) ⊗R S −→ HomS(· ⊗R S, B⊗R S)

of contravariant functors fromModR to ModS, such that h(A) is an isomorphism for every
R-module A which has afinite presentation.

Proof. We abbreviateF := HomR(·, B) ⊗R S andG := HomS(· ⊗R S, B ⊗R S). For an
R-moduleA, we define

h(A) : F(A) −→ G(A) (I.13)

f ⊗ b 7−→ b · ( f ⊗ idS).

We leave it to the reader to verify that this is a homomorphismof S-modules and gives a
natural transformation asA varies over allR-modules.

Next, observe

⋆ h(A) is an isomorphism for afree R-module of finite rank,

⋆ bothF andG are left exact contravariant functors.

Fix a finite presentation

R⊕n −−−−−→ R⊕m −−−−−→ A −−−−−→ 0

of A. We obtain the commutative diagram

0 −−−−−→ F(A) −−−−−→ F(R⊕m) −−−−−→ F(R⊕n)
∥∥∥∥ h(A)

y h(R⊕m)

y h(R⊕n)

y
0 −−−−−→ G(A) −−−−−→ G(R⊕m) −−−−−→ G(R⊕n)

with exact rows. Sinceh(R⊕m) andh(R⊕n) are isomorphisms, it is easy to infer thath(A) is
an isomorphism, too. �

I.13.15 Exercise.Let Rbe a ring,S a flatR-algebra, andA anR-module. Verify that (I.13)
also gives rise to a natural transformation

h′ : HomR(A, ·) ⊗R S −→ HomS(A⊗R S, · ⊗R S).
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The localization functor

Let R be a ring andS ⊂ R a multiplicatively closed subset. We define a functor

(·)S : ModR −→ ModRS
.

It assigns to anR-moduleA theRS-moduleAS. Next, let f : A −→ B be a homomorphism
of R-modules. Set

fS : AS −→ BS

x
s
7−→

f (x)
s
.

We first need to verify that this is well-defined. Assume thatx, y ∈ Rands, t ∈ S are such
that

x
s
=

y
t
.

By definition ([22], Page 53), there is an elementu ∈ S with

u · (t · x− s · y) = 0.

We apply f and find

0 = f (u · t · x− u · s · y) = u · t · f (x) − u · s · f (y).

This shows
f (x)
s
=

f (y)
t
.

Now, let us check thatfS is a homomorphism. Forx, y ∈ A ands, t ∈ S, we compute

fS
(x
s
+

y
t

)
= fS

( t · x+ s · y
s · t

)
=

t · f (x) + s · f (y)
s · t

=
f (x)
s
+

f (y)
t
= fS

( x
s

)
+ fS

(y
t

)
.

Finally, let x ∈ A, r ∈ R, ands, t ∈ S. Then,

fS
( r
s
·

x
t

)
= fS

(r · x
s · t

)
=

f (r · x)
s · t

=
r · f (x)

s · t
=

r
s
·

f (x)
t
=

r
s
· fS

( x
t

)
.

I.13.16 Proposition. The localization functor(·)S is isomorphic to the functor· ⊗R RS.

Proof. The map

A× RS −→ AS(
x,

r
s

)
7−→

r · x
s

is R-bilinear, so it induces a (surjective) homomorphism

α : A⊗R RS −→ AS

of R-modules. It is easy to check that it is also a homomorphism ofRS-modules.
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Next, we introduce

β : AS −→ A⊗R RS

x
s
7−→ x⊗

1
s
.

Again, we begin by verifying thatβ is well-defined. Letx, y ∈ A ands, t, u ∈ S with

u · (t · x− s · y) = 0.

Using this identity, we compute

x⊗
1
s
= x⊗

u · t
u · t · s

= (u · t · x) ⊗
1

u · t · s
= (u · s · y) ⊗

1
u · t · s

= y⊗
u · s

u · t · s
= y⊗

1
t
.

We will also check thatβ is a homomorphism. Forx, y ∈ A ands, t ∈ S, we have

β

(x
s
+

y
t

)
= (t · x+ s · y) ⊗

1
s · t
= (t · x) ⊗

1
s · t
+ (s · y) ⊗

1
s · t

= x⊗
t

s · t
+ y⊗

s
s · t
= x⊗

1
s
+ y⊗

1
t
= β

(x
s

)
+ β

(y
t

)
.

Next, for x ∈ A, r ∈ R, ands, t ∈ S, we compute

β

( r
s
·

x
t

)
= x⊗

r
s · t
=

r
s
·

(
x⊗

1
t

)
=

r
s
· β

(x
t

)
.

For the second equality, we used theRS-module structure ofA⊗R RS (see Remark I.13.3,
ii).

It is straightforward to check that the homomorphismsα andβ are inverse to each
other.

To conclude, we must explain that the above constructions give natural transforma-
tions of functors. This amounts to the fact that, forR-modulesA, B, and a homomorphism
f : A −→ B, the diagrams

A⊗R RS −−−−−→ B⊗R RS

αA

y
yαB

AS −−−−−→ BS

,

AS −−−−−→ BS

βA

y
yβB

A⊗R RS −−−−−→ B⊗R RS

commute. Again, this is an easy task. �

I.13.17 Proposition. The localization functor(·)S : ModR −→ ModRS
is exact.

