Problems on Algebra II

Summer 2021

A. Schmitt

Problem Set 9

Due: Monday, June 21, 2021, 4pm

Exercise 1 (Minimal free resolutions; 7+8 points).

Let (R, \mathfrak{m}) be a local ring, $k := R/\mathfrak{m}$, and *M* a finitely generated *R*-module. A *minimal free resolution* of *M* is an exact sequence

 $0\;\longrightarrow\; R^{\oplus r_\ell}\;\stackrel{\pi_\ell}\longrightarrow\; R^{\oplus r_{\ell-1}}\;\stackrel{\pi_{\ell-1}}\longrightarrow\;\cdots\;\stackrel{\pi_2}\longrightarrow\; R^{\oplus r_1}\;\stackrel{\pi_1}\longrightarrow\; R^{\oplus r_0}\;\stackrel{\pi_0}\longrightarrow\; M\;\longrightarrow\;0$

with

$$
r_0 := \dim_k(M/\mathfrak{m} \cdot M), \quad r_i := \dim_k(S_i/\mathfrak{m} \cdot S_i), \quad S_i := \ker(\pi_{i-1}), \quad i = 1, ..., \ell.
$$

a) Show that a resolution as above is minimal if and only if

- ker $(\pi_0) \subset m^{\oplus r_0}$,
- Im $(\pi_{i+1}) = \ker(\pi_i) \subset \mathfrak{m}^{\oplus r_i}, i = 0, ..., \ell 1.$

b) Suppose that the above resolution is minimal. Prove that ℓ agrees with the projective dimension of *M*.

Exercise 2 (Hilbert's syzygy theorem for polynomial rings; 10 points).

Let *k* be a field, $n > 1$, and $R := k[x_1, ..., x_n]$ the polynomial ring in *n* variables.

Quillen–Suslin theorem.[1](#page-0-0) *A finitely generated projective module over R is free*.

Prove with the help of the Quillen–Suslin theorem that, for any finitely generated *R*-module *M*, there exist an $\ell \leq n$, positive natural numbers $r_1, ..., r_\ell$, and an exact sequence

$$
0\;\longrightarrow\; R^{\oplus r_\ell}\;\overset{\pi_\ell}\longrightarrow\; R^{\oplus r_{\ell-1}}\;\overset{\pi_{\ell-1}}\longrightarrow\;\cdots\;\overset{\pi_2}\longrightarrow\; R^{\oplus r_1}\;\overset{\pi_1}\longrightarrow\; R^{\oplus r_0}\;\overset{\pi_0}\longrightarrow\; M\;\longrightarrow\;\cdots\to\;0\cdot
$$

Exercise 3 (A stably free module which is not free; $6+9$ points). Define $R := \mathbb{R}[x, y, z]/\langle x^2 + y^2 + z^2 - 1 \rangle$ and $T := \{(r, s, t) \in R^3 | r \cdot x + s \cdot y + t \cdot z = 0 \}.$ a) Show that $R \oplus T \cong R \cdot (x, y, z) \oplus T = R^{\oplus 3}$.^{[2](#page-0-1)} Hint. The inner product

$$
\langle \cdot, \cdot \rangle : R^{\times 3} \times R^{\times 3} \longrightarrow R
$$

$$
((r, s, t), (u, v, w)) \longmapsto r \cdot u + s \cdot v + t \cdot w
$$

¹Theorem 3.15 in Kunz, Ernst: *Introduction to commutative algebra and algebraic geometry*, translated from the 1980 German original by M. Ackerman, with a preface by D. Mumford, reprint of the 1985 edition, Modern Birkhäuser Classics, Birkhäuser/Springer, New York, 2013, xiv+238 pp.

 2 It is important that the second relation is equality.

(appearing in the definition of *T*) might be useful.

Interpretation. The ring R is the ring of real valued polynomial functions on the unit sphere $S^2 = \{(a, b, c) \in \mathbb{R}^3 \mid a^2 + b^2 + c^2 = 1\}$, and *T* corresponds to the tangent bundle of S^2 . The normal bundle *N* to S^2 is trivial, $N \oplus T$ is isomorphic to the restriction of the tangent bundle of \mathbb{R}^3 to S^2 , and the tangent bundle of \mathbb{R}^3 is trivial.

b) Prove that $T \not\cong R^2$.

Hint. Assume that $T \cong R^{\oplus 2}$, pick a basis (f_1, g_1, h_1) , (f_2, g_2, h_2) of *T*, and show that the determinant

$$
\left(\begin{array}{ccc} x & y & z \\ f_1 & g_1 & h_1 \\ f_2 & g_2 & h_2 \end{array}\right)
$$

is a unit in *R*. Infer that

$$
(f_1, g_1, h_1): S^2 \longrightarrow \mathbb{R}^3
$$

$$
x \longmapsto (f_1(x), g_1(x), h_1(x))
$$

is a differentiable map which is everywhere distinct from $(0,0,0)$. This contradicts the **hairy ball** theorem (see, e.g., Alexander Schmitt, Analysis III, 5.9.1 Satz, http://userpage.fu-berlin. de/∼aschmitt/).