Problems on Algebra III

Winter 2021

M. Benyoussef, A. Schmitt

Problem Set 13

Due: Tuesday, February 8, 2022, 2pm

Final series!

Exercise 1 (Group actions; 5 points).

Let k be a field, G an affine k-group scheme, X an affine k-scheme, and $\alpha: G \times X \longrightarrow X$ a morphism. Characterize the property that α be an action by the commutativity of suitable diagrams in $\underline{\mathrm{Aff}}_k$.

Exercise 2 (Actions and representations; 5 points).

Let k be a field, G an affine k-group scheme, $X = \operatorname{Spec}(B)$ an affine k-scheme, and $\alpha : G \times X \longrightarrow X$ an action of G on X. Make precise the construction of the associated linear action

$$\eta: G \times B \longrightarrow B$$

that was sketched in the lecture.

Exercise 3 (Representations of α_p ; 5 points).

Let p be a prime number, k a field of characteristic p, $\alpha_p := \operatorname{Spec}(k[t]/\langle t^p \rangle)$, and V a k-vector space. Show that giving a linear action of α_p on V is equivalent to specifying an endomorphism $f \colon V \longrightarrow V$ with $f^p = 0$.

Exercise 4 (Categorical quotients, invariant rings, and PSL $_2$; 4+8+5+8 points).

Let k be an algebraically closed field, $G = \operatorname{Spec}(A)$ a reduced algebraic k-group scheme, $X = \operatorname{Spec}(B)$ a reduced algebraic k-scheme, and $\alpha \colon G \times X \longrightarrow X$ an action of K on K. Set K

$$B^G := \big\{ f \in B \,|\, \forall x \in X(k), \, \forall g \in G(k): \, f(g \cdot x) = f(g) \big\}.$$

a) Assume that the categorical quotient (Z, p) for the action of G on X exists. Show that

$$\Gamma(Z, \mathscr{O}_Z) \cong B^G$$

via the homomorphism

$$p^{\#}(Z) \colon \Gamma(Z, \mathcal{O}_Z) \longrightarrow B.$$

¹i.e., *A* is a finitely generated *k*-algebra

²i.e., B is a finitely generated k-algebra

³Compare Exercise 2.

⁴See Problem Set 11, Exercise 2.

- b) Assume that B^G is a finitely generated k-algebra. Prove that $Z := \operatorname{Spec}(B^G)$ together with the morphism $p \colon X \longrightarrow Z$ induced by the inclusion $B^G \subset B$ is a categorical quotient for X by the action α .
- c) Show that the categorical quotient Z of $SL_2(k)$ by the action of the subgroup $\langle \pm \mathbb{E}_2 \rangle$ exists.
- d) Assume $1 + 1 \neq 0$ in k. Show that the categorical quotient Z from Part c) has a k(t)-rational point which is not represented by a matrix in $SL_2(k(t))$. Conclude that the group functor

$$PSL_2: R \longmapsto SL_2(R)/\langle \pm \mathbb{E}_2 \rangle$$

is not representable.