Proof. Let

0 −−−−−→ A
f

−−−−−→ B
g

−−−−−→ C −−−−−→ 0
be a short exact sequence ofR-modules. By Proposition I.13.16 and I.13.4, the sequence

AS
fS

−−−−−→ BS
gS
−−−−−→ CS −−−−−→ 0

is exact. It remains to verify that the homomorphismfS : AS −→ BS is injective. We pick
x ∈ A ands ∈ R with

fS
( x
s

)
=

f (x)
s
= 0.
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This means that there is an elementu ∈ S with

0 = u · f (x) = f (u · x).

The injectivity of f givesu · x = 0, so thatx/s= 0 in AS. �

Via the localization homomorphismR−→ RS, the ringRS becomes anR-algebra. The
last proposition says that it is a flatR-algebra.

I.13.18 Corollary. Let R be a ring, S⊂ R a multiplicatively closed subset, and B and
R-module. There is a natural transformation

h: HomR(·, B)S −→ HomRS

(
(·)S, BS

)

of contravariant functors fromModR to ModRS
, such that h(A) is an isomorphism for

every R-module A which has afinite presentation.

Proof. By Proposition I.13.16, the localization functor (·)S is isomorphic to the tensor
functor · ⊗R RS. SinceRS is a flatR-algebra, we may apply Proposition I.13.14. �

I.13.19 Exercises(Some properties of Hom and⊗). Let R be a commutative ring.
i) Let A, B, andC beR-modules. Verify that there is a canonical isomorphism

HomR(A⊗R B,C) � HomR

(
A,HomR(B,C)

)
.

ii) Let A be anR-module andB an abelian group. Show that there is a natural isomor-
phism

HomR

(
A,HomZ(R, B)

)
� HomZ(A, B)

of R-modules.
iii) Let A, B, andC beR-modules. Prove that

(A⊗R B) ⊗R C � A⊗R (B⊗R C)

(The tensor product is associative.)

I.14 Global dimension

Let R be a commutative ring andA anR-module. We know thatA has both injective and
projective resolutions. A priori, they might be infinite. Here, we will investigate some
important situations where we do have resolutions of finite length.

An exact sequence

0 −−−−−→ Pn −−−−−→ Pn−1 −−−−−→ · · · −−−−−→ P1 −−−−−→ P0 −−−−−→ A −−−−−→ 0

in which P0, ...,Pn are projectiveR-modules is aprojective resolution of length n. In the
same way, we define aninjective resolution of length n. Theprojective dimensionof A
is the minimal length of a projective resolution ofA. It can be infinite. Likewise, the
injective dimensionof A is the minimal length of an injective resolution ofA. Theglobal
dimensionof R is the supremum of theprojective dimensions of allR-modules.
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I.14.1 Remark.One could also define a global dimension ofR in terms of the injective
dimensions of its modules. Proposition I.14.3 shows, however, that one would get the
same result in this way.

I.14.2 Proposition. Let A be an R-module and n∈ N a natural number. The following
conditions are equivalent:

i) For every R-module B, we haveExtn+1
R (A, B) = 0.

ii) For every exact sequence

0 −−−−−→ C −−−−−→ Pn−1 −−−−−→ · · · −−−−−→ P1 −−−−−→ P0 −−−−−→ A −−−−−→ 0 (I.14)

in which P0, ..., Pn−1 are projective, C is projective, too.
iii) The module A has a projective resolution of length at most n.

Proof. “i)=⇒ii)”. We apply Exercise I.9.6 to the exact sequence (I.14) and find, for every
R-moduleB,

Ext1R(C, B) � Extn+1
R (A, B) = 0.

The long exact Ext-sequence (Proposition I.11.1, iii) shows that HomR(C, ·) is an exact
functor, i.e., thatC is projective.

“ii) =⇒iii)”. Let P• be a projective resolution ofA and defineC := Ker(Pn−1 −→ Pn−2).
According to ii), the resulting exact sequence

0 −−−−−→ C −−−−−→ Pn−1 −−−−−→ · · · −−−−−→ P1 −−−−−→ P0 −−−−−→ A −−−−−→ 0

is a projective resolution ofA.
“iii) =⇒i)”. This follows from the fact that we may compute Extn+1

R (A, B) from a pro-
jective resolution ofA (see Remark I.11.2, i). �

I.14.3 Proposition. Let R be a commutative ring and n∈ N a natural number. The
following statements are equivalent:

i) Every R-module has projective dimension at most n.
ii) Everyfinitely generatedR-module has projective dimension at most n.
iii) Every R-module has injective dimension at most n.
iv) For all R-modules A, B, one hasExtn+1

R (A, B) = 0.

Proof. The implication “i)=⇒ii)” is trivial, “iii) =⇒iv)” results from the fact that Extn+1
R (A,

B) can be computed from any injective resolution ofB, and “iv)=⇒i)” is contained in
Proposition I.14.2.

We finally turn to the implication “ii)=⇒iii)”. Let Bbe anR-module andI • an injective
resolution ofB. We form the exact sequence

0 −−−−−→ B −−−−−→ I0 −−−−−→ · · · −−−−−→ In−1 −−−−−→ J −−−−−→ 0

with
J := Coker(In−2 −→ In−1).

