Problems on Algebra II

Summer 2021

A. Schmitt

Problem Set 9

Due: Monday, June 21, 2021, 4pm

Exercise 1 (Minimal free resolutions; 7+8 points).

Let (R, \mathfrak{m}) be a local ring, $k := R/\mathfrak{m}$, and M a finitely generated R-module. A *minimal free* resolution of M is an exact sequence

$$0 \longrightarrow R^{\oplus r_{\ell}} \xrightarrow{\pi_{\ell}} R^{\oplus r_{\ell-1}} \xrightarrow{\pi_{\ell-1}} \cdots \xrightarrow{\pi_{2}} R^{\oplus r_{1}} \xrightarrow{\pi_{1}} R^{\oplus r_{0}} \xrightarrow{\pi_{0}} M \longrightarrow 0$$

with

$$r_0 := \dim_k(M/\mathfrak{m} \cdot M), \quad r_i := \dim_k(S_i/\mathfrak{m} \cdot S_i), \quad S_i := \ker(\pi_{i-1}), \quad i = 1, \dots, \ell.$$

a) Show that a resolution as above is minimal if and only if

- ker $(\pi_0) \subset \mathfrak{m}^{\oplus r_0}$,
- Im $(\pi_{i+1}) = \ker(\pi_i) \subset \mathfrak{m}^{\oplus r_i}, i = 0, ..., \ell 1.$

b) Suppose that the above resolution is minimal. Prove that ℓ agrees with the projective dimension of *M*.

Exercise 2 (Hilbert's syzygy theorem for polynomial rings; 10 points).

Let *k* be a field, $n \ge 1$, and $R := k[x_1, ..., x_n]$ the polynomial ring in *n* variables.

Quillen–Suslin theorem.¹ *A finitely generated projective module over R is free.*

Prove with the help of the Quillen–Suslin theorem that, for any finitely generated *R*-module *M*, there exist an $\ell \leq n$, positive natural numbers $r_1, ..., r_\ell$, and an exact sequence

$$0 \longrightarrow R^{\oplus r_{\ell}} \xrightarrow{\pi_{\ell}} R^{\oplus r_{\ell-1}} \xrightarrow{\pi_{\ell-1}} \cdots \xrightarrow{\pi_2} R^{\oplus r_1} \xrightarrow{\pi_1} R^{\oplus r_0} \xrightarrow{\pi_0} M \longrightarrow 0$$

Exercise 3 (A stably free module which is not free; 6+9 points). Define $R := \mathbb{R}[x, y, z]/\langle x^2 + y^2 + z^2 - 1 \rangle$ and $T := \{ (r, s, t) \in R^3 | r \cdot x + s \cdot y + t \cdot z = 0 \}$. a) Show that $R \oplus T \cong R \cdot (x, y, z) \oplus T = R^{\oplus 3}$.² **Hint.** The inner product

$$\langle \cdot, \cdot \rangle \colon R^{\times 3} \times R^{\times 3} \longrightarrow R$$

 $((r, s, t), (u, v, w)) \longmapsto r \cdot u + s \cdot v + t \cdot w$

¹Theorem 3.15 in Kunz, Ernst: *Introduction to commutative algebra and algebraic geometry*, translated from the 1980 German original by M. Ackerman, with a preface by D. Mumford, reprint of the 1985 edition, Modern Birkhäuser Classics, Birkhäuser/Springer, New York, 2013, xiv+238 pp.

²It is important that the second relation is equality.

(appearing in the definition of T) might be useful.

Interpretation. The ring *R* is the ring of real valued polynomial functions on the unit sphere $S^2 = \{(a, b, c) \in \mathbb{R}^3 | a^2 + b^2 + c^2 = 1\}$, and *T* corresponds to the tangent bundle of S^2 . The normal bundle *N* to S^2 is trivial, $N \oplus T$ is isomorphic to the restriction of the tangent bundle of \mathbb{R}^3 to S^2 , and the tangent bundle of \mathbb{R}^3 is trivial.

b) Prove that $T \ncong \mathbb{R}^2$.

Hint. Assume that $T \cong R^{\oplus 2}$, pick a basis $(f_1, g_1, h_1), (f_2, g_2, h_2)$ of *T*, and show that the determinant

$$\left(\begin{array}{ccc}
x & y & z \\
f_1 & g_1 & h_1 \\
f_2 & g_2 & h_2
\end{array}\right)$$

is a unit in *R*. Infer that

$$\begin{array}{cccc} (f_1,g_1,h_1)\colon S^2 &\longrightarrow & \mathbb{R}^3 \\ & x &\longmapsto & \left(f_1(x),g_1(x),h_1(x)\right) \end{array}$$

is a differentiable map which is everywhere distinct from (0,0,0). This contradicts the **hairy ball theorem** (see, e.g., Alexander Schmitt, Analysis III, 5.9.1 Satz, http://userpage.fu-berlin. de/~aschmitt/).