## Problems on Algebra II

Summer 2021
A. Schmitt

## Problem Set 8

Due: Monday, June 14, 2021, 4pm

Exercise 1 (Group cohomology; $3+2+7+3$ points).
This exercise continues Exercise 1 from Problem Set 5.
a) Let $G$ be a group and Inv the left exact functor from the category of $G$-modules to the category of abelian groups that assigns to a $G$-module $M$ the group $M^{G}$ of $G$-invariant elements of $M$. Show that the right derived functors of Inv are given by $\operatorname{Ext}_{\mathbb{Z}[G]}^{k}(\mathbb{Z}, \cdot), k \in \mathbb{N}$.
b) Explain how the right derived functors of Inv may be computed with the help of a projective resolution of $\mathbb{Z}$ endowed with the trivial $G$-module structure.
c) Let $S$ be a non-empty set and $E_{k}$ the free $\mathbb{Z}$-module with basis $S^{\times(k+1)}$, i.e., the set of $(k+1)$ tuples $\left(x_{0}, \ldots, x_{k}\right)$ with entries in $S, k \geq \mathbb{N}$. Define

$$
d_{k+1}: E_{k+1} \longrightarrow E_{k}
$$

as the homomorphism that is induced by the map

$$
\left(x_{0}, \ldots, x_{k+1}\right) \longmapsto \sum_{j=0}^{k}(-1)^{j} \cdot\left(x_{0}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{k+1}\right)
$$

on the basis vectors, and

$$
d_{0}: E_{0} \longrightarrow \mathbb{Z}
$$

as the homomorphism that is induced by $d_{0}\left(x_{0}\right)=1, x_{0} \in S$. Show that the sequence

$$
\cdots \longrightarrow E_{1} \longrightarrow E_{0} \longrightarrow \mathbb{Z} \longrightarrow 0
$$

is exact.
Hint. First show that you get a complex. For exactness, pick an element $z \in S$ and define

$$
h_{k}: E_{k} \longrightarrow E_{k+1}
$$

by

$$
\left(x_{0}, \ldots, x_{k}\right) \longmapsto\left(z, x_{0}, \ldots, x_{k}\right)
$$

and check that

$$
d_{k+1} \circ h_{k}+h_{k-1} \circ d_{k}=\operatorname{id}_{E_{k}}, \quad k \in \mathbb{N} .
$$

d) In the set-up of Part a), b), use $S=G$ in Part c) and let $G$ act on $E_{k+1}$ by

$$
g \cdot\left(x_{0}, \ldots, x_{k}\right):=\left(g \cdot x_{0}, \ldots, g \cdot x_{k}\right), \quad k \in \mathbb{N} .
$$

Verify that $E_{k}$ is a free $\mathbb{Z}[G]$-module, $k \in \mathbb{N}$, and conclude that the resolution from Part c) is a projective resolution of the trivial $G$-module $\mathbb{Z}$.

Exercise 2 (Cohomology of cyclic groups; 4+6 points).
Let $n \geq 1$ and $C_{n}:=\left\langle t \mid t^{n}=1\right\rangle$ the cyclic group of order $n$. Define the elements

$$
t-1 \quad \text { and } \quad N:=1+t+\cdots+t^{n-1}
$$

in the group ring $\mathbb{Z}\left[C_{n}\right] \cdot{ }_{-}^{1}$
a) Set $\varepsilon: \mathbb{Z}[G] \longrightarrow \mathbb{Z}, \sum_{g \in G} a_{g} \cdot \varepsilon_{g} \longmapsto \sum_{g \in G} a_{g}$. Show that

$$
\cdots \xrightarrow{(t-1)} \mathbb{Z}[G] \xrightarrow{N} \mathbb{Z}[G] \xrightarrow{(t-1)} \mathbb{Z}[G] \xrightarrow{\varepsilon} \mathbb{Z} \longrightarrow 0
$$

is a projective resolution of the trivial $G$-module $\mathbb{Z}$.
b) Use the complex of Part a) to compute the cohomology groups of $C_{n}$.

Exercise 3 (The global dimension of the ring of integers and applications; $5+2+4+4$ points).
a) Determine the global dimension of the ring of integers.
b) Prove that $\operatorname{Tor}_{k}^{Z}(A, B)=0$, for any two abelian groups $A, B$ and any natural number $k \geq 2$.
c) Show that ${ }^{2}$

$$
\operatorname{Tor}_{1}^{\mathbb{Z}}(A, \mathbb{Z} /\langle n\rangle)=A[n]=\{a \in A \mid n \cdot a=0\},
$$

for every abelian group $A$ and every natural number $n$.
d) Let

$$
(\star): 0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0
$$

be a short exact sequence of abelian groups and $n \in \mathbb{N}$. Complete the sequence $(\star) \underset{\mathbb{Z}}{\otimes} \mathbb{Z} /\langle n\rangle$ to the long exact Tor-sequence and specify all maps in that sequence.

[^0]
[^0]:    ${ }^{1}$ Observe that the group $C_{n}$ is written multiplicatively and that addition refers to addition in the group ring.
    ${ }^{2}$ Compare Exercise 2 from Problem Set 5.