By Exercise I.9.6,
Ext1R(A, J) = Extn+1

R (A, B), (I.15)
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for everyR-moduleA. If A is finitely generated, then, by the assumption and the fact that
Extn+1

R (A, B) may be computed from any projective resolution ofA (Remark I.11.2, i), and
Comment I.9.2, i), we have

Extn+1
R (A, B) = 0. (I.16)

We will show thatJ is an injectiveR-module. Using an argument similar to the one
in the proof of Proposition I.12.1, we only have to verify that, for R-modulesK, Q, and a
monomorphismK −→ Q, such thatA := Q/K is finitely generated, any homomorphism
K −→ J extends toQ. The short exact sequence

0 −−−−−→ K −−−−−→ Q −−−−−→ A −−−−−→ 0

yields the exact sequence

HomR(Q, J) −−−−−→ HomR(K, J) −−−−−→ Ext1R(A, J).

The last term vanishes by (I.15) and (I.16). �

I.14.4 Proposition. Let R be a noetherian local ring,m its maximal ideal, and k:= R/m
its residue field. Afinitely generatedR-module A with

TorR1(A, k) = 0

is free.

Proof. By assumption, there are a natural numbert and a surjectionπ : R⊕t −→ A. We
apply the functor· ⊗R k and get the surjection

k⊕t
� R⊕t ⊗R k −−−−−→ A⊗R k � A/(m · A).

We choose elementsm1, ...,ms whose classesm1, ...,ms in A/(m · A) form a basis for that
k-vector space. Nakayama’s lemma ([22], III.1.31) shows that

π̃ : R⊕s −→ A

(r1, ..., rs) 7−→ r1 ·m1 + · · · + rs ·ms

is surjective. WithK := Ker(̃π), we form the short exact sequence

0 −−−−−→ K −−−−−→ R⊕s π̃
−−−−−→ A −−−−−→ 0. (I.17)

We would like to show thatK = 0. The ringR is noetherian, by assumption. It follows
thatK is finitely generated ([22], Proposition III.1.30). It is enough to checkK ⊗R k = 0,
again by Nakayama’s lemma. For this, we look at the exact sequence

TorR1(A, k) −−−−−→ K ⊗R k −−−−−→ k⊕s π̃⊗idk
−−−−−→ A⊗R k −−−−−→ 0,

obtained from applying· ⊗R k to (I.17). By construction,̃π⊗ idk is an isomorphism. Since
TorR1(A, k) = 0, by assumption, we are done. �

I.14.5 Corollary. Let R be a noetherian local ring and A afinitely generatedR-module.
Then, A is projective if and only if it is free.
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I.14.6 Remark.i) We can prove the corollary without using Proposition I.14.4. A free
module is projective. Assume thatA is projective. We use the notation of the proof of
Proposition I.14.4 and setF := R⊕s. We infer that

K ⊂ m · F.

SinceA is projective, there is a homomorphismι : A −→ F with π̃ ◦ ι = idA. Thus, there
is an isomorphismF � K ⊕ A under which̃π identifies with the projection ontoA. We
conclude

K = m · K.

The Nakayama lemma ([22], III.1.31) showsK = 0. �

ii) Corollary I.14.5 is valid without the assumption thatA be finitely generated (see
[20], Theorem 2.5).

I.14.7 Proposition. Let R be a noetherian local ring,m its maximal ideal, k:= R/m its
residue field, and n∈ N a natural number.

i) A finitely generated R-module A has projective dimension at most n if and only if
TorRn+1(A, k) = 0.

ii) The global dimension of R is at most n if and only ifTorRn+1(k, k) = 0.

Proof. i) The implication “=⇒” results from the fact that TorR
n+1(A, k) may be computed

with the help of a projective resolution ofA. For the converse implication “⇐=”, we
observe thatA has a projective resolutionP• in which Pl is a free module of finite rank,
l ∈ N, becauseA is finitely generated andR is noetherian. SetC := Ker(Pn−1 −→ Pn−2) in
order to form the exact sequence

0 −−−−−→ C −−−−−→ Pn−1 −−−−−→ · · · −−−−−→ P1 −−−−−→ P0 −−−−−→ A −−−−−→ 0. (I.18)

Exercise I.9.6 implies
TorR1(C, k) � TorRn+1(A, k) = 0.

SinceR is assumed to be noetherian,C is a finitely generatedR-module. By Proposition
I.14.4,C is free and, in particular, projective. Therefore, (I.18) is a projective resolution
of A of length at mostn.

ii) Note thatk is a finitely generatedR-module. If the global dimension ofR is at most
n, thenk has a projective resolution of length at mostn, and TorRn+1(k, k) = 0 by Part i). If,
conversely, TorRn+1(k, k) = 0, thenk has a projective resolution of length at mostn. For any
R-moduleA, we thus find TorRn+1(A, k) = 0. This is because the module TorR

n+1(A, k) can be
computed from a projective resolution ofk. Part i) implies that everyfinitely generated
R-module has projective dimension at mostn. According to Proposition I.14.3, this yields
the claimed estimate on the global dimension ofR. �

I.15 Serre’s theorem and Hilbert’s syzygy theorem

In this section, we will prove thatregular noetherian local rings can be characterized by
purely cohomological conditions.

Let R be a noetherian local ring with maximal idealm. We say that a tuple (r1, ..., rs)
of elements ofR is aregular set of generatorsfor m, if
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⋆ m = 〈 r1, ..., rs 〉,

⋆ the imager j of r j in R/〈 r1, ..., r j−1 〉 is not a zero divisor,j = 1, ..., s.

