Problems on Algebra II

Summer 2021
A. Schmitt

Problem Set 7

Due: Monday, June 7, 2021, 4pm

Exercise 1 (Examples of tensor products; 3+5+4 points).
a) Let n be a natural number. Compute the tensor products

$$
\mathbb{Q} \otimes_{\mathbb{Z}}(\mathbb{Z} /\langle n\rangle) \quad \text { and } \quad(\mathbb{Q} / \mathbb{Z}) \otimes_{\mathbb{Z}}(\mathbb{Z} /\langle n\rangle) .
$$

b) Let m and n be natural numbers. Determine the tensor product

$$
(\mathbb{Z} /\langle m\rangle) \otimes_{\mathbb{Z}}(\mathbb{Z} /\langle n\rangle) .
$$

c) Is the tensor product of the exact sequence

$$
0 \longrightarrow \mathbb{Z} \xrightarrow{n \longmapsto 2 n} \mathbb{Z} \longrightarrow \mathbb{Z} /\langle 2\rangle \longrightarrow 0
$$

with $\mathbb{Z} /\langle 2\rangle$ exact?
Exercise 2 (Some properties of Hom and $\otimes ; 4+4+4$ points).
Let R be a commutative ring.
a) Let A, B, and C be R-modules. Verify that there is a canonical isomorphism

$$
\operatorname{Hom}_{R}\left(A \otimes_{R} B, C\right) \cong \operatorname{Hom}_{R}\left(A, \operatorname{Hom}_{R}(B, C)\right) .
$$

b) Let A be an R-module and B an abelian group. Show that there is a natural isomorphism

$$
\operatorname{Hom}_{R}\left(A, \operatorname{Hom}_{\mathbb{Z}}(R, B)\right) \cong \operatorname{Hom}_{\mathbb{Z}}(A, B)
$$

of R-modules.
c) Let A, B, and C be R-modules. Prove that

$$
\left(A \otimes_{R} B\right) \otimes_{R} C \cong A \otimes_{R}\left(B \otimes_{R} C\right)
$$

(The tensor product is associative.)
Exercise 3 (The tensor product of algebras; 6 points).
Let R be a commutative ring and A and $B R$-algebras. Show that there is an R-algebra structure on $A \otimes_{R} B$ with

$$
(a \otimes b) \cdot\left(a^{\prime} \otimes b^{\prime}\right)=\left(a a^{\prime}\right) \otimes\left(b b^{\prime}\right), \quad \forall a, a^{\prime} \in A, b, b^{\prime} \in B
$$

Exercise 4 (Tor; 6+4 points).
Let R be a commutative ring.
a) Show that

$$
\operatorname{Tor}_{n}^{R}(M,-) \cong L_{n}\left(-\otimes_{R} M\right), \quad n \in \mathbb{N}, M \text { an } R \text {-module }
$$

(This means that Tor may be computed by taking projective resolutions in the first variable.)
b) Verify that

$$
\operatorname{Tor}_{n}^{R}(M, N) \cong \operatorname{Tor}_{n}^{R}(N, M)
$$

holds for all $n \in \mathbb{N}$ and all R-modules M and N.

