Problems on Algebra III

Winter 2021

M. Benyoussef, A. Schmitt

Problem Set 8

Due: Tuesday, January 4, 2022, 2pm

Exercise 1 (Reduced schemes; 3+10 points).

a) Let (X, \mathcal{O}_X) be a scheme. Apply the construction of the induced reduced scheme structure to X itself in order to construct a sheaf $\mathcal{O}_{X^{\text{red}}}$ on X. Discuss the properties of the scheme $(X, \mathcal{O}_{X^{\text{red}}})$. b) Let (X, \mathcal{O}_X) be a noetherian scheme, and $(X, \mathcal{O}_{X^{\text{red}}})$ the corresponding reduced scheme. Show that (X, \mathcal{O}_X) is affine if and only if $(X, \mathcal{O}_{X^{\text{red}}})$ is affine.

Exercise 2 (Irreducible components; 10 points).

Let (X, \mathcal{O}_X) be a noetherian scheme. The topological space X then decomposes into irreducible components $X_1, ..., X_\ell$. Each one is endowed with the reduced induced scheme structure.

Assume, in addition, that (X, \mathcal{O}_X) is reduced and show that it is affine if and only if its irreducible components $(X_1, \mathcal{O}_{X_1}), ..., (X_\ell, \mathcal{O}_{X_\ell})$ are affine.

Exercise 3 (Affine morphisms; 3+2+4+4+4 points).

a) A morphism $(f, f^{\#}): (X, \mathcal{O}_X) \longrightarrow (Y, \mathcal{O}_Y)$ is *affine*, if there is a covering $(V_i)_{i \in I}$ of Y by affine open subsets, such that $f^{-1}(V_i)$ is affine, $i \in I$. Show that $f^{-1}(V)$ is affine, for every open affine subset $V \subset Y$.

Remark. You will need the elementary characterization of affine schemes, but not the theorem of Serre.

- b) Show that a finite morphism (Problem Sheet 5, Exercise 3, b) is affine.
- c) Let (Y, \mathcal{O}_Y) be a scheme and \mathscr{A} is a quasi-coherent sheaf of \mathcal{O}_Y -algebras, i.e., a sheaf of rings which is at the same time an \mathcal{O}_Y -module. Construct a scheme (X, \mathcal{O}_X) together with a morphism $(f, f^{\#}): (X, \mathcal{O}_X) \longrightarrow (Y, \mathcal{O}_Y)$, such that, for every affine open subset $V \subset Y$, there is an isomorphim $\varphi_V: f^{-1}(V) \longrightarrow \operatorname{Spec}(\mathscr{A}(V))$, such that, for open affine subsets $V_1 \subset V_2$, the inclusion $f^{-1}(V_1) \subset f^{-1}(V_2)$ corresponds to the restriction homomorphism $\mathscr{A}(V_2) \longrightarrow \mathscr{A}(V_1)$. This scheme is denoted by $\operatorname{Spec}(\mathscr{A})$.
- d) Let $(f, f^{\sharp}): (X, \mathcal{O}_X) \longrightarrow (Y, \mathcal{O}_Y)$ be an affine morphism. Prove that (X, \mathcal{O}_X) is, as a scheme over Y, isomorphic to $\operatorname{Spec}(f_{\star}(\mathcal{O}_X))$.
- e) Formulate and prove a universal property of $\underline{\operatorname{Spec}}(\mathscr{A})$.