I.15.1 Example.Let k be a field,s ∈ N a natural number,p := 〈 x1, ..., xs 〉 ⊂ k[x1, ..., xs],
andR := k[x1, ..., xs]p. Then,R is a noetherian local ring with maximal ideal

m = pe = 〈 x1, ..., xs 〉.

It is easy to check thatx1, ..., xs is a regular set of generators form. Of course, a similar
discussion applies top = 〈 x1 − a1, ..., xs− as 〉, (a1, ..., as) ∈ As

k.

I.15.2 Lemma. Let R be a regular local ring,m ⊂ R its maximal ideal, and k:= R/m
its residue field. If(r1, ..., rs) is a tuple of elements inm, such that their classesr1, ..., rs ∈

m/m2 form a k-basis for that vector space, then(r1, ..., rs) is a regular set of generators
for m.

Proof. The Nakayama lemma (see [22], III.1.31) implies

〈 r1, ..., rs 〉 = m.

Recall from [22], Proof of Proposition IV.8.3, that, for an elementx ∈ m \ m2, the ring
R/〈x〉 is a regular local ring of dimension dim(R) − 1 = s− 1. This gives that

R/〈 r1, ..., r j 〉

is a regular local ring of dimensions− j, j = 1, ..., s.
Finally, we remind the reader that a regular local ring is an integral domain ([22],

Proposition IV.8.3). In particular,r j , 0 is not a zero divisor inR/〈 r1, ..., r j−1 〉, j =
1, ..., s. �

I.15.3 Theorem (Serre22). Let R be a regular local ring of dimension s. Then, R has
global dimension s.

Proof. We will prove

⋆ TorRs+1(k, k) = 0,

⋆ TorRs(k, k) , 0.

According to Proposition I.14.7, this will settle the result.
Lemma I.15.2 grants the existence of a regular set of generators for the maximal ideal

m. Let us fix such a setr1, ..., rs of generators. Furthermore, we define

R0 := R, Rj := R/〈 r1, ..., r j 〉, j = 1, ..., s.

Note that
Rs = R/m = k.

22Jean-Pierre Serre (born 1926), French mathematician.

56
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By an inductive argument, we will prove

TorRn(Rj, k) = 0, n > j, TorRj (Rj , k) , 0, j = 0, ..., s.

j = 0. SinceR0 = R is a projectiveR-module, we have

∀n > 0 : TorRn(R0, k) = 0.

In addition,
TorR0(R0, k) � R0 ⊗R k � k.

(We used the vanishing of higher Tors for projective modules(Example I.13.8, i), Propo-
sition I.13.6, i), and I.13.5, ii).)

j −→ j + 1. Since the imager j+1 of r j+1 in Rj is not a zero divisor, the sequence

0 −−−−−→ Rj

r j+1·

−−−−−→ Rj −−−−−→ Rj+1 −−−−−→ 0

is exact. The corresponding long exact Tor-sequence I.13.6, ii), gives

∀n > j + 1 : TorRn(Rj+1, k) = 0,

and the exact sequence

0 −−−−−→ TorRj+1(Rj+1, k) −−−−−→ TorRj (Rj , k)
r j+1·

−−−−−→ TorRj (Rj, k). (I.19)

Claim. The multiplication by rj+1 onTorRj (Rj , k) is the zero map.

The module TorRj (Rj , k) is computed from a projective resolution (P•, ∂•) of k. All the
maps in the resolution are homomorphisms ofR-modules, so that the diagram

· · · −−−−−→ P1
∂1
−−−−−→ P0

∂0
−−−−−→ k −−−−−→ 0

yr j+1·

yr j+1·

yr j+1·

∥∥∥∥

· · · −−−−−→ P1
∂1
−−−−−→ P0

∂0
−−−−−→ k −−−−−→ 0

commutes. Since multiplication byr j+1 on k is the zero map, we infer our claim from
Proposition I.8.8. X

Sequence (I.19) and the claim show that TorR
j+1(Rj+1, k) is isomorphic to TorRj (Rj , k)

and, therefore, non-zero, by the induction hypothesis. �

Given a finitely generatedR-moduleA, a chain of syzygiesfor A is a resolution ofA of
the form

· · · −−−−−→ R⊕ns
δs
−−−−−→ R⊕ns−1

δs−1
−−−−−→ · · · −−−−−→ R⊕n1

δ1
−−−−−→ R⊕n0 −−−−−→ A −−−−−→ 0

with natural numbersnl, l ∈ N. We say that itterminates at level s, if Ker(δs−1) is free.

I.15.4 Hilbert’s syzygy theorem (local version).Let R be a regular noetherian local
ring of dimension s and A a finitely generated R-module. Then,any chain of syzygies of
A terminates at level s.
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Proof. By Theorem I.15.3, the global dimension ofR is s. Proposition I.14.2, ii), shows
that Ker(δs−1) is projective for every chain of syzygies forA. Corollary I.14.5 finally
shows that it is free. �

We will also give a variant of this theorem. Lets> 0 be a positive natural number. A
finite free resolution(FFR) of A of length sis an exact sequence of the form

0 −−−−−→ R⊕ns −−−−−→ · · · −−−−−→ R⊕n1 −−−−−→ R⊕n0 −−−−−→ A −−−−−→ 0.

Here, we assumeni > 0, i = 0, ..., s.

I.15.5 Remark.A module which has a finite free resolution has also a finite presentation.

As a consequence of Theorem I.15.4 and the fact that a finitelygenerated module over
a noetherian ring has a resolution by free modules of finite rank we note:

I.15.6 Theorem. Let R be a regular noetherian local ring. Then, every finitelygenerated
R-module has a finite free resolution of length at mostdim(R).

In the following, we will establish the converse to Theorem I.15.3. We will need a
few preparations.

I.15.7 Lemma. Let R be a noetherian local ring with maximal idealm. If every element
ofm \m2 is a zero divisor,m is also a minimal prime ideal of R.

Proof. The assertion is only non-trivial, ifm , 0. Let p1, ..., pk be the minimal prime
ideals ofR. By [22], Theorem II.4.28, the assumption means

m ⊂ m2 ∪

k⋃

i=1

pi .

Sincem 1 m2, by Nakayama’s lemma ([22], III.1.31), there must be an index i0 ∈
{ 1, ..., k } of R with

m ⊂ pi0,

by [22], Lemma IV.8.4. We must actually have equality. �

I.15.8 Lemma. Let R be a noetherian local ring with maximal idealm and residue field
k := R/m. For an element r∈ m \ m2, the R-modulem/〈r〉 is a direct summand of the
R-modulem/(r · m).

Proof. We may pickr2, ..., rs ∈ m, such that their classesr , r2, ..., rs in m/m2 form a k-
basis for thatk-vector space. SetI := 〈 r2, ..., rs 〉. We note that〈r〉 ∩ I ⊂ r · m. In fact, let
a1, ..., as ∈ Rbe elements witha1·r = a2·r2+· · ·+as·rs, i.e.,a1·r−a2·r2−· · ·−as·rs = 0. This
equality implies thata1, ..., as ∈ m and gives our claim. So, the inclusionI ⊂ m induces a
homomorphism

f : I/
(
〈r〉 ∩ I

)
−→ m/(r ·m).

It is straightforward to check that the homomorphism

m/〈r〉 =
(
〈r〉 + I

)
/〈r〉 � I/

(
〈r〉 ∩ I

) f
−→ m/(r ·m) −→ m/〈r〉

is the identity, and this implies the contention of the lemma. �
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Let Rbe a ring,A anR-module. An elementr ∈ R is regularfor A, if the multiplication
mapA −→ A, x 7−→ r · x, is injective.

I.15.9 Lemma. Let R be a noetherian local ring, A a finitely generated R-module, and
r ∈ R an element which is regular for A. If A has finite projective dimension, then A/(r ·A)
has finite projective dimension as(R/〈r〉)-module.

Proof. We carry out an induction over the projective dimension ofA. If the projective
dimension is zero,A is projective and, therefore, free of finite rank, by Corollary I.14.5.
Then,A/(r · A) is a free (R/〈r〉)-module and, therefore, projective.

Let A be a finitely generated projectiveR-module andh ≥ 1 its projective dimension.
We find a natural numbers≥ 1 and a surjectionπ : R⊕s −→ A. With K := Ker(π), we get
the exact sequence

0 −−−−−→ K −−−−−→ R⊕s π
−−−−−→ A −−−−−→ 0.

Using Exercise I.9.6 and Proposition I.14.7, i), we deduce that the projective dimension
of K is h− 1. We tensorize this sequence byR/〈r〉 and get

K/(r · K) −−−−−→
(
R/〈r〉

)⊕s
−−−−−→ A/(r · A) −−−−−→ 0.

We compute the kernel of the mapK −→ (R/〈r〉)⊕s. It is K ∩ 〈r〉⊕s. Let x ∈ K andy ∈ R⊕s

with x = r · y. We see that

r · π(y) = π(r · y) = π(x) = 0.

Sincer is regular forA, we haveπ(y) = 0, i.e.,y ∈ K. So,K ∩ 〈r〉⊕s = r · K. We infer that
K/(r · K) −→ (R/〈r〉)⊕s is injective. Thus, we have the exact sequence

0 −−−−−→ K/(r · K) −−−−−→
(
R/〈r〉

)⊕s
−−−−−→ A/(r · A) −−−−−→ 0.

The induction hypothesis says that the projective dimension of K/(r · K) is at mosth− 1.
As before, the above sequence shows that the projective dimension ofA/(r · A) is at most
h. �

I.15.10 Theoren (Serre).Assume that R is a noetherian local ring of finite global dimen-
sion. Then, R is a regular local ring.

Proof. We perform an induction on the embedding dimension ([22], Page 131). If we
have edim(R) = 0, thenm = 0 (see [22], Proposition IV.6.2),R is a field, and there is
nothing to prove.

Case 1. Every element ofm \ m2 is a zero divisor. By Lemma I.15.7,m is also a
minimal prime ideal. In other words,m is the radical ofR. Sincem is finitely generated,
there is a natural numberk ≥ 1 withmk = 0. We choosek0 ≥ 1 minimal withmk0 = 0. If
k0 = 1, R is a field, and we are done. Otherwise, pickr ∈ mk0−1 \ {0}. Then, Ann(r) = m,
and we obtain the exact sequence

0 −−−−−→ k
[a] 7−→a·r
−−−−−−→ R −−−−−→ A := R/〈r〉 −−−−−→ 0.

As in the proof of Lemma I.15.9, this shows that the projective dimension ofA is greater
than the projective dimension ofk. But this is impossible, because the projective dimen-
sion ofk equals the global dimension ofR (Proposition I.14.7, ii).
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Case 2.The exact sequence

0 −−−−−→ m −−−−−→ R −−−−−→ k −−−−−→ 0,

Exercise I.9.6 and Proposition I.14.7, i), imply that the projective dimension ofm equals
the projective dimension ofk minus one. In particular, the projective dimension ofm
is finite if and only if the projective dimension ofk is finite. Moreover, by Proposition
I.14.7, the projective dimension ofk is finite if and only if the global dimension ofR is
finite.

Let r ∈ m \m2 be an element which is not a zero divisor. Then,

edim
(
R/〈r〉

)
= edim(R) − 1. (I.20)

The maximal ideal ofR/〈r〉 is m/〈r〉. According to Lemma I.15.9,m/(r · m) has finite
projective dimension. Lemma I.15.8 shows thatm/〈r〉 is isomorphic to a direct summand
of m/(r · m). We infer thatm/〈r〉 has finite projective dimension. Indeed, if TorR

n(m/(r ·
m), k) vanishes, then also TorR

n(m/〈r〉, k), n ∈ N, because the Tor-functors commute with
direct sums (compare Example I.13.8, iii). By the previous remark,R/〈r〉 has finite global
dimension. By the induction hypothesis,R/〈r〉 is a regular noetherian local ring. By [22],
Lemma IV.8.2,

dim
(
R/〈r〉

)
= dim(R) − 1.

Together with (I.20), we see thatR is regular, too. �

Local properties of modules

Local properties in commutative algebra are properties which can be tested in all localiza-
tions at prime or even maximal ideals of a ring. This terminology comes from geometry:
The prime or maximal ideals of a ringRare the points and closed points of the topological
space Spec(R) ([22], Exercise I.9.11).

I.15.11 Proposition. Let R be a ring, A an R-module, and x∈ A. If, for every maximal
idealm ⊂ R, we have

x
1
= 0 in Am,

then x= 0.

Proof. Let Ann(x) be the annihilator ideal ofx ([22], Page 37). Our assertion is that,
under the stated assumption, Ann(x) = R. If Ann(x) , R, there is a maximal idealm0 ⊂ R
with Ann(x) ⊂ m0 ([22], Corollary I.4.8, i). The conditionx/1 = 0 in Am0 means that
there is an elements ∈ R\m0 with s· x = 0 in A. So,s ∈ Ann(x)\m0, a contradiction. �

I.15.12 Theorem. Let R be a ring and A an R-module which has a finite presentation.
Then, A is projective if and only if the localization Am is free, for every maximal ideal
m ⊂ R.

Proof. Suppose thatA is projective. SinceA is, by assumption, finitely generated, the
proof of Theorem I.12.11 shows that there are a natural number s > 0 and a moduleB
with

A⊕ B � R⊕s.
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For every maximal idealm ⊂ R, we find

Am ⊕ Bm � R⊕s
m
.

Thus, by Theorem I.12.11 again,Am is projective. Corollary I.14.5 shows thatAm is free
of finite rank.

Let
B2 −−−−−→ B1 −−−−−→ 0

be an exact sequence ofR-modules. We get the exact sequence

HomR(A, B2) −−−−−→ HomR(A, B1) −−−−−→ C −−−−−→ 0.

Here,C is just the cokernel of the map HomR(A, B2) −→ HomR(A, B1). Localization is an
exact functor (Proposition I.13.17). Hence, the sequence

HomR(A, B2)m −−−−−→ HomR(A, B1)m −−−−−→ Cm −−−−−→ 0

is also exact, for every maximal idealm ⊂ R. By Corollary I.13.18 and Exercise I.13.15,
this is the sequence that is obtained from the sequence

B2,m −−−−−→ B1,m −−−−−→ 0

by applying the functor HomRm(Am, ·). The assumption givesCm = 0. Using Proposition
I.15.11, we see thatC = 0. �

I.16 The Auslander–Buchsbaum theorem

The aim of this section is to prove the following result:

I.16.1 Theorem (Auslander23–Buchsbaum24). Let R be a regular noetherian local ring.
Then, R is factorial.

A central ingredient is the following criterion for factoriality.

I.16.2 Proposition. A noetherian ring R is factorial if and only if every prime ideal p ⊂ R
of height oneis principal.

Proof. Assume, first, thatR is factorial, and letp ⊂ Rbe a prime ideal of height one. Pick
a non-zero elementa ∈ p. It is not a unit. SinceR is factorial, we can finds≥ 1 and prime
elementsp1, ..., ps ∈ R with

a = p1 · · · · · ps.

Sincep is a prime ideal, there exists an indexi0 ∈ { 1, ..., s} with pi0 ∈ p. We get

〈0〉 ( 〈pi0〉 ⊂ p.

Now, 〈pi0〉 is a prime ideal andp has height one. So, the inclusion〈pi0〉 ⊂ p must be an
equality.

23Maurice Auslander (1926 - 1994), US American mathematician.
24David Alvin Buchsbaum (born 1929), US American mathematician.
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For the converse direction, we first note that, in a noetherian ring R, every element
r ∈ R\ ({0} ∪R⋆) can be written as a product of irreducible elements (Exercise). By [26],
Theorem I.6.1, it suffices to prove that every irreducible element is a prime element. Let
r ∈ Rbe an irreducible element andp a minimal prime ideal containingr. Krull’s principal
ideal theorem ([26], Theorem IV.5.6) implies that ht(p) = 1, so thatp is a principal ideal,
by assumption. Letp ∈ Rbe a prime element withp = 〈p〉. There exists an elementa ∈ R
with r = a · p. Sincer is irreducible andp is not a unit,a must be a unit. So,r is a prime
element. �

In the next step, we will prove that we may check factorialityafter an appropriate
localization.

I.16.3 Proposition. Let R be a noetherianintegral domain,Γ ⊂ R a subset which consists
of prime elementsin R, and

S = {1} ∪ { p1 · · · · · pn | n ≥ 1, p1, ..., pn ∈ Γ }

the multiplicatively closed subset generated byΓ. If RS is factorial, then so is R.

Proof. We apply Proposition I.16.2. So, letp ⊂ R be a prime ideal of height one. We
distinguish two cases.

Case 1.We havep ∩ S , ∅. This is equivalent top ∩ Γ , ∅. Pick p ∈ p ∩ Γ. Then,

⋆ 〈0〉 ( 〈p〉 ⊂ p,

⋆ 〈p〉 is a prime ideal.

As before, this and ht(p) = 1 imply 〈p〉 = p.
Case 2.We havep ∩ S = ∅. Then, by [22], Corollary II.3.7, i),pe ⊂ RS is a prime

ideal of height one. By assumption and Proposition I.16.2, there is an elementr ∈ R with
p

e = 〈r〉. Since any non-empty subset of ideals in a noetherian ring has maximal elements
([22], Theorem II.1.1, iii), we may pick an elementr0 ∈ R with pe = 〈r0〉, such that25

〈r0〉 ⊂ R and〈r0〉 is a maximal element of

Σ :=
{
〈r〉 ⊂ R | r ∈ R, pe = 〈r〉

}
.

If p ∈ Γ, thenp ∤ r0. Otherwise, there would be an elementr ′0 ∈ R with r0 = p · r ′0. The
elementr ′0 is not a unit, becausep ∩ Γ = ∅. This implies〈r0〉 ( 〈r ′0〉 andpe = 〈r0〉 = 〈r ′0〉
and contradicts the maximality of〈r0〉 in Σ.

For an elementa ∈ p, there existb ∈ R ands ∈ S with

a
1
=

b · r0

s
in RS,

i.e.,
a · s= b · r0 in R,

becauseR is an integral domain. Ifs= 1, there is nothing else to do. Otherwise, there are
a positive natural numbern ≥ 1 and elementsp1, ..., pn ∈ Γ with p1 · · · · · pn = s. We find

25In the following, the reader has to pay attention whether a principal ideal is taken inR or RS.
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p1|(b · r0). As we observed before,p1 ∤ r0, so thatp1|b, becausep1 is a prime element.
Let b′ ∈ R be an element withb = b′ · p1. It follows that

a · (p2 · · · · · pn) · p1 = (b′ · r0) · p1.

SinceR is an integral domain, this yields

a · p2 · · · · · pn = b′ · r0.

We iterate this argument and find an elementb′′ with a = b′′ · r0. Altogether, we have
shown thatp is the principal ideal generated byr0. �

Next, we present a criterion that allows to verify that an ideal is a principal ideal. It
generalizes [22], Lemma III.1.10.

I.16.4 Lemma. Let R be anintegral domainand I ⊂ R an ideal. If there are natural
numbers m, n ∈ N with

I ⊕ R⊕n
� R⊕(m+n),

then I is a principal ideal.

Proof. We may clearly assumeI , 〈0〉. Let K := Q(R) be the quotient field ofR. The
functor· ⊗R K corresponds to localization at the multiplicatively closed subsetS = R\ {0}
(Proposition I.13.16). By Proposition I.13.17, it is exact. The short exact sequence

0 −−−−−→ I −−−−−→ R −−−−−→ R/I −−−−−→ 0

leads to

0 −−−−−→ I ⊗R K
�

−−−−−→ K � R⊗R K −−−−−→ 0 = R/I ⊗R K −−−−−→ 0.

To see thatR/I ⊗R K = 0, note thatR/I ⊗R K is generated asK-vector space by [1]⊗ 1.
Pick r ∈ I \ {0},

[1] ⊗ 1 = [1] ⊗ (r · r−1) = [r] ⊗ r−1 = 0⊗ r−1 = 0.

This discussion showsm= 1.
Denote bye0, e1, ..., en the standard basis ofRn+1, fix an isomorphismϕ : R⊕(n+1) −→

I ⊕ R⊕n, and defineι : I ⊕ R⊕n −→ R⊕(n+1) as the inclusion. Finally, set

Φ : R⊕(n+1) ϕ
−−−−−→ I ⊕ R⊕n ι

−−−−−→ R⊕(n+1).

With respect to the fixed basis ofR⊕(n+1), Φ is determined by an ((n+ 1)× (n+ 1))-matrix

M = (mi j )i, j=0,...,n ∈ Mat(n+ 1,R).

Note that
d := Det(M) , 0,

becauseΦ ⊗R idK is an isomorphism, by the discussion from the beginning.
Let M j be the matrix that is obtained fromM by deleting row zero and columj and

d j := (−1)j · Det(M j), j = 0, ..., n.
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We observe
n∑

j=0

mi j · d j =

{
d, for i = 0
0, for i = 1, ..., n

.

For the elementf0 :=
n∑

i=0
di · ei, we find

M · f0 = Φ( f0) = d · e0.

There are elementsf1, ..., fn with Φ( fi) = ei, i = 1, ..., n, and a homomorphism

Ψ : R⊕(n+1) −→ R⊕(n+1)

with
Ψ (ei) = fi , i = 0, ..., n.

Let N ∈ Mat(n + 1,R) be the corresponding matrix with respect to the basise0, ..., en of
R⊕(n+1). By construction,

M · N =



d 0
1

. . .

0 1


,

so that
d · Det(N) = Det(M) · Det(N) = d, i.e., Det(N) = 1.

This shows thatΨ is an isomorphism and the image ofΦ ◦ Ψ is the same as the image of
Φ. LetΠ : R⊕(n+1) −→ Rbe the projection onto the zeroth factor. Then,

I = (Π ◦ ι)(I ⊕ R⊕n) = (Π ◦Φ)(R⊕(n+1)) = (Π ◦Φ ◦ Ψ )(R⊕(n+1)) = 〈d〉.

This proves our assertion. �

Let R be a ring andA a finitely generatedR-module. We callA stably free, if there
exist natural numbersm, n ∈ N with

A⊕ R⊕m
� R⊕(m+n).

The above lemma states that an ideal in an integral domain is principal if and only if it is
stably free as module.

I.16.5 Proposition. Let R be a ring and P an R-module which has afinite free resolution.
Then, P is projective if and only if P is stably free.

Proof. A module which is stably free is projective (Theorem I.12.11). Now, assume that
P is projective. We prove the following statement by induction ons: If

0 −−−−−→ R⊕ns
πs
−−−−−→ · · ·

π2
−−−−−→ R⊕n1

π1
−−−−−→ R⊕n0

π0
−−−−−→ P −−−−−→ 0

is an exact sequence in whichP is projective, thenP is stably free.
If s= 0, thenP is free, and we are done. For the induction step, we note

R⊕n0 � Ker(π0) ⊕ P,
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becauseP is projective. By Theorem I.12.11, Ker(π0) is projective. There is an exact
sequence

0 −−−−−→ R⊕ns
πs
−−−−−→ · · ·

π2
−−−−−→ R⊕n1

π1
−−−−−→ Ker(π0) −−−−−→ 0.

By the induction hypothesis, Ker(π0) is stably free, i.e., there are natural numbersm, n ∈ N
with

Ker(π0) ⊕ R⊕m
� R⊕n.

Now, we have

P⊕ R⊕n
� P⊕ Ker(π0) ⊕ R⊕m

� R⊕n0 ⊕ R⊕m
� R⊕(m+n0),

so thatP is stably free. �

Proof of TheoremI.16.1. As usual,mwill be the maximal ideal ofR. Recall that a regular
noetherian ring is an integral domain. We carry out an induction on n := dim(R). If
n = 0, thenR is a field and there is nothing to show. For the induction step “(n − 1) −→
n”, we pick an elementx ∈ m \ m2. (Sincem , 0, m , m2, by Nakayama’s lemma
([22], III.1.31).) Then,〈x〉 is a prime ideal ([22], Proof of Proposition IV.8.3). We apply
Proposition I.16.3 toΓ = {x}. The multiplicatively closed subset generated byΓ is S =
{ xk | k ∈ N }.

We point out thatRx need not be a local ring, so that we cannot directly apply the
induction hypothesis.

We will show thatRx is a factorial ring. For this, we invoke Proposition I.16.2,i.e.,
we show that every prime idealp of height one inRx is principal. The contractionpc ⊂ R
is a finitely generatedR-module. By Theorem I.15.6, it has a finite free resolution. Since
localization is an exact functor (Proposition I.13.17),

p = pce = pc
S

has a finite free resolution asRx-module. By Lemma I.16.4 and Proposition I.16.5, it is
now sufficient to show thatpc

S is projective asRx-module. This can be checked locally, by
Theorem I.15.12.

Let n ⊂ Rx be a maximal ideal andnc ⊂ R its contraction. Then,

(Rx)n = Rnc.

Claim. The ring Rnc is regular.

To see this, we will apply Serre’s criterion I.15.10. It suffices to verify that

K = Rnc/(n
c · Rnc) = (R/nc)nc

has finite global dimension asRnc-module. This results from the fact thatR/nc has finite
projective dimension asR-module and localization is an exact functor. X

Next, we have
dim(Rnc) = ht(nc) < ht(m) = dim(R).

The inequality follows, becausex ∈ m \ nc. Now, we can apply the induction hypothesis
to Rnc. There are two cases.
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Case 1. If p ⊂ n, then the extension ofp to Rnc is a prime ideal of height one and,
therefore, a principal ideal (Proposition I.16.2).

Case 2.If p 1 n, then the extension ofp to Rnc equalsRnc.
In both cases,pnc is a freeRnc-module of rank one. As indicated before, Theorem

I.15.12 shows thatp is a projectiveR-module, and this finishes the argument. �
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